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Abstract: Forest logging detection is important for sustainable forest management. The traditional
optical satellite images with visible and near-infrared bands showed the ability to identify intensive
timber logging. However, less intensive logging is still difficult to detect with coarse spatial resolution
such as Landsat or high spatial resolution in fewer spectral bands. Although more high-resolution
remote sensing images containing richer spectral bands can be easily obtained nowadays, the ques-
tions of whether they facilitate the detection of logging patterns and which spectral bands are more
effective in detecting logging patterns, especially in selective logging, remain unresolved. Therefore,
this paper aims to evaluate the combinations of visible, near-infrared, red-edge, and short-wave
infrared bands in detecting three different logging intensity patterns, including unlogged (control
check, CK), selective logging (SL), and clear-cutting (CC), in north subtropical plantation forests with
the random forest algorithm using Sentinel-2 multispectral imagery. This study aims to explore the
recognition performance of different combinations of spectral bands (visual (VIS) and near-infrared
bands (NIR), VIS, NIR combined with red-edge, VIS, NIR combined with short-wave infrared bands
(SWIR), and full-spectrum bands combined with VIS, NIR, red edge and SWIR) and to determine
the best spectral variables to be used for identifying logging patterns, especially in SL. The study
was conducted in Taizishan in Hubei province, China. A total of 213 subcompartments of different
logging patterns were collected and the random forest algorithm was used to classify logging patterns.
The results showed that full-spectrum bands which contain the red-edge and short-wave infrared
bands improve the ability of conventional optical satellites to monitor forest logging patterns and can
achieve an overall accuracy of 85%, especially for SL which can achieve 79% and 64% for precision
and recall accuracy, respectively. The red-edge band (698–713 nm, B5 in Sentinel-2), short-wave
infrared band (2100–2280 nm, B12 in Sentinel-2), and associated vegetation indices (NBR, NDre2, and
NDre1) enhance the sensitivity of the spectral information to logging patterns, especially for the SL
pattern, and the precision and recall accuracy can improve by 10% and 6%, respectively. Meanwhile,
both clear-cutting and unlogged patterns could be well-classified whether adding a red-edge or SWIR
band or both in VIS and NIR bands; the best precision and recall accuracies for clear-cutting were
enhanced to 97%, 95% and 81%, 91% for unlogged, respectively. Our results demonstrate that the
optical images have the potential ability to detect logging patterns especially for the clear-cutting and
unlogged patterns, and the selective logging detection accuracy can be improved by adding red-edge
and short-wave infrared spectral bands.

Keywords: forest logging; Sentinel-2; red-edge; SWIR; change detection; selective logging

1. Introduction

Forests are the main component of the earth’s terrestrial ecosystem and play an
irreplaceable role in water circulation, climate regulation, biodiversity, and carbon fixation

Remote Sens. 2022, 14, 4987. https://doi.org/10.3390/rs14194987 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14194987
https://doi.org/10.3390/rs14194987
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-4957-3681
https://doi.org/10.3390/rs14194987
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14194987?type=check_update&version=2


Remote Sens. 2022, 14, 4987 2 of 15

functions [1,2]. Logging, such as selective logging, salvage logging, or clear-cutting, is the
main approach for forest management, especially for a plantation forest. Proper logging
patterns can improve the growing environment of trees and reduce the risk of pests and
diseases, which helps to promote sustainable forest management. However, due to illegal
logging or nonproper logging, which results in forests’ loss of diversity and carbon, it is
very important to detect and monitor forest logging, which can help the administrators to
find the forest changes after logging throughout the time range and understand the forest
cover resistance, vegetation restoration patterns, the dynamic of the carbon budget, etc.

Optical satellite images with multispectral bands are commonly used in forest change
detection. These conventional multispectral optical images show good results in land cover
change or forest clear-cutting detecting. For example, MODIS-NDVI time series are able
to detect deforestation within coniferous forests at a large scale and thus reflect historical
forest health changes [3]. An object-oriented approach based on Landsat TM imagery
can generate national-scale annual forest cover change distributions [4]. Landsat 8 fused
with Gaofen-1 multispectral images and MOD13Q1 data can effectively estimate urban
vegetation cover using time-mixing analysis [5]. These studies showed the potential ability
of visible and near-infrared bands in detecting land cover or land cover change.

Furthermore, along with the development of remote sensing sensor technology, remote
sensing images have contained richer spectral bands than conventional bands in recent
years. The red-edge bands and short-wave infrared bands, which were widely used in
vegetation detecting in situ, were gradually added to the satellite image bands. For example,
WorldView-3 contains a red-edge band whose mean value plays an important role in the
classification of forest resources using object-facing methods in conjunction with random
forests [6]. Sentinel-2 has four unique red-edge bands and two short-wave infrared bands,
which were widely used in forest detection. Moreover, the chlorophyll index calculated
using its red-edge reflectance can monitor forest decline status [7]. Using its short-wave
infrared bands to calculate the dNBR (differenced normalized burn ratio) and combining
it with the maximum interclass variance algorithm, the location and area of forest fire
areas with different degrees of burn can be determined [8]. The Gaofen-6 satellite, which
launched in 2018, contains two new red-edge bands and near-infrared bands, respectively,
and was widely used in forest dynamic detection [9,10]. The research which used these
images have shown that containing more bands in images, especially red-edge bands, has
a positive effect on tree species classifying and forest biochemical or physical parameter
inversion [11–13].

In the forest logging detection field, it is hard work to detect the logging pattern
with conventional multispectral optical images. Considering the logging intensity, the
logging pattern is classified as selective logging and clear-cutting. The differences in
the spectral characteristics in satellite images of forests before and after logging are not
always significant. Regarding clear-cut patterns, studies reached better results when using
only visible and near-infrared spectral bands. In contrast, forest selective logging, which is
considered as a key factor in forest degradation and disturbance, did not perform well when
detecting with optical data images. A high spatial resolution could help to improve the
detecting accuracy, such as IKONOS and RapidEye [14,15]. However, it is costly to use these
high-resolution imageries. Another way to improve the accuracy of detecting a selective
logging pattern is to use time-series images for free, such as the Landsat system [16,17],
which was commonly used in tropical forest disturbance mapping. Due to a relatively low
resolution of 30 m, Landsat images cannot detect forest disturbances with less than 25% of
the forest window within a single pixel [15]. Furthermore, it is difficult to obtain usable
images on time due to the limitation of revisit cycles and cloudy images.

Due to the ability of LiDAR data to reflect the vertical structure of a forest, the penetrat-
ing nature of SAR to image in all weather, and the hyper-high spatial resolution of digital
aerial photography, many studies exploring the potential of these data for monitoring
selective logging in forests have had some success, but these studies are still limited by
data availability and timeliness [18–20]. LiDAR data add uncertainty to logging identifi-
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cation, such as differences in the acquisition characteristics of multiperiod LiDAR data,
limited flight areas, and limited accuracy of ground position and elevation if forest cover is
high [21,22]. SAR data also suffer from high prices and speckle noise [23,24]. Digital aerial
photography technology has similar problems to LiDAR, with complex acquisition and
processing and low temporal resolution [25]. Therefore, free optical satellite imagery with
multiple spectral bands remains the first choice for logging monitoring, with its advantages
of continuity, stability, high positioning quality, and large area accessibility [26–28].

The Sentinel-2 satellite equipped with an optoelectronic multispectral sensor is another
free data source, which can achieve a revisit period of 5 days by two polar-orbiting satellites
placed in the same sun-synchronous orbit, phased at 180 to each other. The data can be pub-
licly accessible and have a resolution of 10 to 20 m in visible, near-infrared, and short-wave
infrared spectral zones [29]. In addition, Sentinel-2 images contain 13 spectral channels,
especially in red-edge bands, which ensures the capture of differences in vegetation state
changes. Therefore, the potential of different band combinations of Sentinel-2 for forest
disturbance assessment remains to be further evaluated [30].

Considering there is a large amount of plantation forest in the north subtropical zone,
we conducted this study to explore the capability of different optical spectral band combi-
nations in Sentinel-2 images to identify plantation forest logging pattern. The aims were
to find: (1) how optical bands with different combinations from low-cost satellite imagery
influence the logging pattern detection; (2) which bands are more sensitive to the detecting
logging patterns, especially selective logging; (3) how to promote the selecting logging
pattern detecting with optical imagery containing red-edge and short-wave infrared bands.

2. Materials and Methods
2.1. Study Area and Samples

The study area was located in the Taizishan Forestry Administration Bureau in the
southwestern part of Jingshan County, Hubei Province (Figure 1). It is a typical hilly
landscape with an elevation between 40.3 m and 467.4 m, which is located in the transition
zone from the remnants of the Dahongshan Mountains to the Jianghan Plain. The vegetation
zone of the study area is a subtropical evergreen broad-leaved forest with high forest cover.

The logging samples were collected from the local forest administrator, including
122 subcompartments. Subcompartments are the basic units of forest resource management,
which are the forest stands with essentially the same internal characteristics such as tree
species, structure, stand age, etc., and perform obviously different to outer stands. The
logging samples were logged in the growing seasons (May–September) from 2016 to 2018.
The 91 unlogged samples were randomly selected from the other subcompartments near the
logging samples. The logging samples contained dominant tree species, logging method,
logging volume, the total volume of the subcompartment, and the starting and ending time
for each logging. The distribution of the logging and unlogged subcompartments can be
seen in Figure 1.

2.2. Remote Sensing Data and Preprocessing

Sentinel-2 images were downloaded from the Copernicus Open Access Center. The
band parameters are shown in Table 1. The images used in the research were selected
considering the following reasons: (1) cloud-free images of the sample area; (2) as close as
possible to the logging activities ceased; in this research, the mean time lag was 10 days and
the maximum was 81 days due to the cloudy images. We used the visible, near-infrared,
red-edge, and short-wave infrared spectral bands except band 1, band 9, and band 10 in
this paper due to the low spatial resolution. The specific image time and the number of
samples are shown in Table 2. Image preprocessing was carried out using SNAP software:
(1) radiometric calibration; (2) atmospheric correction; (3) resampling to 10 m resolution.
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Figure 1. The location of study areas which contained the logged and unlogged subcompartments.

Table 1. Sentinel-2 band information.

Bands Center Wavelength/µm Resolution/m

Band 1—Coastal aerosol 0.443 60
Band 2—Blue 0.490 10

Band 3—Green 0.560 10
Band—Red 0.665 10

Band 5—Vegetation red edge 1 0.705 20
Band 6—Vegetation red edge 2 0.740 20
Band 7—Vegetation red edge 3 0.783 20

Band 8—NIR 0.842 10
Band 8A—Vegetation red edge 4 0.865 20

Band 9—Water vapor 0.945 60
Band 10—Cirrus 1.375 60
Band 11—SWIR 1 1.610 20
Band 12—SWIR 2 2.190 20
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Table 2. Image date and number of samples.

Image Date Number of Logging Subcompartments Time Lag Days after Logging Number of Unlogged Samples

2016-08-01* 38 0~81 10
2016-09-10 9 0~30 5
2017-08-06 15 0~15 13
2018-05-08 18 0~4 12
2018-06-07 10 0~4 14
2018-07-22 17 0~24 10
2018-09-15* 8 15~37 21
2018-10-10 7 0~20 6

Total 122 10 (average lag days) 91

2.3. Classification of Logging Patterns

In this study, the ratio of logging volume and total volume of the subcompartment
was used to express the logging intensity (LI) (seen in Equation (1)). Based on the logging
intensity, the logging samples were divided into selective logging (SL) and clear-cutting
(CC) based on the distribution of the number of samples. The threshold to distinguish
logging patterns was set to 30% according to the national forest conservation and logging
specification [31]. There were three logging patterns, including unlogged which was
defined as a control check (CK). Figure 2 illustrates the different logging patterns in the
RGB images and Figure 3 illustrates the photos at the time of the selective logging and
2 weeks later. The number of samples and the range of logging intensity values are shown
in Table 3.

LI = lv/sv (1)

Here, lv denotes the logging volume; sv denotes the total volume of the subcompartment.

Table 3. The number of samples and the value range of each logging pattern.

Logging Pattern Number of Samples Intensity Value Range
(Pre-Logging) Volume per Hectare (m3/ha)

Range Mean SD

CK 91 0% 5.8~298.4 101.9 42.3

SL 59 <30% 42.8~274.6 138.2 54.7

CC 63 100% 15.86~160.13 81.35 32.07

Notes: CK, SL, and CC indicate unlogged, selective logging, and clear-cutting, respectively.
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Figure 3. The photos at the time of selective logging and 2 weeks later. The left photo is the selective
logging stand with 23.5% logging intensity. The right photo is two weeks after logging, in which one
can find shrub and herbaceous plant recovery.
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2.4. Feature Extraction for Logging Patterns Monitoring

In order to distinguish the logging pattern for each subcompartment, we extracted
the averaged feature from images at the subcompartment boundary extent. The vegetation
index and texture features were the commonly used features in the optical image, which
showed good performance in forest disturbance detecting [32].

For the Sentinel-2 scenes given in Table 2, we extracted these vegetation indices to
character the canopy status, including normalized difference vegetation index (NDVI),
normalized burn ratio (NBR), green normalized difference vegetation index (GNDVI),
ratio vegetation index (SR), and difference vegetation index (DVI) [33]. Among them,
NBR applies near-infrared and short-wave infrared bands and is commonly used to detect
the signal components of bare soil or nonphotosynthetic vegetation within the tropical
rainforest canopy [34].

Since the red-edge bands are closely related to vegetation chlorophyll concentra-
tion [35], and the vegetation index calculated with the red-edge bands can reduce satura-
tion compared to the traditional red-band vegetation index [36], the red-edge bands and
related vegetation indices have been widely used in the fields of leaf area index estimation,
biomass inversion, and forest fire disturbance monitoring [37–39]. As logging disturbance
is similar to forest fire disturbance, which also influences the vegetation’s physical and
chemical parameters such as the leaf area index and the chlorophyll content of leaves, the
red-edge vegetation indices were calculated as part of the input feature set in this study.
They include the normalized difference vegetation index with red-edge 1 (NDVIre1n),
normalized difference vegetation index with red-edge 3 (NDVIre3n), chlorophyll index
red-edge (CIre), normalized difference with red-edge 1 (NDre1), and normalized difference
with red-edge 2 (NDre2) [40].

In addition, it was shown that texture measures such as contrast, variance, homogene-
ity, and entropy are associated with patch edge features, while mean, dissimilarity, angular
second moment, and correlation are associated with tiny irregular variations within contin-
uous regions such as forests [41]. The above eight texture feature values were calculated
based on the first principal component (PCA) using a gray-level co-occurrence matrix to
provide information on the local surrounding relationships of each pixel. The PCA trans-
formation works on the 10 surface reflectance bands on Sentinel-2 which were introduced
in Section 2.2. The cumulative contribution of the first principal component for each scene
is more than 80%. The window size of the texture features is 7×7 and the gray level was
set to 64 according to the reference of Jian and Hethcoat et al., which indicated that this
window size is best for the forest parameter inversion on meter-level spatial-resolution
remote sensing images [42,43]

Each feature set includes 28 components: 10 surface reflectance, 10 vegetation indices,
and 8 texture features. Table 4 describes the various features and their expressions in detail.

Table 4. The feature set description for modeling logging pattern classification.

Type Feature Full Name Abbreviation Equations

Spectral feature Band B B2, B3, B4, B5, B6, B7, B8, B8A, B11, B12

Vegetation index

Normalized difference vegetation index NDVI (B8−B4)/(B8+B4)
GND GNDVI (B8−B3)/(B8+B3)

Simple ratio SR B8/B4
Difference vegetation index DVI B8−B4

SWIR vegetation index Normalized burn ratio NBR (B8−B12)/(B8+B12)

Red-edge vegetation
index

Normalized difference vegetation index
red edge 1 narrow NDVIre1n (B8A−B5)/(B8A+B5)

Normalized difference vegetation index
red edge 3 narrow NDVIre3n (B8A−B7)/(B8A+B7)

Chlorophyll index red edge CIre B7/B5-1
Normalized difference red edge 1 NDre1 (B6−B5)/(B6+B5)
Normalized difference red edge 2 NDre2 (B7−B5)/(B7+B5)
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Table 4. Cont.

Type Feature Full Name Abbreviation Equations

Texture features

Mean ME

Reference [44]

Variance VA
Homogeneity HO

Contrast CO
Dissimilarity DI

Entropy EN
Angular second moment ASM

Correlation CR

2.5. Experimental Program Design

In order to test the effect of optical bands on logging pattern classification and se-
lect the best sensitive bands in logging detecting, we designed four cases in this study:
(1) conventional optical bands only containing visual bands (VIS) and near-infrared bands
(NIR); (2) conventional bands and red-edge bands (Red-edge); (3) conventional bands and
short-wave infrared bands (SWIR); and (4) full-spectrum bands including conventional
bands, red-edge bands, and short-wave infrared bands. The specific features included in
these four cases are shown in the following table (Table 5).

Table 5. Experimental program design.

Cases Band Combinations Features

1 VIS+NIR B2+B3+B4+B8+NDVI+GNDVI+SR+DVI
+ME+VA+HO+CO+DI+EN+ASM+CR

2 VIS+NIR+Red-edge
B2+B3+B4+B8+NDVI+GNDVI+SR+DVI

+B5+B6+B7+B8A+NDVIre1n+NDVIre3n+ CIre+NDre1+NDre2
+ME+VA+HO+CO+DI+EN+ASM+CR

3 VIS+NIR+SWIR
B2+B3+B4+B8+NDVI+GNDVI+SR+DVI

+B11+B12+NBR
+ME+VA+HO+CO+DI+EN+ASM+CR

4 VIS+NIR+Red-edge+SWIR

B2+B3+B4+B8+NDVI+GNDVI+SR+DVI
+B5+B6+B7+B8A+NDVIre1n+NDVIre3n+CIre+NDre1+NDre2

+ B11+B12+NBR
+ME+VA+HO+CO+DI+EN+ASM+CR

Notes: VIS indicates visual bands. NIR indicates near-infrared bands. Red-edge indicates red-edge bands. SWIR
indicates short-wave infrared bands. Bi indicates band reflectance in Sentinel-2.

2.6. Logging Patterns’ Identification Based on a Random Forest Algorithm

This study used the random forest classifier function inside the Python program Scikit-
learn library to build a random forest (RF) model. RF is an aggregation algorithm derived
from a decision tree (CART) [45], and unlike a single decision tree, the RF model uses
multiple independent decision trees that can be used for problems such as classification
and regression [46]. This study used its classification algorithm. The n_estimators and
max_features are the main parameters of the algorithm. The former indicates the number of
subtrees created before prediction using the maximum number of votes or the mean. The
n_estimators was set to 300 by hyperparameter optimization. The parameter max_features
indicates the number of features in the selected subfeature set. This study used the default
method, the square root of the total number of features, and rounded off. The ranking
of feature importance was performed according to the Gini index. A smaller Gini value
indicates a higher purity of the dataset and higher importance of the variable [47].
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2.7. Accuracy Assessment

Due to the small amount of data in the sample set, this study used the leave-one-out
method for cross-validation to make full use of the limited data. This method can minimize
the random error caused by assigning training and testing samples, thus preventing over-
fitting and determining the best model parameters [48]. The confusion matrix was used to
calculate the accuracy metrics. The overall accuracy (Acc), kappa coefficient (Ka), F1-score,
recall, and precision were calculated to evaluate the accuracy of the model. The formulas
for the calculation of the indicators were as follows.

Acc = (TP + TN)/(TP + TN + FP + FN) (2)

Kappa = (Acc − P_e)/(1 − P_e) (3)

P_e = (P × P′ + N × N′)/(P + N)ˆ2 (4)

P = TP + FN (5)

P′ = TP + FP (6)

N = FP + TN (7)

N′ = FN + TN (8)

Precision = TP/(TP + FP) (9)

Recall = TP/(TP + FN) (10)

F1_score = (2 × Precision × Recall)/(Precision + Recall) (11)

TP denotes the number of positive classes predicted as positive classes; FP denotes
the number of negative classes predicted as positive classes; TN denotes the number of
negative classes predicted as negative classes; and FN denotes the number of positive
classes predicted as negative classes.

3. Results
3.1. Evaluation of the Accuracy of Different Band Combinations

From the logging pattern identification results at different band combinations (Table 6),
we found that full-spectrum bands (case 4) had the best results with an overall accuracy
and kappa coefficient of 85% and 77%, respectively. Compared with case 1 with only VIS
and NIR bands, the overall accuracy and kappa coefficient were improved by 5% and 8%,
respectively. Case 2 and case 3, which added the red-edge bands and SWIR bands to the
VIS and NIR bands, respectively, had relatively better identification results compared with
case 1, both with an overall classification accuracy of 84% and kappa coefficients of 75%
and 74%, respectively. The accuracy improved by 4% and the kappa coefficients improved
by 6% and 5%, respectively, compared with case 1. The results show that based on VIS
and NIR band data, adding either the red-edge bands or the SWIR bands can substantially
improve the accuracy of logging patterns’ detection, and the detecting effect will achieve
the best results when they are simultaneously added.

In terms of logging pattern, the highest recognition accuracy was found for clear-
cutting, with recall, precision, and F1-scores around 95%, followed by unlogged types
(76–91%), and the lowest recognition accuracy was found for selective logging (58–79%). For
clear-cutting, adding more bands only improved the recognition accuracy by about 2%. For
unlogged and selective logging, adding red-edge bands or adding SWIR bands improved
the recognition accuracy to a limited extent, which could achieve a 2–4% improvement
for the unlogged pattern and 3–6% for the selective logging pattern. In contrast, adding
red-edge and SWIR together can maximize the recognition accuracy. The full-spectrum
images can specifically improve the recognition accuracy of unlogged patterns by 5–6%,
and the recognition accuracy of selective logging by 6–10%.
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Table 6. Accuracy comparison of classification results.

Cases Logging Pattern
Evaluation Indicators

Precision/% Recall/% F1-Score/% Acc/% Kappa

case 1
CK 76 86 80

80 0.69SL 69 58 63
CC 97 94 95

case 2
CK 78 90 84

84 0.75SL 78 61 69
CC 98 97 98

case 3
CK 79 90 84

84 0.74SL 77 61 68
CC 97 95 96

case 4
CK 81 91 86

85 0.77SL 79 64 71
CC 97 95 96

Notes: CK, SL, and CC indicate unlogged, selective logging, and clear-cutting, respectively.

The confusion error matrix of the full-spectrum features on logging pattern identifica-
tion is shown in Table 7. A total of 32 samples were misclassified, with the largest number of
selective logging samples being misclassified as clear-cutting (19). Eight unlogged samples
were classified as selective logging, two clear-cutting samples were classified as selective
logging, two selective logging samples were classified as clear-cutting, and one clear-cutting
sample was classified as unlogged.

Table 7. Confusion matrix for full-spectrum model prediction results.

Ground Truth

CK SL CC

Prediction
CK 83 19 1
SL 8 38 2
CC 0 2 60

Notes: CK, SL, and CC indicate unlogged (control check), selective logging, and clear-cutting, respectively.

3.2. Feature Importance Evaluation

In terms of case 4 with the highest accuracy in logging patterns’ recognition, the mean
impurity reduction method was applied to evaluate the importance of features. The top
seven features, ranked from highest to lowest importance values, were NBR, B12, NDre2,
B5, NDre1, NDVIre1n, and B4. As can be seen from Figure 4, the features related to Sentinel-
2 SWIR and red-edge bands were in the top position and played an important role in forest
logging pattern detection. In contrast, the texture features had a relatively low contribution
to forest logging pattern monitoring.

In terms of the SWIR and its relative features, B12 and NBR were the most suitable
features for identifying forest logging. The other short-wave infrared band, B11, was not as
important but still outperformed some of the conventional bands and most conventional
vegetation indices.

In terms of red-edge-related features, NDre1, NDVIre1n, and CIre were also very effec-
tive, in addition to B5 and NDre2, which had the greatest ability to identify deforestation.
However, B6, B7, B8A, and NDVIre3 were relatively weak and only outperformed the
texture features.

The texture features showed relatively low importance in monitoring forest logging
patterns. Seven textural features, including CR, CO, and VA, were at the bottom of the list,
except for ME, which had a moderate contribution effect.
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4. Discussion

Reliable detection of logging patterns is an important component of sustainable forest
management, as it allows the accurate mapping of forest loss and guides post-disturbance
rehabilitation [49,50]. In terms of the data sources used for detection, optical remote sensing
is the most cost-effective solution [51–53] despite its weaknesses compared to LiDAR and
SAR. Our results validate the feasibility of using multispectral high-resolution optical
imagery to identify deforestation patterns at the subcompartment scale. Since logging
causes changes in forest composition and canopy structure, which in turn affects the feature
spectrum, we were able to capture more details of canopy disturbance such as canopy
gaps with high resolution combined with more spectral information such as red-edge and
short-wave infrared, which can meet the application requirements. This result is consistent
with the results of Francini et al. [54,55].

The inclusion of the red-edge and short-wave infrared bands can significantly improve
the accuracy of logging detection, particularly the B5 (698~713 nm) and B12 (2100–2280 nm)
bands of Sentinel-2. In terms of the red-edge bands, as the B5 band is associated with
changes in chlorophyll content [56], vegetation indices associated with the B5 band such as
NDre2, NDre1, NDVIre1n, and Cire all perform well, and are suitable for differentiating
logging pattern, in agreement with the results of Fernández-Manso et al. [38]. Particularly
NDre can detect phenomena such as defoliation caused by disturbance events in the forest
earlier than conventional indices [57,58]. In terms of the short-wave infrared band, because
B12 is highly correlated with biochemicals such as leaf pigment and moisture and can
pass through thin cloud cover, it indicates forest disturbance well [59]. NBR is calculated
from B12 and the near-infrared band. Sub-pixel-level canopy disturbance events in the
evergreen forests of Southeast Asia can be detected using changes in NBR alone [60].
Short-wave infrared bands are superior to using only red and NIR bands for monitoring
forest disturbances [61,62]. Previous studies have shown that texture features respond
significantly to variables that cause changes in canopy structure and play a dominant
role in selective logging monitoring in tropical forests [51,63], unlike the results of our
study. This may be because the Taizi Mountain area is dominated by plantations of
Pinus massoniana Lamb. and Cunninghamia lanceolata (Lamb.), which indicates that there is
little variation within the forest stand structure. Another potential reason is that the pixel
window is too small to fairly identify selectively logging subcompartments.
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The original volume of the stand may influence the detecting results. If the original
hectare volume is high, the difference in volume between selective logging and unlogged
can hardly be reflected in the spectrum. However, due to the saturation phenomenon in
optical remote sensing vegetation analysis [64], it is hard to detect the selective logging
pattern in high-volume areas. Because of the low intensity of selective logging and the
scattered area of operations, post-logging forest stock may still be above the saturation
level of volume estimates. As shown in Figure 5, despite the difference in hectare volume
before logging, no significant difference is visible in the RGB images after selective logging.
The use of more spectral bands and vegetation indices could improve the saturation values
to some extent [65]. Short-wave infrared and red-edge information were shown to reduce
this effect and improve the assessment of growing stem volume, but volume estimates
are still limited by saturation effects [66,67]. We found that misclassification between
selective logging and unlogged was highly likely to occur if the preharvest volume of
the subcompartment was above 160 m3/ha. Improvements in feature variable screening
methods, innovative algorithms, and fusion of imagery may improve the ability of optical
imagery to detect selective logging [68,69].
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Figure 5. Selective logging samples with different pre-logging hectare volume. (1) Low pre-logging
hectare volume, 48.83~74.19 m3/ha; (2) Medium pre-logging hectare volume, 93.58~146.41 m3/ha;
(3) High pre-logging hectare volume, 160~206.89 m3/ha.

In addition, the time lag of the optical image is also an important reason for the
misclassification of low-intensity selective felling [70]. Figure 6 illustrates the recovery of
coniferous and broadleaved forests over time after clear-cutting. The growing season is
characterized by favorable temperatures and abundant rainfall. On the one hand, it makes
secondary vegetation regenerate rapidly, resulting in weak and short spectral changes due
to logging, and on the other hand, it makes cloud cover long, limiting the optical sensors.
Therefore, if the lag time can be reduced, it will effectively improve the observation avail-
ability and enhance the performance of systems based on satellite imagery for monitoring
forest logging [71]. The integration of multiple sensors is one way to improve temporal
accuracy. The integration of optical sensors, such as the combination of Landsat and
Sentinel-2 [72], and the integration of optical and radar datasets, such as the combination
of Sentinel-1, PALSAR-2, and Landsat datasets [73], will increase the number of available
observations and detect forest disturbances earlier [74,75]. Furthermore, the launch of
additional satellites will also provide more detailed information for detecting and acting
on logging events.
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5. Conclusions

This study was conducted to evaluate the combination of visible, near-infrared, red-
edge, and short-wave infrared spectral bands derived from Sentinel-2 for identifying
three logging patterns (unlogged, selective logging, and clear-cutting) in north subtropical
plantation forests. Overall, we found that the optical images have the potential ability
to detect logging patterns especially for the clear-cutting and unlogged patterns, which
can be well-classified. In addition, the detection accuracy of the selective logging pattern
can be improved by adding more spectral bands, especially when adding a red-edge
band or short-wave infrared band or both, improving the accuracy by 4–5% in general.
Furthermore, the satellite’s ability to monitor the selective logging pattern with the random
forest algorithm has been effectively enhanced by adding red-edge and short-wave infrared
bands to the traditional visible and near-infrared bands, which can improve precision and
recall accuracy by 3–6%, respectively. The red-edge band (698–713 nm, B5 in Sentinel-2),
the short-wave infrared (2100–2280 nm, B12 in Sentinel-2) and the associated vegetation
indices (NBR, NDre2, and NDre1) showed great potential in detecting logging patterns,
and the greatest enhancement was performed on the selective logging pattern.
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