
Citation: Ding, Y.; Yang, X.; Wang, Z.;

Fu, D.; Li, H.; Meng, D.; Zeng, X.;

Zhang, J. A Field-Data-Aided

Comparison of Three 10 m Land

Cover Products in Southeast Asia.

Remote Sens. 2022, 14, 5053.

https://doi.org/10.3390/rs14195053

Academic Editor: Georgios Mallinis

Received: 19 September 2022

Accepted: 9 October 2022

Published: 10 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

A Field-Data-Aided Comparison of Three 10 m Land Cover
Products in Southeast Asia
Yaxin Ding 1,2,† , Xiaomei Yang 1,3,† , Zhihua Wang 1,3,* , Dongjie Fu 1,3 , He Li 1,3 , Dan Meng 1,3,
Xiaowei Zeng 1,4 and Junyao Zhang 1,3

1 State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences
and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

2 School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China
3 University of Chinese Academy of Sciences, Beijing 100049, China
4 School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China
* Correspondence: zhwang@lreis.ac.cn
† These authors contributed equally to this work.

Abstract: To study global and regional environment protection and sustainable development and
also to optimize mapping methods, it is of great significance to compare three existing 10 m resolution
global land cover products in terms of accuracy: FROM-GLC10, the ESRI 2020 land cover product
(ESRI2020), and the European Space Agency world cover 2020 product (ESA2020). However, most
previous validations lack field collection points in large regions, especially in Southeast Asia, which
has a cloudy and rainy climate, creating many difficulties in land cover mapping. In 2018 and 2019,
we conducted a 56-day field investigation in Southeast Asia and collected 3326 points from different
places. By combining these points and 14,808 other manual densification points in a stratified random
sampling, we assessed the accuracy of the three land cover products in Southeast Asia. We also
compared the impacts of the different classification standards, the different sample methods, and the
different spatial distributions of the sample points. The results show that in Southeast Asia, (1) the
mean overall accuracies of the FROM-GLC10, ESRI2020, and ESA2020 products are 75.43%, 79.99%,
and 81.11%, respectively; (2) all three products perform well in croplands, forests, and built-up areas;
ESRI2020 and ESA2020 perform well in water, but only ESA2020 performs well in grasslands; and
(3) all three products perform badly in shrublands, wetlands, or bare land, as both the PA and the
UA are lower than 50%. We recommend ESA2020 as the first choice for Southeast Asia’s land cover
because of its high overall accuracy. FROM-GLC10 also has an advantage over the other two in
some classes, such as croplands and water in the UA aspect and the built-up area in the PA aspect.
Extracting the individual classes from the three products according to the research goals would be
the best practice.

Keywords: 10 m land cover products; FROM-GLC10; ESRI 2020 land cover; world cover 2020; land
use/cover; field data; accuracy assessment; earth observation; sentinel-2

1. Introduction

Land cover products are of great significance for conducting research on the human–
land relationship, climate change, ecosystem management, and environmental protection
on a global scale [1–3]. Driven by today’s high-resolution remote sensing images, land cover
products also exhibit a trend toward a higher resolution. The free-access 30 m land cover
products for 2010 have been gradually replaced by 10 m products. High-resolution land
cover products can better identify the real distribution of the Earth’s biological resources,
which is of great significance for improving the efficiency and suitability of the land
cover [4,5]. Especially in the context of a rapid economic development and intensifying
global climate change, land cover changes have far-reaching impacts on many aspects of
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the environment, ecology, and resources [6]. Currently, due to the availability of higher-
resolution satellite images and the fusion of machine learning and remote sensing [7–9],
creating global land cover products has become convenient and efficient and their creation
has increased significantly over the last decade. A growing number of high-resolution land
cover products have also been made publicly available for free, for example, the first 10 m
resolution global land cover product (FROM_GLC10), released by the team of Professor
Gong Peng of Tsinghua University, in 2017 [10]; the 2020 global 10 m land cover data
released by ESRI, in June 2021 (ESRI2020) [11]; and the free 10 m global land cover product
for 2020 released by the European Space Agency in, October 2021 (ESA2020). Hence, the
rational use of data resources becomes more important than the availability of the data
resources [12,13]. Comparing and analyzing the quality, advantages, and disadvantages of
these products can not only provide directions for improving subsequent updates but also
help us use these data more reasonably [14–16].

Although there have been many comparative analyses of land cover products, most
of them are based on the consistency analysis method or the existing validation sample
points in some local areas and the use of large-scale field collection points for support is
lacking. For example, Giri et al. [17] compared the global land cover 2000 data (GLC-2000)
and the moderate resolution imaging spectrometer (MODIS) global land cover data using
a spatial consistency analysis and concluded that except for grasslands, shrublands, and
wetlands, the overall land cover product level was consistent. Zhao et al. [18] compared the
MCD12Q1 and the GlobCover datasets and identified and analyzed four aspects: the land
cover change rate (K), the land-cover-integrated index (LD), the land cover dynamic degree
(LUDD), and the transfer analysis. They determined that forests and grasslands have an
impact on the overall results, which they attributed to the differences in the classification
system used. Kang et al. [19] and Wang et al. [20] conducted a comparative analysis of
three existing 10 m resolution land cover products. Based on consistency analysis, they
concluded that the three products can be used in arid areas to identify water and croplands
but are not suitable for direct use in rocky desertification areas. The above researchers have
drawn valuable conclusions by comparing different land cover products, but their research
has been mainly based on visual interpretation points on high-resolution Google Earth
images or the use of existing indirect field collecting sample points, lacking large-scale field
collected points. This makes it difficult to eliminate the subjective cognitive bias of the
sample point interpreters.

With the support of the Chinese Academy of Sciences (CAS) Earth Big Data Science
Project of China, we conducted 56 days of field data collection in Southeast Asia, in 2018 and
2019. Southeast Asia is located in the equatorial region and is on the crossroads between
Asia and Oceania, as well as the Pacific Ocean and the Indian Ocean. The region is hot and
humid, and it is cloudy and rainy all year round [21], which reduces the quality of remote
sensing optical images. Southeast Asia is also densely populated and has undergone a
rapid economic development [22], with rapid changes in land use types and a high human
interference intensity, which makes it a key research area for global biogeochemical changes.

To fill the gap in the existing research, we took Southeast Asia as the study area and,
on the basis of field data, we evaluated and compared the accuracies of three existing
high-resolution (10 m) land cover products (FROM-GLC10, ESRI2020, and ESA2020). Some
potential factors that could influence the conclusions are also discussed with the results of
additional experiments. The results of this study provide a reference for producers of land
cover products, as well as recommendations for product selection for use in Southeast Asia.

2. Study Area and Data
2.1. Southeast Asia

Southeast Asia is located in the southeastern part of Asia, with a total area of about
4.57 million km2. It is adjacent to the Pacific Ocean to the east and the Indian Ocean to
the west. It is at the crossroads between Asia, Oceania, the Pacific Ocean, and the Indian
Ocean [23,24]. Southeast Asia is an indispensable area for international trade [25–27]. On
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the basis of the terrain, it can be divided into two sections: the Indo-China Peninsula and
the Malay Archipelago [28]. Most of the Indo-China Peninsula has a tropical monsoon
climate, and the year consists of a dry season and a rainy season [29]. Most of the Malay
Archipelago has a tropical rain forest climate, with high temperatures, rain all year round,
and dense tropical rain forests [30]. Southeast Asia also has a large population [31,32]. It is
rich in mineral resources, of which tin and oil are the most famous [33,34]. The countries
not only contain abundant terrestrial mineral resources but also have a huge development
potential due to their long coastlines and vast areas. So, the rapid expansion of land
reclamation, marine aquaculture, and oil palm plantations continues [35], causing great
changes in land cover and land use [36].

In Southeast Asia, land cover products are of great significance for ecological protec-
tion, efficient use of land, and the rational planning of resources [10,37]. Thus, we took
Southeast Asia as the research area (Figure 1). Through the comparative validation of three
different land cover products, we wish to provide a reference of how to use the land cover
products for studying the local human–land relationship, climate change, and ecosystem
and environmental protection [38].
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Figure 1. Location and topography of Southeast Asia.

2.2. Data
2.2.1. Three 10 m Land Cover Products

Currently, there are three main global land cover datasets with a resolution of 10 m
that can be downloaded freely. The first is the FROM_GLC10 product, released by the
team of Professor Gong Peng of Tsinghua University, in 2017; the second is the global
10 m land cover product for 2020 released by ESRI, in June 2021 (ESRI2020); and the third
is a free 10 m resolution global land cover product for 2020 (ESA2020) released by the
European Space Agency, in October 2021. Table 1 presents a comparison of the three land
cover products.
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Table 1. Comparison of the three land cover products.

Land Cover Products FROM-GLC10 ESRI2020 ESA2020

Producer The team of Professor Gong Peng of
Tsinghua University

ESRI2020 and Microsoft’s
Planetary Computer European Space Agency (ESA2020)

Publication date 2017 2020 2021
Resolution 10 m 10 m 10 m

Source of remote
sensing images

2015 Landsat-8
2017 Sentinel-2 2020 Sentinel-2 2020 Sentinel-1

2020 Sentinel-2

Number of classes 10 10 11
Production method Random forest algorithm Deep learning model Cat boost

Validation method It uses the equal-area stratified
sampling method.

The Impact Observatory adjusts the
acreage estimates for each class using

its respective user’s accuracy as
computed from the comparison with

the validation set.

(1) It carries out a statistical
accuracy validation.

(2) It makes a visual comparison
with other products.

(3) It conducts a spatial
uncertainty validation.

Overall global
accuracy 72.76% 86% 74.4%

Download link http://data.ess.tsinghua.edu.cn
https://www.arcgis.com/home/

item.html?id=d6642f8a4f6d4685a2
4ae2dc0c73d4ac

https://ESA2020-worldcover.org/en

Note: The information was obtained on 12 June 2022.

(1) FROM_GLC10

FROM-GLC10 was extracted from the 10 m Sentinel-2 images acquired in 2017. It
was produced by Gong Peng et al., Tsinghua University, China, using the random for-
est algorithm [10,39]. FROM-GLC10 provides 10 general land cover classes: cropland,
forest, grassland, shrubland, wetland, water bodies, tundra, impervious area, bare land,
and snow/ice. Transferred from the Landsat 8 images acquired in 2015, the sampling
based on the equal-area stratified method was used to collect the multi-seasonal sam-
ple points, including the training and validation points [40]. The training points contain
about 340,000 samples of different sizes (from 30 m × 30 m to 500 m × 500 m) located at
about 93,000 sampling places around the world, and the validation points contain about
140,000 samples for the different seasons from more than 38,000 places. The training sample
points were then transferred to the Sentinel-2 images acquired in 2017. On the basis of the
data collected by the Sentinel-2 images for 13 spectral bands (four 10 m resolution visible
light and near-infrared bands plus six 20 m resolution red-edge and mid-range bands), a
random forest classifier was used to generate global land cover maps with a 10 m resolution.
The validation sample points were used to detect the accuracy. The test showed that an
overall global accuracy of 72.76% is achieved using the training and validation sample
points for 2015 [41].

(2) ESRI2020

ESRI2020 (ESRI 2020 Land Cover) is also a global land cover product extracted from
10 Sentinel-2 images acquired in 2020 [11]. It was produced by ESRI in partnership with
Microsoft’s Planetary Computer and scaled by the Microsoft Azure Batch by a deep learning
model trained on 5 billion hand-labeled Sentinel-2 pixels distributed over 20,000 sampling
places around the world, using six bands of the Sentinel-2 remote sensing data: the visible
blue band, the green band, the red band, the near-infrared band, and the two short-
wave infrared bands. To create the final map, the model was run on images acquired on
multiple dates throughout the year and the output was synthesized into a final representative
map for 2020. The final map depicts a total of 10 different land cover classes: water, trees,
grass, flooded vegetation, crops, scrub/shrubs, built-up area, bare ground, snow/ice, and
clouds (https://www.arcgis.com/home/item.html?id=d6642f8a4f6d4685a24ae2dc0c73d4ac,
accessed on 12 June 2022). This product is made available by the Impact Observatory to
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provide decision-makers with artificial intelligence, machine learning algorithms, and data
for validating map accuracy to carry out sustainability and environmental risk analyses. The
Impact Observatory has a best-practice in terms of accuracy validation, that is, it adjusts the
estimated area for each class on the basis of the respective user’s accuracy calculated in
comparison to the validation points. The validation is based on a simple analysis of the
uncertainty in the land change area confidence bounds applied to the carbon flux models,
which numerically account for the variability in the land change area estimates and also
allows the Impact Observatory to generate 95% confidence intervals for each planted area
estimate, providing users with clearer results regarding the accuracy of each class and the
total area [42]. Finally, eight land cover classes (excluding snow/ice and clouds) of the land
cover map achieve an overall accuracy of 86%, globally, on the basis of the validation points.

(3) ESA2020

The ESA World Cover 2020 (ESA2020) was extracted from the 10 m global land cover
dataset produced by the World Cover Project, initiated by the European Space Agency
(http://worldcover2017.ESA2020.int, accessed on 12 June 2022) [43]. The source of the
data is Sentinel-1 and Sentinel-2 acquired in 2020, characterized by the comprehensive
use of optical earth observation data, Sentinel-2 data, and SAR data. ESA2020 includes
11 land cover classes: tree cover, shrubland, grassland, cropland, built-up land, bare/sparse
vegetation, snow and ice, permanent water bodies, herbaceous wetland, mangroves, moss,
and lichen forest. All of the classes are independently verified. The accuracy validation
of this product involves a statistical accuracy validation, map comparison, and spatial
accuracy validation. The statistical accuracy validation was conducted by the Committee on
Earth Observation Satellites-Working Group on Calibration and Validation (CEOS-WGCV,
Stage-4 validation) and the multipurpose independent land cover validation system. The
system has been developed, scientifically published, and used in operations as part of
the Copernicus Global Land Service (CGLS), and it is regularly updated [15]. For the
map comparison, this dataset was also visually assessed for spatial accuracy and spatial
uncertainty with the help of two datasets using over 200,000 reference data locations. The
ESA2020 product has an overall accuracy rate of 74.4% worldwide.

2.2.2. The Collection of the Field Data

In 2018 and 2019, with the support of the CAS Earth Big Data Science Project of
China, we carried out a total of 56 days of field data collection in Thailand, Malaysia, Laos,
Cambodia, Indonesia, and Myanmar. Figure 2 shows a schematic diagram of our field
collection route. Table 2 presents the specific times and duration.

The information recorded for each sample point included the longitude, the latitude,
the altitude, the land cover class, and the surrounding environment of the sample point.
The main recording method was photographing. For the sample points with inconsistent
changes with time, we interviewed local people to verify the changes, for example, regarding
the differences between the growth cycle and the planting time of oil palm and rice. For areas
that were not suitable for close field checking, detailed descriptions were added when taking
the photos and the classes of the points determined when taking the photos were recorded
in as much detail as possible. For example, oil palm and rubber, as characteristic southeast
Asian planting industries, were assigned a separate class to meet the validation requirements
of different land cover data classes. A record of forest points is shown in Table 3.

When implementing the spatial layout of the sample points, the following principles
were followed. The field sample points were typical and representative of the classification
system. The actual land cover class of the sample point was singular, the area was large,
and all of the classes in the classification system were involved. A precise description of
each sample was recorded. When positioning, it was ensured that the distance between
the sample points and the patches was at least 50 m. Thus, the overall location of the
sample point was consistent with the investigation route. To avoid the systematic bias
of the classification system differences where accuracy validation was concerned and to
improve the accuracy of the remote sensing interpretation, a unified interpretation of the

http://worldcover2017.ESA2020.int
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field photos and remote sensing images is necessary [44,45]. To ensure the point’s land
cover class, we referred to the class definition of the three land cover products, the spectral
characteristics of the image, the field collection records, and spatial distribution. Once these
materials were synthesized, the interpretation rules were finally established to provide a
unified standard for the visual interpretation of the manual densification points conducted
next. Finally, all of the sample points were summarized into eight main classes: bare land,
built-up area, wetland, water, shrubland, grassland, forest, and cropland. Table A1 presents
the interpretation rules.
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Table 2. Dates and duration of field data collection in Southeast Asia.

Country Start Date–End Date Duration (Days)

Thailand 2018/09/07–2018/09/16 10
Malaysia 2018/11/29–2018/12/07 9

Laos-Cambodia 2019/03/20–2019/03/31 12
Cambodia 2019/08/08–2019/08/14 7
Myanmar 2019/09/20–2019/09/28 9
Indonesia 2019/09/11–2019/09/19 9

To ensure that the details of the class (for example, in the case of the forest class,
the type of forest, such as natural forest, oil palm, rubber, 5-year plantation, or 10-year
plantation) were recorded during the field collection, the main class was not determined
before the field collection. When carrying out this study, all of the field collection points
were unified and sorted to eliminate the systematic bias effect caused by the differences in
the classification system.

To avoid the possibility of noise due to projection and resampling errors applied when
retrieving the corresponding land cover class, we created a 30 m × 30 m bounding box,
centered the point, and judged the number of land cover classes. The method can provide
an insight into the reliability of the chosen locations. We built a point-centered bounding
box based on ArcGIS and judged it on the basis of Google Earth. In principle, when the
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number of classes in the box was greater than two, the class characteristics of this point
were complex and changeable and did not have a good representation. We deleted these
points. However, when the number of classes in the box was equal to two, we would judge
the spatial distance between the point and the edge of the two classes and move these
points to the area where the class was located. The reason we kept these points is that had
they been discarded, a lot of fieldwork data would have been lost as most of the collected
points belong to this situation. Moreover, these points had been inspected in the field and
we could determine the land cover class correctly even if there was a spatial offset. When
there was only one class, we retained this point without making any changes. In addition, we
conducted a manual visual validation on the basis of high-resolution Google Earth images.

Table 3. An example of a field collection point record.

Field Point Number A08

Latitude (◦) 18.33061396
Longitude (◦) 99.32298898
Elevation (m) 315.356323
Field photo Corresponding remote sensing image
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Visit date 2018/09/08
Road number 11

Landform class Plain

Investigators Li He,
Zhang Chenchen

Land cover class Plantation
Detailed description Oil palm

On the basis of the above data processing, we recorded 3326 field collection points.
The processing and the final field-collected point distribution are shown in Figure 3. The
statistics show that a large number of inspection sites were located in croplands and forests,
both exceeding 1000, while fewer points were located in bare land, built-up areas, wetland,
and other classes. For example, only 64 points were located in wetland areas.
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3. Methods
3.1. Method of Validation Point Processing

As per the spatial distribution map of the field collection points (Figure 3), the points
exhibit a biased distribution, which does not conform to the principle of a uniform distri-
bution of the validation sample points [46]. The cost of field collection is high, and due to
limited funds and time, most of the field sampling points were located in the vicinity of
a road, resulting in the spatial distribution being centered on and around the inspection
route. In areas that could be easily assessed, the points were densely distributed. The
field collection was limited by a variety of external environmental factors, such as deep
mountains, wild forests, and inconvenient transportation. Thus, in the end, the number of
the field collection sample points collected was limited and did not have a good spatial
distribution across Southeast Asia.

To solve the problem of the uneven distribution of points, we collected additional
points from the high-spatial-resolution images. First, we randomly generated points based
on the consistency analysis results of the three existing land cover products. Next, we
verified the class of the points by combining Google’s high-resolution remote sensing
images. Then, we conducted a consistency analysis and comparison, including a spatial
consistency and an area consistency, of the three land cover products. According to the
spatial consistency, we confirmed the spatial locations and collected additional validation
points. A high regional spatial consistency indicates that the ground object type is assured,
while a low regional spatial consistency indicates that the area is confusing and should
be paid more attention. Therefore, we randomly generated more points in areas with a
low spatial consistency than in those with a high spatial consistency. The added points
could help to solve the problem of the uneven spatial distribution of the validation points.
According to the area consistency, we calculated the area proportion of each class. To meet
the quantitative requirements of the area ratio between classes, we conducted random and
stratified sampling. To reduce any accidental error, the mean value of 100 sampling results
was taken as the final result. The method flow is presented in Figure 4.
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3.1.1. Consistency Analysis of the Three Land Cover Products

In this study, the consistency analysis was conducted on the three 10 m land cover
products in Southeast Asia in terms of the area and spatial location. To facilitate a unified
analysis, we standardized the three data products as there are differences in the classification
classes of the three land cover data products. The classes were standardized according
to Table 4.

Table 4. Classification standardization of the three land cover products.

Standardization FROM_GLC10 ESRI2020 ESA2020

Cropland Cropland Crops Cropland
Forest Forest Trees Tree cover

Grassland Grassland Grass Grassland
Shrubland Shrubland Scrub/shrubs Shrubland
Wetland Wetland Mangroves Flooded vegetation Herbaceous wetland

Water Water body Water Permanent water bodies
Built-up area Impervious area Built-up area Built-up area

Bare land Bare land Bare ground Bare/sparse vegetation
Other Snow/ice Moss and lichen forest Snow/ice Clouds Snow and ice

In terms of area, we calculated the differences in the areas of the eight land cover
classes identified by the three land cover products. In terms of the spatial distribution,
on the basis of the eight classes of the three data products, a spatial overlay analysis was
performed for each class and the regions with a high consistency, medium consistency, and
low consistency in Southeast Asia were obtained. In general, a land cover map can clearly
describe the area characteristics of the land cover classes but finds it difficult to accurately
describe their spatial distributions [47].

Traditionally, spatial locations are compared by analyzing the consistency between
the products. In the spatial consistency analysis, the number of consistent occurrences of
the three land cover products were calculated to describe the differences and similarities
in a given area, making it convenient for producers and users [48]. We comprehensively
evaluated the spatial consistency of the land cover products by visualizing and calculating
the spatial consistency index. The map overlay method was applied to the visual map. The
grid pixel values described the numerical consistency of the three land cover products: the
larger the grid pixel value, the higher the consistency between the datasets. For example, a
grid pixel value of 3 indicates that in a given pixel, the three land cover products contain
the same land cover type, while a grid pixel value of 2 indicates that only two of the land
cover products contain the same land cover class. According to the grid pixel value, the
spatial consistency can be divided into three levels, high consistency, moderate consistency,
and low consistency, corresponding to grid pixel values of 3, 2, and 1, respectively. The
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spatial consistency index A can be calculated to reveal the similarity between the spatial
distributions of the different land cover products [49,50]:

A =
Pi(High Consistency)
(Fi + ESRIi + ESAi)

n

× 100%, (1)

where Fi, ESRIi, and ESAi are the number of pixels of the land cover classes in land cover
products FROM-GLC10, ESRI2020, and ESA2020, respectively, and Pi represents the number
of pixels of the land cover classes that are consistently determined for the three products.

3.1.2. Method of Determining the Number of Points

When using sample points to verify the accuracy of a dataset, it is necessary to
obtain enough samples to adequately represent the confusion between the classes. We
estimated the number of validation samples required for Southeast Asia, according to the
method proposed by Congalto et al., to calculate the number of sample points [51,52]. The
calculation formula is as follows:

n = B×Πi × (1−Πi)÷ b2
i , (2)

where n is the total number of samples required, Πi(I = 1, 2 . . . . . . k) is the proportion of
class i in the population, bi is the absolute accuracy of each parameter in the polynomial
population, and the value of B is determined using the free chi-squared determination table
for degrees 1 and 1 − α/k. This formula can be used to conservatively estimate the number
of validation samples required.

For example, there are eight classes (k = 8) in our classification system, the expected
confidence level is 95%, the expected accuracy is 5%, and it is assumed that this class
occupies 30% of the total area of the map (Πi = 30%). The value of B is determined using
the chi-squared table for 1 and 1− α/k degrees of freedom (1− α/k = 1− 0.05/8 = 0.99375).
Thus, the suitable value for B is χ2

(1,0.99375) = 7.568. The number of points n is calculated
as follows:

n = B×Πi × (1−Πi)÷ b2
i = 7.568× 0.3× 0.7÷ 0.052 = 636. (3)

According to the calculation, there should be a total of 636 sample points to fill an error
matrix with eight classes, so each class should contain about 80 samples. For the above
calculation method, 30% is a rough class area estimate. Because we have already calculated
the area statistics for a single class in the three land cover products in this area, there are
differences in the area statistics of the same class for the different products. To ensure that
the number of validation sample points are not biased toward a certain land cover product,
we added up all of the class areas of the three products and used the mean [53].

3.1.3. Stratified Random Sampling

To solve the problem of the number of validation points not matching the areas of
the classes in terms of proportion, we adopted stratified random sampling. In random
sampling, each sample has an equal probability of being chosen. Suppose there are N
samples in total, numbered in sequence from 1 to N. A sample is randomly selected from
the N samples and then put back so that the overall sample number remains N. In this
way, for any sampling, because the overall capacity remains unchanged, the chances of
any of the N numbers being drawn are equal [54]. This method is suitable when the
number of samples drawn is greater than N. In stratified sampling, the population is first
divided into different samples according to a certain characteristic or a certain rule, each
layer becoming a new population. Then, the samples are independently and randomly
selected from each layer [55]. In this way, the structure of the final sample is similar to the
structure of the population, improving the accuracy of the sampling. The method we use
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can be called stratified random sampling. The specific operation is to treat each class as
a separate stratification and to perform the sampling according to the above calculation
results. For example, all cropland sample points can be one stratification and all forest
sample points can be another stratification. This method is more suitable for a situation
in which the number of sample points used to improve the land classification does not
meet the requirements [56,57]. The random sampling error of a single point is too large,
and there is a chance to calculate the accuracy of the confusion matrix (refer to Section 4
for details). Therefore, to eliminate the error caused by a single sampling, we sampled the
points 100 times and took the mean value.

3.2. Accuracy Validation Method

Map accuracy validation is an important part of producing land cover products
because the accuracy of the land cover products directly affects the authenticity and avail-
ability of the land classes [58,59]. Recently, several sets of 10 m global land cover products
have been released and their self-validation accuracy is greater than 70%. However, the
existing validation and research have mainly been based on the visual interpretation and
validation of high-resolution Google Earth images, and a large-scale analysis, based on
field data, is lacking. To better test the quality of the existing land cover products, from
2018 to 2019, we conducted a 56-day field data collection campaign in Southeast Asia
with the support of the CAS Earth Big Data Science Project of China. We collected sample
points based on the field collection, but the sample points were distributed on or near the
inspection route. Thus, deviation of the spatial sampling easily occurred. Therefore, on
the basis of the consistency analysis results of the three land cover products and the field
investigation records, we added sample points using high-resolution Google Earth images.
The newly added points can effectively balance the biased distribution of the field collection
points. Later, we calculated the required number of points according to the calculation
rules of the number of sample points in the research area. The calculation results showed
that we had solved the problem of the original classes not meeting the sampling ratio on
application of the random sampling with replacement. Finally, we achieved the accuracy
validation of the three land cover products in Southeast Asia. We used a confusion matrix
as the accuracy evaluation method.

In the field of machine learning, the confusion matrix is a visualization tool, especially
for supervised learning [60,61]. Each column of the matrix represents an instance of
prediction of a class, and each row represents an actual class instance, which can be
used to easily determine whether the machine is confusing two different classes. The
confusion matrix method is by far the most practical and operational validation method
in remote sensing image classification [62]. The efficiency of this method is high because
it combines most of the functions into the error matrix: it adopts user accuracy (UA),
producer accuracy (PA), overall accuracy (OA), and kappa coefficient as indicators; and
it can synthesize the impact of the different classification methods or the impact of the
reference data collection process. Given the above advantages, the confusion matrix has
been widely used in validating the accuracy of the remote sensing image classification
data [52,63]. However, some scholars have noticed a problem, that is, the kappa coefficient
is a potentially misleading statistic [64–66]. Thus, we avoided using the kappa coefficient.
Therefore, when we calculated the confusion matrix, we mainly include UA, PA, and OA.
Table 5 describes the calculation principle.
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Table 5. Principles of the confusion matrix calculation.

Class Actual

A1 A2 A3 . . . An Correct Total UA

Predicted

A1 A11 A12 A13 . . . A1n A11 H1 UA1
A2 A21 A22 A23 . . . A2n A22 H2 UA2
A3 A31 A32 A33 . . . A3n A33 H3 UA3
. . . . . . . . . . . . . . . . . . . . . . . . . . .
An An1 An2 An3 Ann Ann Hn UAn

Correct A11 A22 A33 Ann sumCorrect
Total V1 V2 V3 Vn sumTotal
PA PA1 PA2 PA3 PAn OA

In Table 5, A1, A2, and A3 represent three different types of land cover classes, and
there are n classes in total. The actual class represents the field collection points, and the
predicted class represents the class of the three land cover products. A11 denotes that
the land cover class identified in the field is A1 and the class identified by the land cover
product is also A1. An1 denotes that the land cover class identified in the field is An but the
class identified by the land cover product is A1, which means that the land cover product
misclassified class An as A1. Similarly, A1n denotes that the class identified during the
field collection is A1 and the land cover product incorrectly classified it as An. “Correct”
represents the number of points for which the land cover class is correctly classified, which
means that the class identified during the field collection is the same as the class identified
by the land cover product. “Total” represents all of the points of this class. Hn is the
total number of all of the field collection points containing land cover class An, and Vn
is the sum of the land cover class An in the land cover products. H and V satisfy the
following relationship:

sumTotal = ∑(H1 + H2 + H3 . . . + Hn) = ∑(V1 + V2 + V3 . . . + Vn), (4)

sumCorrect = ∑(A11 + A22 + A33 . . . + Ann), (5)

where sumCorrect is the number of points for which the class identified during the field
collection and the class identified by the land cover products completely match.

UAn = Ann ÷Hn, (6)

PAn = Ann ÷Vn, (7)

where UAn is the user accuracy of land cover class An. Therefore, when the land cover
products are put into use, for the user, there should be Hn points belonging to land cover
class An but only Ann was found in the land cover product. PAn is the producer accuracy
of land cover class An. Therefore, there are Vn points in land cover class An in the land
cover product but only the Ann points are consistent with the actual class. The relevant
calculation formulas are as follows:

OA = sumCorrect ÷ sumTotal, (8)

where OA is the overall accuracy of the confusion matrix, which can be understood as the
ratio between the number of land cover class points that are correctly predicted by land
cover products and the total number of validation points.

3.3. Accuracy Validation Uncertainty Analysis Methods

The number of points of each class do not match the area proportion of the land cover
type. To address this problem, we used the stratification and random sampling method.
We carried out 100 rounds of sampling. We analyzed the error of the 100 samples and
measured the error using a box plot. A box plot, also known as a box-whisker plot, is used
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to reflect the central location and spread of one or more groups of continuous quantitative
data distributions [67]. The upper quartile (75%: Q3) and the lower quartile (25%: Q1) of
the dataset in the boxplots are the upper and lower quartiles of the middle rectangular box.
The horizontal line in the middle represents the median value of the dataset (50%: Q2),
and the number next to the box is the average value of the dataset. The ends of the two
lines protruding from the upper and lower edges of the box are also called tentacles and
are generally 1.51 QR away from the box (Q3–Q1, the length of the box). Thus, the upper
end of the tentacles should be Q3 + 1.51 QR and the lower end of the tentacles should be
Q1 − 1.51 QR. If the maximum value of the dataset exceeds Q3 + 1.51 QR or the minimum
value exceeds Q1 − 1.51 QR, we call these data outliers, which indicates that they have
exceeded the normal range [68,69].

In this study, the stratified random sampling method is adopted. When stratifying, we
follow the principle of the class area ratio. In this section, we explore the impact of different
sampling methods on the validation results. Figure 5 shows a comparison of different
sampling methods. A comparison experiment without stratification is added, along with
a comparative experiment without considering the area ratio. When the area ratio is not
considered, the number of points in each class remains the same. Therefore, we have added
comparative experiments with different numbers of points.
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In addition, when random sampling was performed in Section 3.1.3, the field collection
points and the manual densification points were used as the validation points. Following
the stratification of the classes according to the demand, a total of 18,134 points were
sampled. For these 18,134 points, the ratio of the field collection points and the manual
densification points was 1:1, that is, each accounted for 50%. We used a 1:1 ratio because the
field collection points had a biased distribution in the entirety of Southeast Asia and each
class of the field collection points did not conform to the area ratio. Therefore, we added
the manual densification points so that the validation points would meet the requirements
of a uniform spatial distribution and class area ratios in the entire study area. The question
is, if such sample points are mixed in different proportions, will it affect the validation
results? We conducted experiments to find the answer. Taking OA as an example, with
a span of 10%, we calculated the statistics of the OA for different mixing ratios of field
collection points and manual densification points.

4. Results
4.1. Final Validation Points
4.1.1. Consistency Analysis Results of the Three Land Cover Products

The consistency analysis results include the area consistency analysis results and the
spatial consistency analysis results.

(1) Area consistency analysis results

Area is an important attribute of land cover products, and it is of great significance to
compare the areas of each land cover class in the three land cover products. Table 6 and
Figure 6 show the areas of the different land cover classes for the three land cover products
in Southeast Asia.
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Table 6. The areas of the different land cover classes in the three products.

Unit: km2 ESA2020 ESRI2020 FROM-GLC10 Average

CP (Cropland) 540,447.75 23.95% 644,158.74 23.91% 786,799.12 33.80% 27.22%
FR (Forest) 1124,595.80 49.84% 1167,954.10 43.35% 1142,617.50 49.08% 47.42%

GL (Grassland) 330,066.35 14.63% 40,306.44 1.50% 199,832.56 8.58% 8.24%
SL (Shrubland) 26,184.84 1.16% 501,742.20 18.62% 30,170.35 1.30% 7.03%
WL (Wetland) 19,714.29 0.87% 27,522.65 1.02% 4471.40 0.19% 0.69%

WT (Water) 91,009.76 4.03% 118,099.02 4.38% 106,481.40 4.57% 4.33%
BA (Built-up area) 51,466.86 2.28% 186,863.85 6.94% 46,856.13 2.01% 3.74%

BL (Bare land) 72,832.96 3.23% 7798.59 0.29% 10,539.68 0.45% 1.32%
Other 184.40 0.01% 0 0.00% 340.48 0.01% 0.01%
Total 2256,503.00 2694,445.60 2328,108.60

Remote Sens. 2022, 14, x FOR PEER REVIEW 14 of 40 
 

 

Area is an important attribute of land cover products, and it is of great significance 
to compare the areas of each land cover class in the three land cover products. Table 6 and 
Figure 6 show the areas of the different land cover classes for the three land cover products 
in Southeast Asia. 

 
Figure 6. Comparison of the areas of each land cover class in the three land cover products. 

Table 6. The areas of the different land cover classes in the three products. 

Unit: km2 ESA2020 ESRI2020 FROM-GLC10 Average 
CP (Cropland) 540,447.75 23.95% 644,158.74 23.91% 786,799.12 33.80% 27.22% 

FR (Forest) 1124,595.80 49.84% 1167,954.10 43.35% 1142,617.50 49.08% 47.42% 
GL (Grassland) 330,066.35 14.63% 40,306.44 1.50% 199,832.56 8.58% 8.24% 
SL (Shrubland) 26,184.84 1.16% 501,742.20 18.62% 30,170.35 1.30% 7.03% 
WL (Wetland) 19,714.29 0.87% 27,522.65 1.02% 4471.40 0.19% 0.69% 

WT (Water) 91,009.76 4.03% 118,099.02 4.38% 106,481.40 4.57% 4.33% 
BA (Built-up area) 51,466.86 2.28% 186,863.85 6.94% 46,856.13 2.01% 3.74% 

BL (Bare land) 72,832.96 3.23% 7798.59 0.29% 10,539.68 0.45% 1.32% 
Other 184.40 0.01% 0 0.00% 340.48 0.01% 0.01% 
Total 2256,503.00  2694,445.60  2328,108.60   

According to Figure 6, the forest and water areas were highly consistent in ESA2020, 
ESRI2020, and FROM-GLC10. The proportions of the forest area to the total land cover 
area in ESA2020, ESRI2020, and FROM-GLC10 were 49.84%, 43.35%, and 49.08%, respec-
tively; and the proportions of the water area to the total land cover area were 4.03%, 4.38%, 
and 4.57%, respectively. The cropland area of FROM-GLC10 (786,799.12 km2) was greater 
than those of ESA2020 and ESRI2020. The cropland proportions of ESA2020 and ESRI2020 
were 23.95% and 23.91%, respectively, and their area proportions were relatively 

Figure 6. Comparison of the areas of each land cover class in the three land cover products.

According to Figure 6, the forest and water areas were highly consistent in ESA2020,
ESRI2020, and FROM-GLC10. The proportions of the forest area to the total land cover area
in ESA2020, ESRI2020, and FROM-GLC10 were 49.84%, 43.35%, and 49.08%, respectively;
and the proportions of the water area to the total land cover area were 4.03%, 4.38%, and
4.57%, respectively. The cropland area of FROM-GLC10 (786,799.12 km2) was greater than
those of ESA2020 and ESRI2020. The cropland proportions of ESA2020 and ESRI2020 were
23.95% and 23.91%, respectively, and their area proportions were relatively consistent. The
grassland, shrubland, and built-up areas in ESA2020 and FROM-GLC10 were relatively
consistent. In ESRI2020, the proportions of grassland and shrubland areas to the total area
were 1.50% and 18.62%, respectively, significantly different from their proportions in the
other two products. The built-up areas in ESA2020, ESRI2020, and FROM-GLC10 were
51,466.86 km2, 186,863.85 km2, and 46,856.13 km2, accounting for 2.28%, 6.94%, and 2.01%
of the total area, respectively. The built-up area in ESRI2020 was higher than those of the
other two land cover products. In ESA2020, mangroves were classified into a separate
class. However, according to previous research, mangroves belong to wetland ecosystems.
Therefore, in this study, we classified the mangroves as wetland. In ESA2020, the area of
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wetland was 91,009.76 km2, which was low compared with the wetland area in ESRI2020
but high compared to the wetland area in FROM-GLC10.

(2) Spatial consistency analysis results

Figure A1 presents the spatial analysis results of each class. The spatial consistency
analysis results of each class show that the consistency results in the Indo-China Peninsula
region, including Myanmar, Thailand, and Cambodia, were worse than those in the Malay
Archipelago region. Therefore, we mainly selected these areas with poor spatial consistency,
we randomly generated points, imported the randomly generated points into Google Earth
to verify them one by one, and changed or deleted them according to the actual class. We
called these new points manual densification points.

4.1.2. Final Number of Validation Points

To calculate the required number of points, we substituted the area proportion of
each class into Equation (2). However, these calculation results do not take the different
study areas into account. Southeast Asia covers an area of more than 4.5 million km2,
which makes it a large study area. Based on the experience of Congalto et al., a general
guideline or good rule of thumb is to collect at least 50 samples for each mapping class
for maps with less than 1 million acres in area and fewer than 12 classes [70]. Maps of
larger or more complex areas should include 75 to 100 accuracy validation points per
class. These guidelines have been empirically derived through many projects. Polynomial
equations confirm that these guidelines provide a good balance between statistical validity
and practicality [51,52]. Therefore, we ensured that the number of points in each class was
greater than 100. The final number of points was calculated on the basis of wetlands, which
had the smallest area ratio. Table 7 presents the calculation results, Figure 7 shows the final
points distribution.

Table 7. Calculation results of the number of the final validation points required.

Class Average Area Ratio Calculation Results
(Consider Area Ratio)

Number of Final Validation Points
Field Collection Manual Densification Total

Cropland 27.2% 3926 3926 3971 5142
Forest 47.4% 6840 6840 6883 8016

Grassland 8.2% 1188 1188 1238 1626
Shrubland 7.0% 1013 1013 1067 1205
Wetland 0.7% 100 100 189 253

Water 4.3% 624 624 645 739
Built-up area 3.7% 540 540 552 760

Bare land 1.3% 191 191 263 393
Total 100.0% 14,422 3326 14,803 18,134

4.1.3. Results of the Stratified Random Sampling

The final number of validation points was 18,134. According to the calculation results,
we needed 14,422 points. Therefore, the validation points met the requirements in terms of
numbers. We used the stratified random sampling method to achieve the final validation
points. Because our samples were land cover points, each point represented a different type
of ground object and the validation points needed to meet the above-mentioned require-
ments for the area ratio of each class. When we sampled, we stratified across classes [71].
Taking OA as an example, the results show (Figure 8) that the overall accuracy values
calculated using 100 samplings are not much different and none exceed 0.02. Therefore, in
the final accuracy validation, we selected the mean of the 100 sampling points as the result.
Similarly, we measured the PA and the UA 100 times and took the mean as the result.
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4.2. Accuracy Validation Results Based on a Confusion Matrix

According to the validation points, we used the method of stratified random sampling
based on the Google Earth Engine (GEE) platform and Python and completed the accuracy
validation of FROM-FLC10, ESRI2020, and ESA2020.
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Taking the accuracy validation of ESRI2020 as an example, the specific process was
as follows: (1) We uploaded the verified field collection points and corrected them in the
GEE platform. (2) Using the GEE platform, we directly retrieved the ESRI2020 land cover
product to obtain the ESRI2020 classes at the same point positions. (3) We exported the ESRI
land cover classes at the points. (4) We sampled the points using Python and compared
the real classes of all of the sampling points with the ESRI classes. (5) We calculated the
confusion matrix. Table 8 presents the mean results for the 100 random samples.

Table 8. Average validation results based on 100 random samples.

Land Cover Products
Class Abbreviations

CL FR GL SL WL WT BA BL OA (%)

FROM-GLC10
PA (%) 73.27 88.50 72.50 12.04 13.85 32.78 83.92 35.33

75.43UA (%) 90.44 86.17 44.89 0.26 1.83 91.37 58.35 5.35

ESRI2020
PA (%) 89.40 90.83 82.78 32.68 34.23 83.24 54.86 81.33

79.99UA (%) 81.18 91.70 29.22 58.45 22.51 90.29 93.07 25.48

ESA2020
PA (%) 89.27 84.66 55.72 41.02 30.90 90.25 80.93 37.84

81.11UA (%) 82.44 95.17 66.46 2.03 69.53 86.44 77.85 58.74

Note: CL, cropland; FR, forest; GL, grassland; SL, shrubland; WL, wetland; WT, water; BA, built-up area; BL, bare land.

Table 8 lists the overall accuracy (OA) of each land cover product and the accuracy of
the UA and the PA of the different classes. The results show that ESA2020 had the highest
OA value (up to 81.11%), followed by ESRI2020 (79.99%) and FROM_GLC10 (75.43%). The
accuracy of FROM_GLC10 was the lowest, nearly 5% lower than the accuracies of the other
two land cover products. Therefore, from the perspective of the overall accuracy, the accura-
cies of the three land cover products are as follows: ESA2020 > ESRI2020 > FROM_GLC10.
Although this is different from the self-validation results of the three products (the self-
validation accuracies of FROM-FLC10, ESRI2020, and ESA2020 are 72.76%, 86%, and 74.4%,
respectively), the difference is within 10%.

In terms of the accuracy of a single class, cropland, forest, water, and built-up area
of the three products had high accuracies (Figure 9), while shrubland, wetland, and bare
land had lower PA and UA values, indicating the serious misclassification of and omission
related to these three land cover classes. This is consistent with the conclusion reached by
Kang et al. [19]. The PAs of the individual classes in FROM_GLC10 were quite different,
and the PAs of wetland and bare land were less than 15% (Figure 9a). Moreover, there
is a comparison of the FROM-GLC10 product in the ESA2020 product description and
FROM-GLC10 mainly classifies wetland as grassland, rarely classifying it as wetland, which
is the same as our conclusion. The PAs of cropland, shrubland, and water in FROM_GLC10
were also lower than those in the other two land cover products, but the PA of the built-up
area in FROM_GLC10 was the highest. For ESRI2020, except for shrubland and wetland,
the producer accuracies of all the other classes exceeded 55%, and cropland and forest were
as high as 90%. All classes in ESA2020 had PAs of at least 30%. Among all of the classes,
bare land had the lowest PA (30.90%) and water had the highest PA (90.25%).

The user accuracy (UA) of shrubland in FROM_GLC10 was only 0.26% (Figure 9b).
Compared with the other two products, the difference was as high as 58%. However, the
UAs of cropland, forest, and water in FROM_GLC10 were high. In ESRI2020, the UAs of
cropland, forest, shrubland, water, and bare land were relatively good. However, the UA
of grassland was the worst among the three products. Except for shrubland, the UAs of
the other classes in ESA2020 were not significantly different and were all greater than 58%.
Overall, the UA of each class was acceptable.

4.3. Accuracy Validation Uncertainty Analysis Results

We made an assessment of the random errors when sampling using boxplots. Figure 10a
presents a boxplot of the OA values of 100 samples for the three land cover products. According
to the boxplot of the overall precision of the sampled data, these 100-sample precision estimators
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are almost unbiased and outliers exist, but the number does not exceed five. Therefore, on the
basis of 100 sampling points, it is scientifically reasonable that we chose the mean as the final
accuracy validation result. Moreover, the samples for ESA2020 and ESRI2020 have few
outliers, while there are outliers for FROM_GLC10.
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We calculated the validation results based on the points obtained under different
sampling methods. As shown in Table 9, without stratification, the point validation results
of FROM_GLC10, ESRI2020 and ESA2020 are 74.13%, 78.54% and 80.56%. In the case of
stratification, the results of whether or not to consider the different categories area ratio
vary greatly. If the area ratio is considered, the results are 75.43%, 79.99%, and 81.11%,
respectively. If the area ratio is not considered, the average results are 47.28%, 61.53%, and
67.29%. When the area ratio is not considered, each category adopts the same number of
points. The results show that the influence of the number of points on the results is less
than 1%, so we take the average value as a reference. Under the influence of different
sampling methods, the results are numerically different, but there is no change in the trend.
ESA2020 still has the highest accuracy, followed by ESRI2020 and FROM_GLC10.
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We conducted experiments to evaluate the effect of the validation results for different
mixing ratios of the field collection points and the manual densification points. We take OA
as an example. The results are shown in Figure 11. The results show that the verification
result of FROM_GLC10 under the proportion of 100% field collection points and 0% manual
densification points is 59.1%. When the proportion of the field collection points and the
manual densification points is 0% and 100%, the result is 78.6%. The value differs by 19.5%.
The ESRI2020 verification results changed from 75.2% to 80.8% in the process of changing
the proportion of the field collection points from 100% to 0%. The ESA2020 verification
results changed from 79.8% to 81.2% in the process of changing the proportion of the field
collection points from 100% to 0%.

Table 9. The overall accuracy of the results assessed by the different sampling methods.

Land Cover
Products

No
Stratification

with Stratification

with
Area Ratio

No Area Ratio (Different Numbers)
10 50 100 500 1000 2000 5000 Average

FROM_GLC10 74.13% 75.43% 47.04% 47.41% 47.29% 47.24% 47.34% 47.35% 47.32% 47.28%
ESRI2020 78.54% 79.99% 61.78% 61.44% 61.64% 61.47% 61.49% 61.44% 61.45% 61.53%
ESA2020 80.56% 81.11% 66.73% 67.38% 67.45% 67.37% 67.38% 67.33% 67.38% 67.29%
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5. Discussion
5.1. Influence of the Classification Standard Differences on the Accuracy Validation

Both FROM-GLC10 and ESRI2020 have independent classification standards. The
classes of ESA2020 are mostly consistent with the classification definitions of the other
two products. The ESA2020 classification follows the land cover classification system
(LCCS) [72]. There are also differences between the three products in terms of the land
cover class definitions. The main differences are as follows: (1) FROM-GLC10 has a separate
tundra class, while the ESRI2020 and ESA2020 products include this class in shrubland and
grassland. This may be the reason why the grassland area of FROM-GLC10 is smaller than
that of ESA2020 and the shrubland area of ESRI2020 is much smaller than that of ESRI2020
(Figure 6). (2) ESA2020 has a separate class for moss and lichen forest, which most likely
contains some grassland, so the PA and the UA of the grassland in ESA2020 are not high.
We did not have a separate class of moss and lichen forest in the validation of ESA2020,
which may have caused the grassland validation of ESA2002 to be inaccurate. This is due
to the error caused by the inconsistent class definitions and standards. (3) In ESA2020,
mangroves are a separate class. Compared with ESA2020, the division of mangroves
in ESRI2020 is ambiguous because it is included in both trees and flooded vegetation,
which results in these land cover classes not being mutually exclusive. According to our
validation results, the PA and the UA of the wetland class in ESRI2020 are 34.23% and
22.51%, respectively. Compared with the PA (30.90%) and UA (69.53%) of the wetland class
in ESA2020, the accuracy is lower (Table 9). The reason for this poor accuracy is probably
the fuzzy definition of mangroves in ESRI2020. (4) The developers of FROM-GLC10 have
pointed out that the wetland class is the most difficult to map automatically because it can
contain any surface cover type as long as it is developed in wet areas [10]. Therefore, the
accuracies of the wetland class in the three land cover products are not high. The specific
definitions of the three land cover classes can be checked in the product description of
ESA2020 [43]. The fuzzy definition of the class itself, as well as the cognitive differences
between the different classes, influences the differences in the classification systems of the
land cover products. Therefore, we suggest that when classifying land cover, it is essential
to create clear classification standards for grassland, shrubland, wetland, and bare land.
The geographic elevation, the vegetation height, and the surrounding environment can be
taken into account to improve the overall classification accuracy.
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5.2. Uncertainties of the Different Sampling Method and the Sampling Points

According to the boxplot of OA (Figure 10a), compared with ESA2020 and ESRI2020,
FROM_GLC10 is more affected by changes in the sample points. According to the boxplot
of the sampling data for the individual classes, the errors of the different classes are quite
different. For the PA, it can be seen from Figure 10b, the grassland box is drawn longer than
the boxes for the other classes in ESA2020; the built-up area box and the shrubland box are
drawn longer than the boxes for other classes in ESRI2020; and the built-up area, grassland,
and shrubland boxes are drawn longer than those for other classes in FROM_GLC10.
This shows that these classes are greatly affected by the sampling. First, grassland and
shrubland have long boxes in all three land cover products, probably because grassland
has a strong seasonality. The grasslands change significantly in the four seasons, the
spectral expressions are diverse, and the texture characteristics of the distribution are
also irregular [73,74]. Shrublands contain a wide variety of plants, and the height of the
vegetation varies [75]. In addition, for ESRI2020, it has been pointed out that the confusion
between grassland and shrubland is more intuitive, and one of the reasons for this is
that it is difficult to determine the transition between the two classes on 10 m remote
sensing images [76]. Therefore, the fuzzy definitions of the grassland and shrubland classes
themselves cause classification errors. For the UA, it can be seen from Figure 10c that
the sampling errors of bare land and wetland in ESRI2020 and ESA2020 are large. There
were a few outliers for wetland in FROM_GLC10. Moreover, the wetland accuracies of the
FROM_GLC10 and ESRI2020 products were not high, at 1.83% and 22.51%, respectively,
probably due to the use of too few validation sample points for the wetland class. In our
accuracy validation, the number of sample points in each class was determined on the basis
of the area ratio. Because the area ratio of the wetland class was the smallest (0.7%), the
number of sample points for the other classes was calculated on the basis of the number
of sample points in this class reaching 100 points. Therefore, to ensure that the number of
classes satisfy the rationality of the area ratio, only 100 wetland sample points were selected
for use in the actual validation, which is the lowest number among all of the classes. In
particular, when comparing wetland and forest, the 6840 validation points for the forest
class are much greater than the 100 points for the wetland class. As can be seen from
the boxplot for forest, the box is short and the data distribution is dense. The number of
validation points for cropland is 3926, and its box is also short. The number of validation
points for bare land is 191, and its box is elongated. This demonstrates that the number of
sampling points for each class plays a decisive role in the length of the box and it is likely
to influence the accuracy validation of the individual classes. Therefore, we recommend
using a sufficient number of validation sample points when validating the accuracy of a
single class.

From Table 9, we can conclude that the stratification has an effect on the accuracy of
the validation points and can improve it. In addition, the area ratio must be considered. If
we sample without considering the area ratio and extracting the same number of points
for each class, the accuracy of validation points will lead to lower results than those when
considering the area ratio. Because the importance of points of some indistinguishable
small-area classes may be reduced, the importance of points that are easy to distinguish
in large-area classes increases accordingly. For example, the forest area occupies 47.4% of
the whole Southeast Asia and the wetland area occupies only 0.7%. The PA and the UA
of forest are as high as 85%, while the PA and the UA of wetland are about 30%. If the
accuracy of the entire dataset is validated with 100 forest points and 100 wetland points
at the same time, the OA will decrease. Therefore, it is crucial to calculate the number of
points required for each class according to the area ratio.

Figure 11 reveals that the mixing ratio of the field collection points and the manual
densification points can influence the validation results by as much as 19.5%. This effect is
related to whether the sample points are evenly distributed, and it may also be related to
the intensity of human interference in the distribution area of our field collection points.
Therefore, when sample points are used to verify the accuracy, they must have a good
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spatial distribution [77]. In addition, we found that the effect of the sample point ratio
was greater in FROM_GLC10 than in the other two products. The proportions of the
field collection points and the manual densification points were 19.5%, 5.6%, and 1.4%
for FROM-GLC10, ESRI2020, and ESA2020, respectively. Of the three products, ESA2020
was the least affected, followed by ESRI2020. Therefore, we conclude that ESA2020 is
the least affected by the distribution of the validation sample points, which also reflects
the advantages of this product over the other two. In the process of gradually changing
the sample distribution from biased to uniform, the OA of the three products all steadily
increased. Therefore, improving the spatial distribution of the validation sample points
may improve the accuracy of the product.

5.3. Suggestions for the Production and Usage of Land Cover Products in Southeast Asia

FROM_GLC10, ESRI2020, and SEA2020 are all based on the land cover on a global
scale, and their classification system was established for the whole world, without special
consideration for the specific land cover classes in some local areas (e.g., oil palm and rubber
in Southeast Asia), resulting in the mutual inclusion and confusion between certain classes.
Therefore, when extracting the vegetation, a clear and complete classification system should be
established and a uniform vegetation coverage and tree height factor values should be given
to reduce the uncertainty caused by the classification system [20]. When applied to Southeast
Asia, these global land cover products inevitably affect the analysis and application of the
individual classes [78]. On the basis of the validation results for a single class, we summarized
the accuracy of each class in the three land cover products and provided recommendations
for the use of each class. Our validation criterion was that both the UA and the PA of a single
class should be 50%. The results are presented in Figure 12.
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The cropland, forest, and built-up areas in the three products met our validation
criteria. The grassland area in ESA2020 and the water area in ESRI2020 and ESA2020
also met our validation criteria. From the point of view of data production, the built-up
area in FROM_GLC10 had high precision, which is probably because FROM_GLC10 was
improved by incorporating night-time light-impervious surface area (NL-ISA) and MODIS
urban extent (MODIS-urban) data [39]. The cropland, forest, water, and built-up areas in
ESRI2020 had high accuracy, related to the use of deep learning and scalable cloud-based
computing [11], as well as the 95% confidence interval set by the ESRI for each class [42].
ESA2020’s high accuracy for grassland, shrubland, wetland, and water may be attributed
to the mixed use of Sentinel-2 and Sentinel-1 images. Regarding the single-class accuracy of
ESA2020, the simultaneous use of Sentinel-1 and Sentinel-2 has advantages when dealing
with complex land cover classes (shrubland and wetland). The fusion of Sentinel-1 and
Sentinel-2 data may provide more spatial details. For a similarly complex land cover class
(grassland), ESA2020 does have good accuracy, probably because another class was defined
by the ESA (moss and lichen forest). On the basis of the PA values, we recommend that
producers set a 95% confidence interval, as in the case of ESRI2020, or consider many
other data, such as FROM_GLC10′s built-up area. On the basis of the UA values, we
recommend that users use these three land cover products comprehensively. Specifically,
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we recommend the cropland and water areas of FROM_GLC10; the shrubland and built-up
areas of ESRI2020; and the forest, grassland, wetland, and bare land areas of ESA2020.

6. Conclusions

On the basis of the data of the field collection points obtained in 2018 and 2019 and
the manual densification points obtained from the consistency analysis results in Southeast
Asia, we used a total of 18,134 validation points to evaluate and compare the overall
classification accuracies and the accuracy of each land cover class for three existing high-
resolution (10 m) land cover products (FROM-GLC10, ESRI2020, and ESA2020). The main
conclusions are as follows

(1) On taking the mean of 100 random samplings in a stratified manner as a reference,
ESA2020 was found to have the highest OA (81.11%), followed by ESRI2020 (79.99%)
and FROM_GLC10 (75.43%). In terms of single-class accuracy, the cropland, forest,
and built-up areas in the three products all had higher accuracies, while the shrubland,
wetland, and bare land areas all had lower PA and UA values.

(2) Differences in classification standards are a major problem in the production of the
current land cover products, and the unclear definition of a certain land cover class
tends to lead to complete confusion during the classification. Land cover producers
should pay particular attention to creating a single classification standard.

(3) The sampling method affects the validation results. Both stratification and considera-
tion of the class area ratio are important.

(4) According to the different mixing ratios of the field collection points and the manual
densification points, we found that the validation accuracy of the sample points close to
the road and the uniform distribution of the sample points have a deviation of nearly 19%.

(5) The accuracy of a class differed in different products, and each had its advantages
and disadvantages. The overall accuracy of the cropland, forest, and built-up areas
in the three land cover products; the accuracy of the grassland area in ESA2020; and
the accuracy of the water area in ESRI2020 and ESA2020 exceeded 50%. From the
perspective of the PA, we recommend that when producing land cover maps, the built-
up area be extracted using FROM_GLC10. For cropland, forest, grassland, wetland,
and bare land, ESRI2020 is more applicable. ESA2020 applies to shrubland and water.
According to the UA, we recommend that users use these three land cover products
comprehensively, for example, the cropland and water areas of FROM_GLC10; the
shrubland and built-up areas of ESRI2020; and the forest, grassland, wetland, and
bare land areas of ESA2020.
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Table A1. Cont.

Field Photo
CODE: IMG_141005

Acquisition date: 2018/12/06 14:10:06
Latitude: 6◦2′34.63′′N

Longitude: 116◦42′22.90′′E
Elevation: 0 m

Remote Sensing Image
10 m image: Sentinel-2 (12/17/2018)

High-resolution image: From Google Earth
Color channels: Red, green, and blue

Shape: Regular geometric features (planted forests)
or irregular boundaries (natural forests) with clear boundaries

Hue: Light green, green, and dark green
Texture: Rough texture; chaotic, complex,

and pitted image texture

Grassland
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Table A1. Cont.

Field Photo
CODE: IMG_8566

Acquisition date: 2018/12/01 15:51:24
Latitude: 4◦32′27.64′′N

Longitude: 103◦27′56.71′′E
Elevation: 19.0 m

Remote Sensing Image
10 m image: Sentinel-2 (02/05/2019)

High-resolution image: From Google Earth
Color channels: Red, green, and blue

Shape: Irregular shape
Hue: Brown and green

Texture: Uniform image structure

Wetland
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Table A1. Cont.

Field Photo
CODE: IMG_8415

Acquisition date: 2018/11/30 15:45:54
Latitude: 5◦33′8.56′′N

Longitude: 101◦20′51.15′′E
Elevation: 244.6 m

Remote Sensing Image
10 m image: Sentinel-2 (12/25/2018)

High-resolution image: From Google Earth
Color channels: Red, green, and blue
Shape: Geometric features, natural
curvature, and obvious boundaries

Hue: Light blue, blue, dark blue, and dark green
Texture: Smooth texture; uniform image structure

Built-up area
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Table A1. Cont.

Field Photo
CODE: IMG_135822

Acquisition date: 2018/12/04 13:58:22
Latitude: 1◦2′6.15′′N

Longitude: 110◦40′52.53′′E
Elevation: 37.4 m

Remote Sensing Image
10 m image: Sentinel-2 (03/23/2019)

High-resolution image: From Google Earth
Color channels: Red, green, and blue

Shape: Different geometric shapes and clear boundaries
Hue: Yellow-white, off-white, and white

Texture: Fine texture; uniform image structure
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(b) Consistency analysis results of the forest. 
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(c) Consistency analysis results of the grassland. 
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(d) Consistency analysis results of the shrubland. 
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(e) Consistency analysis results of the wetland. 
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(f) Consistency analysis results of the water. 
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(g) Consistency analysis results of the built-up area. 
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(h) Consistency analysis results of the bare land. 

Figure A1. Consistency analysis results for the eight classes: cropland, forest, grassland, shrubland, 
wetland, water, built-up area, and bare land. 
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