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Abstract: Temperature lapse rate (TLR) is an important parameter for simulations of snow/glacier
melts in alpine watersheds. However, the traditional scheme estimates TLR mainly based on a limited
number of stations and may not be suitable for alpine watersheds with scarce observations. To
overcome this problem, this study developed a new basin-oriented TLR scheme based on Moderate
Resolution Imaging Spectroradiometer (MODIS) land surface temperature data which was applied in
a typical glacierized watershed on the northern slope of the Himalayas. The new TLR scheme was
evaluated by comparison with the station-based traditional TLR scheme in terms of performance
in simulations of both snow cover area and runoff using the same hydrological model. The results
showed that the monthly TLRs estimated by the new scheme presented a more reasonable seasonal
pattern than those estimated by the traditional scheme. The model using the new TLR scheme showed
better performance in discharge simulations of low-runoff months than that using the traditional TLR
scheme. The R-squared value of multiyear mean monthly snow cover area of the former (0.82) was
also higher than that of the latter (0.56). This study provides an efficient framework for estimating
TLR based on remote sensing for alpine watersheds with scarce observations.

Keywords: temperature lapse rate; snow cover simulation; glacier-melt runoff; snowmelt runoff;
Tibetan Plateau

1. Introduction

The Tibetan Plateau, with an average altitude of more than 4000 m, is the birthplace
of more than a dozen rivers in Asia [1]. It supports more than one-sixth of the world’s
population and is known as the world’s water tower [2]. The Tibetan Plateau provides
water, pasture and other resources to more than a dozen bordering countries, affecting
about 2 billion people [3]. Since snow and glaciers exist year-round at high elevations of the
Tibetan Plateau, glacier and snow melts are important factors affecting the runoff changes
of the upstream river basins [4]. For example, it is reported that snowmelt contributes
more than 20% of the total runoff to the upper basins of six major rivers on the Tibetan
Plateau, and the glacier melts account for 40% to over 50% of the total runoff in the upper
Indus River basin [5–7]. Therefore, it is important to accurately simulate glacier-melt and
snow-melt runoff, which would lead to a better understanding of hydrological processes of
the Tibetan Plateau and contribute to flood forecasting and water resource management in
downstream areas [8,9].

The hydrological models that incorporate snow or glacier modules are widely used to
simulate the changes of glacier-melt and snow-melt runoff in alpine basins. Such models
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can be mainly divided into two categories, namely the temperature index method based
on an empirical relationship of glacier/snow melt and temperature [10,11] and the energy
balance method [12]. The energy balance method, such as the DHSVM model [13], WEB-
DHM-S model [14] and the GBEHM model, fully considers the main physical processes
involved in snow and glacier change and can reasonably quantify and distinguish their
important components (e.g., sublimation) [15,16]. However, the energy balance method
has high requirements for input data such as the hourly radiation and humidity, which are
generally difficult to obtain in an alpine basin with sparse meteorological observations. As
it requires only daily temperature and precipitation data, the temperature index method,
such as the J2000 model [17,18], SRM model [19] and SPHY model [20], has been widely
used in the simulation of glacier and snow melt in global alpine basins [5,21].

Though model structure has an important effect on the simulations, the meteoro-
logical inputs have been recently identified as major error sources for snow modeling
on the Tibetan Plateau based on evaluations of multiple reanalysis datasets and global
climate models [22,23]. As a key factor of glacier/snow melting, air temperature is
an important input for hydrological modeling in alpine basins [24,25]. However, due
to the complex topography and harsh climate, meteorological stations with long-term con-
tinuous observations are scarce and mostly located in the eastern part of the Tibetan Plateau
with lower elevations. To obtain the spatial and temporal variation of air temperature in the
high-altitude region, previous studies often employed air temperature interpolations based
on a limited number of meteorological stations in hydrological models [26]. One of the most
commonly used methods for interpolating air temperature is the temperature lapse rate
(TLR) method, which assumes that temperature decreases at a constant rate with increasing
elevation. The global reference TLR is −0.65 ◦C/100 m, which means that air temperature
decreases by an average of 0.65 ◦C with an elevation increase of 100 m. TLR is widely used
in spatial interpolation of air temperature data for considering the elevation differences
between the stations and model grids [6,27,28]. It is also an important parameter inherently
used in various hydrological models for applications in alpine basins [17,29]. A fixed TLR
of 0.65 ◦C/100 m was frequently used in previous studies [30,31]; however, TLR actually
varies with climatic conditions, geographical location, topographic features and land cover
types [32]. Since TLR is usually estimated from station observations, the problem of sparse
stations also severely limits the accurate estimation of TLR on the Tibetan Plateau.

To address the problem of scarce temperature observations, recent studies have es-
timated air temperature over the Tibetan Plateau [33,34] based on remote sensing land
surface temperature (LST) from various sensors such as Landsat OLI-ETM+ [35] and Mod-
erate Resolution Imaging Spectroradiometer (MODIS) [36]. For example, MODIS data
have been widely used in exploring the spatiotemporal changes of various environmental
variables [37] including LST changes and their relationship with other factors in mountain-
ous regions of the Himalayas [38]. The MODIS LST data were also used as predictors in
artificial intelligence (AI) and machine learning (ML) models for forecasting snow cover
and vegetation changes [39]. Although air temperature is not equivalent to LST, air tem-
perature lapse rate is found to have a strong spatial and temporal consistency with LST
lapse rate [40]. Therefore, MODIS LST data have recently been directly used to estimate the
TLR, showing relatively good accuracy [41,42]. Currently, there are few studies evaluating
the feasibility of remote sensing TLR in hydrological simulations in alpine basins. It is
demonstrated that the monthly TLRs estimated from MODIS nighttime LST can signif-
icantly improve the accuracy of snow dynamics simulations in the Upper Yellow River
Basin compared to those obtained from sparse stations [43]. However, the high cloud cover
greatly limits the applicability of remote sensing TLR and frequently causes abnormal
TLR values (e.g., absolute TLR > 1.5 ◦C/100 m) [44]. In addition, there is no glacier-melt
runoff in the study area, and previous studies [43–45] mainly focused on producing re-
mote sensing TLRs at rectangular grids and coarse resolutions, which are not suitable for
meso- and micro-scale alpine basins with an irregular shape. Thus, it is urgent to develop
an efficient parameterization scheme of TLR for hydrological simulation that can alleviate
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the problem of cloud coverage and to further evaluate the feasibility of remote sensing TLR
in hydrological simulations in glacierized basins.

The objectives of this study were: (1) to develop a new parameterization scheme
of TLR based on remote sensing LST, which is basin-oriented; (2) to apply the new TLR
scheme in the hydrological simulation in a typical glacierized basin of the Tibetan Plateau;
(3) to evaluate the feasibility of the new TLR scheme by comparing with the station-based
TLR in terms of the accuracy of both runoff and snow simulations.

2. Materials and Methods
2.1. Study Area

In this study, the Karuxung watershed (Figure 1), which originates from the northern
slope of the Himalayas, was selected as the study area. The watershed is in the southern
part of the Tibet Autonomous Region, China, with latitude and longitude ranges from
28◦46′19′′N to 29◦0′22′′N and 90◦8′8′′E to 90◦23′4′′E, respectively. The watershed area is
286 km2, and the elevation range varies from a minimum elevation of 4550 m at Wengguo
hydrological station to a maximum of 7200 m. A total of 50 glaciers in the basin cover
a total area of 47 km2.
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Figure 1. Location and topography of the study area (i.e., the Karuxung watershed).

2.2. Observation Data

Meteorological data from two stations were used here. The meteorological station
nearest to the Karuxung watershed is the Langkazi station with an altitude of 4432.4 m
and has daily meteorological observations (including daily minimum air temperature,
maximum air temperature, average air temperature, precipitation, relative humidity, sun-
shine duration and average wind speed) from 1980 to present. The second nearest one is
the Gyantse station, which is 78 km away at an altitude of 4040 m. The Gyantse station
has daily meteorological data from 1956 to present. The annual average temperature of
the Langkazi meteorological station from 1985 to 2014 is 3.3 ◦C. The multi-year average
annual precipitation, including rainfall and snowfall, is 379.9 mm, with June to September
accounting for 90% of the annual precipitation. Most of the precipitation from October to
March is in the form of snowfall, which lasts longer at higher altitudes.

Daily runoff observations were obtained from the Wengguo hydrological station. The
runoff data are available for 1 January 1985 to 31 December 1994 and 1 April 2006 to
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31 December 2014. For evaluation of snow cover and runoff simulations, the years
1985–1994 were selected as the model calibration period and April 2006 to December
2014 as the model validation period based on data availability (Table 1).

Table 1. Daily observation data used for model input, calibration and validation.

Data Selected Time Application

Meteorological data at
the Langkazi station 1980–2014 Input for hydrological model and

the traditional TLR scheme

Meteorological data at
the Gyantse station 1980–2014 Input for traditional TLR scheme

Hydrological data at
the Wengguo station

1985–1994
2006–2014

Model calibration
Model validation

2.3. Remote Sensing Data

MODIS TERRA daily LST data collection 6 (MOD11A1) was used for developing
the new TLR scheme (Section 2.4.2). MODIS TERRA provides LST data of two overpass
times including one daytime LST (at about 10:30 am) and one nighttime LST (at about
10:30 pm). The nighttime LST data were used here because MODIS nighttime LST showed
better performance in estimating monthly TLR for the Tibetan Plateau than the daytime
LST [40]. The land cover type data from MODIS (MOD12Q1) were used for identifying
water pixels, which were excluded in the process of TLR estimation based on MODIS LST
(Section 2.4.2). The long time series data of daily snow cover area (SCA) on the Tibetan
Plateau (2003–2014) were downloaded from National Tibetan Plateau/Third Pole Envi-
ronment Data Center (data.tpdc.ac.cn) and were used for validating the snow simulations.
The cloud-free daily snow cover data were created by combining MODIS daily snow cover
data (from both Terra and Aqua) and the Interactive Multisensor Snow (IMS) product, with
a spatial resolution of 0.005 degrees (approx. 500 m) [46]. An evaluation based on snow
depth observations from 91 stations across the Tibetan Plateau showed that the overall
accuracy of the cloud-free daily snow cover dataset is reported to be 92% [46]. By using
nearest neighbor interpolation, 500 × 500 m pixels of the original snow cover data were
resampled to 90 × 90 m to match the resolution of the digital elevation model data and to
capture the snow at the watershed boundary more accurately. The 90 m digital elevation
data of the Shuttle Radar Topography Mission (SRTM) were downloaded from the National
Science Data Platform. Land use data at a scale of 1:1,000,000 including glacier distribu-
tion were obtained from the Northwest China Environmental and Ecological Science Data
Center (http://westdc.westgis.ac.cn).

2.4. Methods

The entire workflow of this study is shown in Figure 2. Firstly, two parameterization
schemes of monthly TLR were applied for the Karuxung watershed, namely the traditional
method that estimates TLR based on station observations and a new scheme developed
based on MODIS LST. Then, both TLR schemes were used to drive hydrological simulations
of the Karuxung watershed, with the same settings of other model inputs; Lastly, the
two schemes were evaluated and compared according to their performance in simulating
runoff and snow cover. The detailed procedures are described in the following sections.

2.4.1. The Traditional TLR Scheme Based on Station Observations

Previous studies found that TLR showed significant seasonal changes and estimated
TLR mainly based on station observations [24]. As for the Karuxung River Basin, the
multiyear-average monthly TLRs were estimated based on air temperature observations
from two stations, namely Langkazi and Gyantse, and were then used to drive a snow-melt
runoff model [8]. A similar scheme was adopted here. For both meteorological stations,
multiyear-average monthly temperatures were calculated by temporally aggregating daily

http://westdc.westgis.ac.cn
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air temperature observations during the period of 1980–2014. Then, monthly TLR values
were calculated based on the differences in elevation and multiyear-average monthly air
temperature and between the two meteorological stations.
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2.4.2. A New TLR Scheme Based on Remote Sensing LST

Previous studies found that the high cloud cover of the Tibetan Plateau resulted in
many missing values and abnormal TLR estimates [45]. To address this problem and to
better downscale the reanalysis air temperature data with coarse resolutions, an efficient
method of dynamically checking the standard deviation of elevations within a coarse
reanalysis grid has recently been employed [44]. Inspired by their study, a new TLR
scheme that is oriented to basin scale was developed here. First, multiple ring buffers were
created for the Karuxung watershed (Figure 3). The distance between buffers was set to
1 km, which is close to a pixel size of MODIS LST. The original extent of the watershed
is considered as buffer No. 0, and the buffer number increases gradually from the inner
watershed outwards with the maximum buffer number set to 18 here. This ensures that the
area is not too large so as to avoid obvious effects from longitude or latitude [47]. Then,
multiyear-average monthly mean LSTs were calculated for each of the MODIS LST pixels
within all the buffers. The MODIS pixels containing water bodies were excluded, and only
the MODIS pixels with temporal coverage > 1/2 were included in the calculation of TLR.
The TLR calculation starts from the innermost buffer, which is the original polygon of the
watershed (i.e., buffer No. 0). Before the TLR calculation, a dynamic checking procedure
was applied following the method of Zhang [44], i.e., all the valid MODIS LST pixels within
the buffer No. 0 were examined. If the standard deviation of elevations was less than 50 m
or the correlation between LST and elevation was less than 0.5 or the percentage of valid
pixels < 50%, the current buffer was considered unable to provide enough valid MODIS LST
pixels to calculate a reliable TLR, and the calculation extended to the next buffer, meaning
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that the valid MODIS LST pixels within buffers No. 0 and No. 1 were included in the TLR
calculation. This process was not stopped until the valid MODIS LST pixels could meet
the requirements. It should be noted that the new TLR scheme also considers the location
of the meteorological station. When the station is outside the watershed, the initial buffer
was changed from buffer No. 0 to the No. of buffers where the station is located, e.g., for
the Karuxung watershed, the Langkazi station is located in buffer No. 7, and the initial
calculation involves the MODIS LST pixels within the areas of buffers Nos. 0–7. Once the
No. of the final buffer for TLR calculation was determined, all the valid MODIS LST pixels
of the related buffers were used to construct a linear regression between the monthly LST
and elevation according to Equation (1).

LSTm = a× Z + b (1)

where LSTm is the monthly average LST of each MODIS LST pixel involved, Z is the pixel
elevation, a and b are the regression parameters and a is the estimated TLR. It should
be noted that the abovementioned process was conducted for all 12 months. Finally, the
12-monthly TLR values were obtained for the Karuxung watershed.
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2.4.3. Hydrological Simulations

The monthly TLRs estimated using the two schemes were then used to drive hydro-
logical simulations of Karuxung watershed based on the J2000 model (Figure 4). The J2000
model is a process-based hydrological model that considers major hydrological processes
of the cryosphere such as interception, evaporation, snowmelt, glacier-melt, soil water,
groundwater and sink flow [48]. The interception module of J2000 takes into account
the maximum storage capacity of that vegetation for rain and snow based on the leaf
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area index of the vegetation type. The glacier-melt, snowmelt and rainfall are partially
or fully infiltrated into the soil according to the infiltration rate of the soil (the maximum
infiltration rate in summer, winter and with or without snow cover is determined by cali-
brating the parameters). Since this study focuses on improving TLR and the application
in glacier/snow-melt simulations, descriptions about model inputs, glacier module and
snow module are provided here. More details about other modules can be found in the
user guide [49].
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Figure 4. The structure of the J2000 model.

In total, 747 hydrological response units (HRUs) were constructed in the Karuxung
watershed. The model obtains the spatial information of the watershed from the hydrologic
response unit parameter files, and hydrologic processes are influenced by calibrated param-
eters (e.g., soils, land use, geology, elevation, aspect). Air temperature and precipitation
are two major inputs of the J2000 model. Based on the elevation difference between each
HRU and the Langkazi meteorological station, the daily air temperature and precipitation
of Langkazi meteorological station were interpolated to each HRU using the temperature
lapse rate and precipitation gradient, respectively. For the ith HRU, if the temperature
of this HRU (Ti) is greater than the first critical temperature (Ts1), then the precipitation
in this elevation zone (Pi) is considered as rainfall (Pri); if it is below the second critical
temperature (Ts2) (Ts2 < Ts1), Pi is taken as snowfall (Psi). If Ti is between Ts1 and Ts2, Pi is
a mixture of rainfall and snowfall, and the proportion of snowfall in Pi(p(s)) is:

p(s) =
(3Ts1 − Ts2 − 2Ti)

4(Ts1 − Ts2)
(2)

Then, the snowfall (Psi) and rainfall (Pri) of the hydrologic response unit are calculated
according to Equations (3) and (4), respectively:

Psi = Pi·p(s)[mm] (3)

Pri = Pi·(1− p(s))[mm] (4)
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Monthly precipitation gradients were obtained based on the gridded precipitation
data from High Asia Reanalysis (HAR) [50].

Glacial melt was simulated using an enhanced degree day model that considers tem-
perature, radiation, slope, aspect and presence of debris cover [51]. The enhanced degree
day factor = meltFactorIce + alphaIce*Radiation, where meltFactorIce is the generalized
melt factor for ice as a calibration parameter, Radiation is the global radiation, alphaIce
is a melt coefficient for ice. Radiation = R1 ϕa

( P1
cos Z ) cos θ, where R1 is the coefficient of

sun–earth distance, ϕa is the mean atmospheric clear-sky transmissivity, P1 is a coefficient
of pressure, Z is the local zenith angle and θ is the angle of incidence between the normal
to the grid slope and the solar beam. The calculation of Z and θ depends on the slope and
aspect. Glacier runoff is defined as the total runoff from the glacier zone, including seasonal
snowmelt, glacier-melt runoff and rainfall runoff from the glacierized areas. In an HRU
that contains a glacier, the glacier starts to melt when the snow storage is zero.

The snow module of J2000 consists of three phases: accumulation, metamorphosis
and melting. Based on the daily maximum (Tmax), average (Tavg) and minimum (Tmin) air
temperatures, the accumulation temperature (Tacc) and melting temperature (Tmelt) are
calculated following Equations (5) and (6):

Tacc =
Tmin + Tavg

2
(5)

Tmelt =
Tavg + Tmax

2
(6)

The cold content (CC), which is considered as the energy deficit of the snowpack, is
calculated by air temperature multiplied by a calibration parameter (coldContFact). For the
accumulation phase, the calculation of the snow water equivalent (SWE) considers both the
dry snow and the liquid water existing in the snowpack. The snow density is calculated
based on Tacc. When Tmelt > the threshold temperature to melt (baseTemp), the phase of the
snowpack turns to metamorphosis. The energy balance method of snowmelt simulation
generally considers six energy components, namely shortwave radiation, longwave radi-
ation, sensible heat, latent heat, the heat from rainfall and ground heat flux [52]. These
energy components are simplified in the J2000 model as three sources of the energy used for
calculating the potential snowmelt rate (Mp), which are the heat related to air temperature
(t_factor), rainfall (p_factor) and soil (g_factor), following Equation (7):

Mp = t_ f actor·Tmelt + r_ f actor·Prainnet ·Tmelt + g_ f actor (7)

Mp is then used to calculate the maximum change of snowpack thickness. When
the liquid water stored in the snowpack increases the density to a critical value (about
0.38 g/cm3), the phase of the snowpack turns to melting with snow-melt runoff generated.
Although model simulations require initial snow depth, in situ observations of snow depth
is not available in the study area. To reduce uncertainty caused by initial snow water
equivalent estimates, we chose mid-August 1980 as the start date for the simulations of
1985–1999 and allowed the model to spin up for 4.5 years.

Based on the model structure as described above, it can be inferred that air temper-
ature is an important input for the snow and glacier modules of the J2000 model. Air
temperature determines whether precipitation is rainfall or snowfall and how much glacier
melt can be generated. Since the air temperature of all the HRUs was interpolated from the
Langkazi station using the TLR, TLR is a crucial parameter for snow cover and glacier-melt
simulations of the Karuxung watershed.

2.4.4. Evaluation Methods of the Two TLR Schemes

The performance of the two TLR schemes was evaluated and compared in terms of
two aspects, namely runoff simulation and snow cover simulation. To distinguish the
evaluation results between the two schemes, the hydrological simulations driven by the



Remote Sens. 2022, 14, 4973 9 of 20

TLRs from the traditional scheme and the new scheme were referred to as Base Case and
Case 1, respectively. For evaluating runoff simulation, the accuracy for the calibration and
validation periods was evaluated by calculating the Nash–Sutcliffe efficiency coefficient
(NSE) and the log NSE (LSE) according to Equations (8) and (9), respectively:

NSE = 1− ∑r
i=1(oi−yi)

2

∑r
i=1(oi−o)2

o = 1
r

r
∑

i=1
oi

(8)

LSE = 1− ∑r
i=1|lnoi−lnyi |2

∑r
i=1|lnoi−lno|2

lno = 1
r

r
∑

i=1
lnoi

(9)

where r is the number of observations; oi is the observed runoff at time i; yi is the simulated
runoff at time i and o and lno are the average values of the corresponding variable. It
should be noted that in addition to Base Case and Case 1, four simulation cases considering
the uncertainty from precipitation gradients and the location of the meteorological station
were conducted and are discussed in Section 4.2. Necessary calibrations of parameters
were conducted individually for each of the six simulation cases. The physical ranges
and calibrated values of key parameters selected [48] are shown in Table S1 for all the
six simulation cases.

For the evaluation of snow cover simulation, the total snow cover area of the watershed
simulated by the J2000 model was calculated by summing up the areas of all the HRUs with
SWE > 0 mm. Following the evaluation method commonly used in previous studies [8],
the R2 was calculated based on the simulated and the remotely sensed snow cover area
during the period of 2003–2014 (Section 2.4.2) according to Equation (10).

R2 =
(∑r

i=1(oi−o)(yi−y))
2

∑r
i=1(oi−o)2·∑r

i=1(yi−y)2

y = 1
r

r
∑

i=1
yi

(10)

where r is the number of observations; oi is the remotely sensed snow cover area at time
i and yi is the simulated snow cover area value at time i. The overlapping period (i.e.,
2003–2014) of the time series of snow cover data and runoff observations was selected as
the study period for evaluating snow cover simulations.

3. Results
3.1. Comparison of the TLRs Estimated from the Traditional Scheme and the New Scheme

The monthly TLRs estimated using the traditional scheme and the new scheme are
compared in Figure 5. It should be noted that for the new scheme based on the remote
sensing LST, the TLRs of July and August were not successfully estimated due to insufficient
valid LST data caused by the excessive cloud cover and were linearly interpolated using
the TLRs of June and September. The two schemes showed large differences in both the
magnitude and seasonal variation of the estimated TLRs. Though the mean TLRs of the
new scheme (0.57 ◦C/100 m) and the traditional scheme (0.53 ◦C/100 m) are similar, the
latter showed much larger ranges, e.g., the steepest and shallowest TLRs of the traditional
scheme are −0.80 ◦C/100 m and 0.04 ◦C/100 m, while those of the new scheme are
−0.66 ◦C/100 m and −0.42 ◦C/100 m. When considering the absolute values of TLRs,
though both schemes showed bimodal seasonal patterns, their peak months were different.
The two peak months of the traditional scheme were May and September, while those of the
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new scheme were April and October, with the peak of April less obvious. More importantly,
the traditional scheme was featured with an obvious phenomenon of temperature inversion
in that the TLRs of January and December were close to zero and positive, respectively, as
discussed in Section 4.1. However, there is no temperature inversion in the TLRs from the
new scheme, with all the TLR values negative and well below −0.4 ◦C/100 m. The TLRs
estimated from the new scheme with the starting buffer (see Section 2.4.2) set to buffer
No. 0 (i.e., without consideration of the meteorological station) are also shown in Figure 5.
The scheme using buffer No. 0 as the starting buffer presented generally shallower TLRs
than that using buffer No. 7 as the staring buffer. The effects of different settings of the
starting buffer are further discussed in Section 4.2.
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No. 7, respectively.

3.2. Comparison of Snow Cover Area Simulations

The comparison results of snow cover area simulations driven by the TLRs from the
traditional scheme (Base Case) and the new scheme (Case 1) are shown in Figure 6. The
results show that there are significant differences in the performance of Base Case and Case
1. Based on the simulation results of the year-to-year monthly snow cover area, the R2 of
Base Case (0.42) is lower than that of Case 1 (0.50) (Figure 6a). The performance differences
were further enlarged for the simulations of the multiyear-average monthly snow cover
area, with the R2 of Base Case and Case 1 as 0.56 and 0.82, respectively (Figure 6b). In
general, the accuracy of snow cover area simulation using the new TLR scheme is higher
than that using the traditional scheme.

3.3. Comparison of Runoff Simulations

The comparison results of daily runoff simulations using the traditional TLR scheme
(Base Case) and the new TLR scheme (Case 1) are shown in Figure 7. Both cases obtained
acceptable accuracy of daily runoff simulations. The performance of Case 1 was better than
that of Base Case. The NSEs of Case 1 in the calibration and validation periods were 0.76
and 0.75, which were higher than those of Base Case with NSEs of the two periods of 0.71
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and 0.68, respectively. It should be noted that the performance differences between the
two TLR schemes were further enlarged in terms of LSE. For the period of validation,
the LSE of Base Case was 0.67, which is significantly lower than that of Case 1 (0.81). In
addition, the comparison results are generally consistent in terms of NSE, LSR and R2.

Remote Sens. 2022, 14, x FOR PEER REVIEW 11 of 20 
 

 

 

Figure 6. Comparison of the year-to-year monthly (a) and the multiyear-average monthly (b) snow 

cover area (SCA) simulated from the J2000 model driven by the TLRs from the traditional scheme 

(Base Case) and the new scheme (Case 1) during the period of 2003-2014. R02 and R12 are the R-

squared values of Base Case and Case 1, respectively. 

3.3. Comparison of Runoff Simulations 

The comparison results of daily runoff simulations using the traditional TLR scheme 

(Base Case) and the new TLR scheme (Case 1) are shown in Figure 7. Both cases obtained 

acceptable accuracy of daily runoff simulations. The performance of Case 1 was better 

than that of Base Case. The NSEs of Case 1 in the calibration and validation periods were 

0.76 and 0.75, which were higher than those of Base Case with NSEs of the two periods of 

0.71 and 0.68, respectively. It should be noted that the performance differences between 

the two TLR schemes were further enlarged in terms of LSE. For the period of validation, 

the LSE of Base Case was 0.67, which is significantly lower than that of Case 1 (0.81). In 

addition, the comparison results are generally consistent in terms of NSE, LSR and R2. 

 

Figure 7. Comparison of daily runoff simulation results from the J2000 model using the traditional 

TLR scheme (Base Case, a and b) and the new TLR scheme (Case 1, c and d) for the periods of 

calibration (a and c) and validation (b and d). 

Figure 6. Comparison of the year-to-year monthly (a) and the multiyear-average monthly (b) snow
cover area (SCA) simulated from the J2000 model driven by the TLRs from the traditional scheme
(Base Case) and the new scheme (Case 1) during the period of 2003–2014. R0

2 and R1
2 are the

R-squared values of Base Case and Case 1, respectively.

Remote Sens. 2022, 14, x FOR PEER REVIEW 11 of 20 
 

 

 

Figure 6. Comparison of the year-to-year monthly (a) and the multiyear-average monthly (b) snow 

cover area (SCA) simulated from the J2000 model driven by the TLRs from the traditional scheme 

(Base Case) and the new scheme (Case 1) during the period of 2003-2014. R02 and R12 are the R-

squared values of Base Case and Case 1, respectively. 

3.3. Comparison of Runoff Simulations 

The comparison results of daily runoff simulations using the traditional TLR scheme 

(Base Case) and the new TLR scheme (Case 1) are shown in Figure 7. Both cases obtained 

acceptable accuracy of daily runoff simulations. The performance of Case 1 was better 

than that of Base Case. The NSEs of Case 1 in the calibration and validation periods were 

0.76 and 0.75, which were higher than those of Base Case with NSEs of the two periods of 

0.71 and 0.68, respectively. It should be noted that the performance differences between 

the two TLR schemes were further enlarged in terms of LSE. For the period of validation, 

the LSE of Base Case was 0.67, which is significantly lower than that of Case 1 (0.81). In 

addition, the comparison results are generally consistent in terms of NSE, LSR and R2. 

 

Figure 7. Comparison of daily runoff simulation results from the J2000 model using the traditional 

TLR scheme (Base Case, a and b) and the new TLR scheme (Case 1, c and d) for the periods of 

calibration (a and c) and validation (b and d). 

Figure 7. Comparison of daily runoff simulation results from the J2000 model using the traditional
TLR scheme (Base Case, a,b) and the new TLR scheme (Case 1, c,d) for the periods of calibration (a,c)
and validation (b,d).

4. Discussion
4.1. The Rationality of the TLRs Estimated Using the New Scheme

Various factors such as solar radiation, humidity (or precipitation) and snow cover
were found to have potentially important effects on the spatiotemporal variation of
TLR [40,47]. Thus, it is difficult to directly evaluate and compare the seasonal cycles
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of TLRs estimated from the traditional and new schemes in the case with no observations.
The variation range of monthly TLRs estimated from the new scheme is clearly smaller
than that from the traditional scheme. The relatively small variation range of monthly
TLRs from the new scheme is consistent with He [40], who also found a relatively small
seasonal variation of TLRs of the Tibetan Plateau. Previous studies indicated that the
monthly TLR of the Tibetan Plateau generally ranges from −0.4 to −0.9 ◦C/100 m [47,53].
The TLRs estimated using the new scheme are well within these ranges. In contrast, the
TLRs estimated using the traditional scheme showed a temperature inversion in December
with a positive monthly TLR of 0.04 ◦C/100 m. Though some studies also observed the
phenomena of winter temperature inversion in some regions of China [47], the monthly
TLRs of January and December estimated using the traditional scheme are considered
abnormal and unreasonable due to the following reasons. The first evidence is that
the hydrological simulation using the traditional TLR scheme (i.e., Base Case) produced
an abnormal winter peak of runoff, which can be seen in Figures 7 and S1. The much
shallower TLR values of winter led to higher air temperatures, further producing much
more runoff than the reality, and such abnormal winter peaks did not exist in either the
station runoff observations or Case 1. In addition, the winter temperature inversions were
mostly reported in Northwestern China [47] or in regions with small elevation variations
of the Tibetan Plateau [44], while the standard deviation of elevations for the Karuxung
watershed is as high as 413.5 m. Thus, the monthly TLRs estimated by the new scheme
are considered more reasonable than the traditional scheme. The abnormal TLR values of
winter months estimated by the traditional scheme could be related to the too long distance
between the two meteorological stations used.

4.2. Uncertainty and Limitations

Though TLR is a crucial parameter for the hydrological simulation of the Karuxung
watershed, other inputs and parameters also have effects on the simulation results. Based
on previous studies, the precipitation gradient could be one of the most important factors
affecting the results of this study [8,24,54]. Thus, two cases were further tested by replacing
the reanalysis-based precipitation gradients of Base Case and Case 1 with the monthly
precipitation gradients obtained from the two meteorological stations (i.e., Gyantse and
Langkazi) and referred to as Cases 2 and 3, respectively. The runoff simulation results
of Cases 2 and 3 are shown in Figure 8. The comparison results of Cases 2 and 3 are
consistent with those of Base Case and Case 1 in that the performance in runoff simulation
of the case using the new TLR scheme (i.e., Case 3) was better than that of the case using
the traditional TLR scheme (i.e., Case 2), e.g., the NSEs of Case 2 for the calibration and
validation periods were 0.64 and 0.63, while those of Case 3 were 0.73 and 0.72, respectively.
Similar comparison results of Cases 2 and 3 were obtained for snow cover area simulations
(Figure 9). Case 3 showed higher R2 of snow cover area than Case 2, and this finding is also
consistent with the comparison of snow cover area simulations of Case 1 and Base Case.
Thus, even when using different precipitation gradients, the new TLR scheme still improved
the simulations of snow cover and runoff. In addition, the finding that Base Case and Case
1 showed better performance in runoff and snow cover simulations than Cases 2 and 3,
respectively, indicates that the precipitation gradients derived from the two meteorological
stations may be less efficient than those derived from the gridded reanalysis data. This
could be due to the low spatial representativeness of the limited number of stations. The
uncertainty from precipitation data could also be related to the runoff underestimations
of early summer in both Base Case and Case 1. Future studies could collect more reliable
precipitation data in the study area to improve the runoff simulations. Previous studies
using the J2000 model in different glacierized basins of the Tibetan Platea showed that for
runoff simulations, the NSE values were between 0.52 and 0.75, and the R2 values were
between 0.56 and 0.91 [17,55]. Considering that the NSE values reported from different
cases of this study are all >0.6, with the highest NSE as 0.80 (Table S2), the performance of
runoff simulations was considered acceptable.
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Figure 8. Comparison of daily runoff simulation results from the J2000 model using the traditional
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and validation (b,d), when the precipitation gradients were derived from station observations.
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Figure 9. Comparison of the year-to-year monthly (a) and the multiyear-average monthly (b) snow
cover area (SCA) simulated from the seven cases.

The new TLR scheme may also have some inherent uncertainty and limitations. The
first uncertainty lies in whether to consider the location of the meteorological station,
particularly when the station is outside the watershed. Two additional cases were hence
conducted without consideration of the location of the Langkazi station based on Cases 1
and 3 and referred to as Cases 4 and 5, respectively. In other words, the TLR calculation
started from the original extent of the Karuxung watershed (rather than the extent of buffers
No. 0–7 as mentioned in Section 2.4.2 for both Cases 4 and 5, and the final No. of buffers
was also 0 for almost all months. The runoff simulation results of Cases 4 and 5 are shown
in Figure 10. Cases 4 and 5 showed poorer performance in runoff simulations (i.e., with
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lower NSE, LSE and R2) than Cases 1 and 3, respectively. Though Case 5 showed higher R2

of multiyear-average monthly snow cover area than Case 3 and even Case 1 (Figure 9), the
new TLR scheme considering the location of the Langkazi station generally outperformed
it in the hydrological simulations of Karuxung. This could be related to the different spatial
representativeness. As shown in Figure 11, the compositions of land cover types were
very different between buffer No. 0 and the area that extends to buffer No. 7, with the
former’s major land cover type as barren (about 55%) and the latter’s major land cover type
as grasslands (about 62%). Thus, future studies may further improve the TLR scheme by
considering the potentially important effects of land cover types. Another limitation of this
study could be that the new TLR scheme failed to produce TLRs for July and August when
there were not enough valid LST pixels. Though a temporally linear interpolation was
employed here to obtain TLRs of July and August, another possible solution could be using
the gap-filled LST data. To provide a parametrization scheme entirely based on remote
sensing, a global gap-filled daily LST dataset was further tested and used to estimate the
TLRs of the two months following the same algorithm as the new TLR scheme. The gap-
filled LST data were recently developed using a novel spatiotemporal interpolation method,
and the root-mean-square error of the cross-validation for nighttime LST is reported to
be less than 1.4 K [56]. An additional case was hence conducted by replacing the linearly
interpolated TLRs of July and August in Case 1 with those produced using the gap-filled
LST data, referred to as “Case 6”. The simulation results of SCA and runoff from Case 6
were compared with those from Base Case as shown in Figures S2 and S3. In general, Case
6 showed better accuracy than Base Case in both SCA and runoff (Table S2) indicating that
the new TLR scheme still performed better than the station based on the gap-filled LST
data being used for July and August. However, the runoff simulation accuracy of Case 6
was notably lower than that of Case 1. This is mainly because the TLRs of July and August
of Case 6 are −0.44 and −0.46 °C/100 m and significantly shallower than those of Case 1
(Figure 5). The reduced accuracy of Case 6 compared with Case 1 implies that the gap-filled
LST data used for estimating TLRs of July and August could be further improved in future.
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Figure 10. Comparison of daily runoff simulation results from the J2000 model using the traditional
TLR scheme (Case 4, a,b) and the new TLR scheme (Case 5, c,d) for the periods of calibration (a,c)
and validation (b,d), when the precipitation gradients were derived from station observations.

The problem of high cloud cover may also be related to the significant underestimation
of snow cover simulation in July and August of Case 1 (Figure 6). It should be noted that the
remote sensing snow cover product used as ground truth may also have large uncertainty
in July and August when the cloud cover is very high. To better evaluate the new TLR
scheme, both Base Case and Case 1 were reconducted by removing the months of July
and August. The results are shown in Figure S4. The R2 of monthly snow cover area was
increased modestly for both cases, and Case 1 still showed better accuracy than Base Case.
It should also be noted that various methods have been developed for removing the cloud-
contaminated data of MODIS snow cover products [57]. For example, Muhammad [58]
developed a novel cloud-free snow cover dataset by combing MODIS snow cover data and
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the glacier data from Randolph Glacier Inventory 6.0 with better accuracy than the original
MODIS data. Thus, future studies could use more kinds of cloud-free snow cover data for
reducing the uncertainty related to the selection of snow cover products.
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The accuracy of snow cover area and runoff simulations of all cases is summarized
in Table S2. In general, Case 1 that uses both the new TLR scheme and the reanalysis-
based precipitation gradients showed the best performance in almost all the evaluation
metrics except the R2 of multiyear-average monthly snow cover area. Another limitation
of this study is that the machine learning models, which are also important and efficient
tools for forecasting changes of snow cover and discharge, were not employed here, e.g.,
the long short-term memory (LSTM) model was used to forecast the temporal changes
of snow cover in a mountainous region in the Northwestern Himalayas and achieved
a good performance [39]. Future studies can further evaluate the performance of the TLR
scheme here developed in applications of machine learning methods and compare the
performance of different kinds of models. In addition, the computational complexity is
an important factor that should be considered for constructing models to forecast environ-
mental changes [59,60]. One model run takes about 1.5 minutes to simulate discharge of
the whole period using the J2000 model, and future studies can further improve the com-
putational efficiency of hydrological simulations using the J2000 model. Despite five cases
that were additionally conducted to test the effects of precipitation and the inherent setting
of the new TLR scheme, we acknowledge that there are more uncertainty sources that were
not addressed in this study. However, a complete and comprehensive uncertainty analysis
that considers all the potential factors was impractical for a process-based hydrological
model with various inputs and parameters due to a high computing burden. The new TLR
scheme can be further evaluated in more watersheds with scarce data or by considering
more uncertainty sources in future.

4.3. Implication of the New TLR Scheme for Snow Cover and Runoff Simulations and Comparison
with Existing Studies

Though MODIS LST data have been used to estimate monthly TLR for application
in hydrological simulations, there are obvious differences between those studies and the
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present work [43,61]. Firstly, previous studies were conducted in the Upper Yellow River
Basin (UYRB) with no glaciers. The contribution of snowmelt to total runoff of the UYRB
is less than 25% [6]; however, the contribution of meltwater including snowmelt and
glacier-melt to the total runoff of the Karuxung watershed was > 65% in all the six cases
(Figure 12). The contrasting contributions of meltwater led to different importance of
TLR in runoff simulations. Secondly, the validation methods of snow cover simulations
were different. Previous studies mainly used microwave-based snow depth product with
a coarse resolution (0.25◦) as reference data [43,61], which is not suitable for meso- and
micro-scale watersheds. Due to the high spatial resolution of about 500m, MODIS-based
snow cover data can capture snow cover dynamics of the watershed more accurately and
may thus be taken as more efficient reference data for evaluating snow cover simulations.
For the first time, this study demonstrated that the new TLR scheme based on MODIS LST
improved simulations of snow cover area (Figures 6 and 9). Last but not least, the new TLR
scheme proposed here considers the effects of missing data caused by cloud contamination
and the location of the meteorological station, leading to an increased applicability for
meso- and micro-scale watersheds with scarce observations.
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In addition, due to the relatively small contribution of meltwater to the total runoff
of the UYRB, the improvement in runoff simulation by using remote sensing TLR seems
to be minimal in previous study [43]. In contrast, new implications of the proposed TLR
scheme based on remote sensing for runoff simulations were obtained in this study. This
study indicated that the new TLR scheme significantly improved the runoff simulations in
months with relatively low discharge (i.e., November–May, according to the monthly runoff
shown in Figure S5), compared with the traditional scheme based on station observations.
An important example of evidence is that the LSE of Case 1 is significantly higher than
that of Base Case. The definition of LSE assigns a heavier weight to low runoff values
and is more concerned with the accuracy of simulation of low-runoff months compared
with NSE and R2. The correlation analysis (Figure S6) further supports this finding. The
correlation coefficients of runoff in low-runoff months were 0.56 and 0.54 for the calibration
and validation periods in Case 1, which were significantly higher than those in Base Case
as 0.31 and 0.14, respectively. Another notable improvement in runoff simulations by the
new TLR scheme is that the erroneous winter runoff peak in Base Case disappeared in
Case 1 (see Figure S1). Though low-runoff months seem to be less important than summer
months in terms of the magnitude of discharge, the meltwater in low-runoff months could
be important for agricultural production in the downstream regions, e.g., Qin [62] found
that spring snowmelts are crucial for meeting the water demands of wheat growth in
middle-high latitude regions of the Northern Hemisphere. In this case, if the snow that
accumulates in winter melts earlier than the reality (e.g., resulting in erroneous simulations
of winter discharge peak as in Base Case), the meltwater in spring could be underestimated,
which could further impact analysis related to agricultural water management.

5. Conclusions

This study developed a new parameterization scheme of temperature lapse rate
(TLR) for the hydrological simulation of the glacierized Karuxung River Basin based on
MODIS LST. For the first time, a remote-sensing-based TLR scheme that is basin-oriented
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in consideration of the location of meteorological stations and the missing data caused
by cloud contamination was proposed and tested in a typical glacierized watershed. The
evaluation results indicated that in the Karuxung watershed, the TLRs estimated from the
new scheme have a more reasonable seasonal pattern than the traditional scheme that relied
on a limited number of meteorological stations. The new TLR scheme was demonstrated
to improve simulations of the monthly snow cover area and the discharge of low-runoff
months, possibly due to its clearly larger spatial representativeness of temperature changes
across the Karuxung watershed.

This study implies that when estimating TLR in an alpine basin with scarce obser-
vations, the traditional scheme based on a limited number of stations may be unreliable
and could result in large errors of snow cover and runoff simulations. In this case, the
TLR scheme based on remote sensing LST could be a better alternative. Furthermore, this
study indicates that when interpolating air temperatures using the remote sensing TLR,
the location of the meteorological station needs to be considered. Future efforts should be
made to further reduce the adverse effects of high cloud cover on remote sensing TLR and
consider the potentially important effects of land cover types and precipitation inputs [63].
Considering that the machine learning models are also important tools for forecasting snow
cover and discharge changes, the performance of the new TLR scheme should be further
evaluated in applications using machine learning models in future. The new TLR scheme
proposed here is not limited to the Karuxung River Basin and can be easily applied to other
alpine watersheds globally.
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(Base Case) and the new TLR scheme (Case 1) for the periods of validation; Figure S2: Comparison of
monthly snow cover area (SCA) simulations between Base Case and Case 6; Figure S3: Comparison of
daily runoff simulation results between Base Case and Case 6; Figure S4: Comparison of monthly snow
cover area (SCA) simulations between Base Case and Case 1 without consideration of July and August;
Figure S5: Multiyear-average monthly total runoff; Figure S6: Comparison of correlation analysis of
daily simulation runoff and observation runoff (November–May) results from the J2000 model using
the traditional TLR scheme (a and b) and the new TLR scheme (c and d) for the periods of calibration
(a and c) and validation (b and d).
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