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Abstract: The lack of labeled samples severely restricts the classification performance of deep learning
on hyperspectral image classification. To solve this problem, Generative Adversarial Networks (GAN)
are usually used for data augmentation. However, GAN have several problems with this task, such
as the poor quality of the generated samples and an unstable training process. Thereby, knowing
how to construct a GAN to generate high-quality hyperspectral training samples is meaningful for
the small-sample classification task of hyperspectral data. In this paper, an Auxiliary Classifier based
Wasserstein GAN with Gradient Penalty (AC-WGAN-GP) was proposed. The framework includes
AC-WGAN-GP, an online generation mechanism, and a sample selection algorithm. The proposed
method has the following distinctive advantages. First, the input of the generator is guided by prior
knowledge and a separate classifier is introduced to the architecture of AC-WGAN-GP to produce
reliable labels. Second, an online generation mechanism ensures the diversity of generated samples.
Third, generated samples that are similar to real data are selected. Experiments on three public
hyperspectral datasets show that the generated samples follow the same distribution as the real
samples and have enough diversity, which effectively expands the training set. Compared to other
competitive methods, the proposed framework achieved better classification accuracy with a small
number of labeled samples.

Keywords: auxiliary conditions; generative adversarial network; small-sample learning; hyperspec-
tral image

1. Introduction

Hyperspectral imaging sensors can capture more spectral data than just visible light.
The data takes the form of continuous spectral features and can be used for the accurate
identification of a variety of surface materials on planet earth [1]. With the development
of hyperspectral sensors, the spatial and spectral resolution of the collected hyperspectral
images (HSI) are increasing higher and higher [2]. Therefore, hyperspectral remote sensing
finds important applications in many fields [3,4], including mining [5], astronomy [6],
agriculture [7], environmental science [8,9], wasteland fire tracking, and biological threat
detection [10]. HSI classification technology is an important content of hyperspectral remote
sensing of earth observation technology. Its specific task is the classification of the objects
represented by each pixel in HSL

Early HSI classification mostly used traditional machine learning and statistical meth-
ods, such as K Nearest Neighbor (KNN) [11], support vector machine (SVM) [12], distance
classifier [13], and naive Bayes classifier [14]. These methods rely on manually designed
features. However, the characteristics of hyperspectral images such as high dimensionality
and much spatial information make it difficult for a single traditional classification model
to achieve good results. Some methods of dimension reduction are used, such as principal
component analysis (PCA) [15], linear discriminant analysis [16], and band selection meth-
ods [17]. A space-spectral fusion method based on conditional random fields is proposed
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in [18]. In another method, the original spectral features and extracted spatial features
through the Gabor filter bank form a space-spectral fusion feature [19]. The above methods
use original hyperspectral samples for training. Those conventional models require a
lot of prior knowledge and expert experience. Although manual features based on prior
knowledge show good performance for some datasets, they are not related to the data and
task themselves. So, their generalization ability is limited [20].

Recently, classifiers based on deep learning are widely used in HSI classification. Deep
learning can extract deep features automatically, which is more convenient and effective.
For example, the stack autoencoder network (SAE) [21] and the convolutional neural
network (CNN) [22] are used to extract spectral and spatial features. 1D-CNN only focuses
on hyperspectral vectors, but good classification accuracy has been obtained [23]. 3D-CNN
performs convolution operations on three-dimensional HSI patch samples, considering
both the spatial and spectral dimensions [24]. Pu et al. proposed a spatial and spectral
convolutional neural network to extract spatial-spectral features [25]. Ding et al. combined
spectral information and spatial coordinates to generate probability maps to fuse spectral
and spatial information [26]. Very recently, transformer shows great potential in the field of
computer vision [27]. L. Sun, G. Zhao, Y. Zheng, and Z. Wu used CNN to obtain HSI feature
maps, then the serialized feature map is fed into the transformer module [28]. The deep
features are extracted adaptively according to different training sets. Thus, classifiers based
on deep features are generally better than conventional ones [20]. However, they always
require a great number of labeled samples to optimize the parameters, labelling samples
are expensive in the field of hyperspectral image processing. Thus, most hyperspectral
classification is performed with small sample sizes.

Hyperspectral image classification with small sample sizes involves semi-supervised
learning, self-supervised learning, and sample augmentation methods. Both semi-supervised
learning and self-supervised learning try to mine information from abundant unlabelled
samples. DAE-GCN [29] propose a deep autoencoder model to extract relevant features
from the HSI and constructs a spectral-spatial graph to train a semi-supervised graph
convolutional network. L. Zhao, W. Luo, Q. Liao, S. Chen, and J [30] introduced a module
to generate HSI sample pairs and used the available samples for training a self-supervised
learning model based on a Siamese network. Then labeled samples are used to fine-tune the
model. Li T. et al. [31] proposed a dual-branch residual neural network. A self-supervised
learning pre-training method with the idea of recovering intermediate unlabelled pixel
information through artificially divided image cube samples is designed. Then pre-trained
weights and a few labeled samples are used for the training classifier. However, the semi-
supervised and self-supervised learning methods are based on existing enough unlabeled
samples. In fact, for some hyperspectral classifiers, unlabeled samples are also insufficient.
So, in order to increase the number of samples, many data augmentation methods are
proposed. Early sample augmentation methods [32] generate new samples by rotating,
adding noise, and linearly combining existing original samples, assuming that these newly
generated samples and original samples share the same label. Wang C. et al. established a
data mixture model to augment the labeled training set quadratically [33]. The paradigm of
conventional data augmentation methods is relatively fixed. And it cannot guarantee that
the generated samples conform to the correct distribution and provide useful information.

Nowadays, many scholars use generative adversarial networks to learn the implicit
distribution function of the base samples, and then produce new samples with the same
distribution by random sampling. Traditional GAN networks [34] only generate samples
of the same class, but cannot generate samples of multiple classes, resulting in that the
generated samples cannot improve the classification accuracy effectively. To generate
labeled samples, Odena et al. proposed the Auxiliary Classifier GAN (AC-GAN) [35]. As
an approach to solving the multi-classification problem, its discriminator is used to output
corresponding label probabilities, and each generated sample has a corresponding class
label. In practice, both the truthfulness of the data and the likelihood of correct classification
are taken into account by the objective function of the discriminator. The classification
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branch is added to alleviate the HSI classification problem using limited training samples.
Based on these ideas, Y. Zhan et al. designed a GAN network with a one-dimensional
spectral structure [36], trained a one-dimensional GAN network with unlabeled samples,
and then converted the trained discriminator into a classification network. Chen et al.
designed a 1D and 3D GAN network for HSI classification, combining the generated
samples with the real training samples into a new class [37], which was fine-tuned in
the discriminator to improve the final classification performance. Multiscale conditional
adversarial networks [38] use multiple scales and stages to achieve a coarse-to-fine fashion.
This method can achieve high-quality data augmentation with a small number of training
samples. ]J. Feng et al. combined a self-supervised classifier and GAN [39]. The pretext
cluster task was designed by leveraging abundant unlabeled samples, then transferring
the learned cluster representation from the cluster task. HyperViTGAN [40] is proposed
to deal with the class imbalance problem of HSI data. It also involves an external semi-
supervised classifier to share the task of the discriminator in GAN. In response to gradient
disappearance and mode collapse, Liang et al. proposed an average minimization loss
constrained by unlabeled data for HSI [41]. Gulrajani et al. introduced WGAN-GP into the
network to make training smoother and more efficient [42]. We find that when GAN is
used to generate hyperspectral data, inputs are often noise or noise-label, lacking guidance
and constraint from prior knowledge. It leads to unstable and low-quality generated results
on multi-category tasks. Besides, although the generator may fit the distribution of real
data well, the network that has been trained with fixed parameters cannot generate data
that satisfies the diversity under the same distribution. Additionally, some of the generated
samples may be far from the real samples and not all the generated samples are helpful to
the hyperspectral image classification.

In this article, we propose a new generative network named AC-WGAN-GP based on
AC-GAN and WGAN-GP. The proposed framework utilizes guidance from prior knowl-
edge and improves label reliability by a separate classifier. The online generation mech-
anism improves the diversity of generated sample sets. A selection algorithm based on
KNN is presented to choose more reliable samples for training. The proposed framework
can offer high-quality labeled samples with diversity and veracity to expand the training
set. The contributions of this work can be summarized as follows.

1.  We construct a new generative network named AC-WGAN-GP to generate labeled
samples of different classes. We also design the new input of the generator including
PCA features and category information are used to guide the process of generating ad
noise to maintain the diversity of samples. Considering the task of generating multi-
category labeled samples, we add a separate classifier to strengthen the difference
between samples of different categories.

2. The online generation mechanism is studied profoundly. Instead of generating sam-
ples after the network has converged, the online generation mechanism makes AC-
WGAN-GP periodically keep the generated samples during the training process,
thereby significantly improving the diversity of the generated sample set.

3.  Alightweight sample selection method is designed to efficiently select samples that
are similar to real ones from the generated sample set. The function of the proposed
algorithm also includes smoothing the label to reduce the error of using cross-entropy
loss. Finally, the augmented training set is constructed by the generated samples and
original real samples.

We organize the rest of this article as follows. Section 2 is used to review a series of
GAN. The detailed introduction of the proposed method is presented in Section 3. Section 4
evaluates the proposed method and comparison with competing methods in this paper,
Finally, Section 5 concludes the paper.

2. Related Work

In this section, we have a review of GAN, WGAN, and WGAN-GP and analyze their
advantages and disadvantages.
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2.1. GAN

The core idea of GAN originates from the celebrated Nash equilibrium of game theory.
In GAN, the two players are set as one generator and one discriminator. While the generator
strives to learn the distribution of real data, the discriminator aims to correctly determine
whether the input data comes from real data or from the generated fake data. Each of
these two players seeks to win the competitive game by constantly optimizing itself and
improving its generation or discrimination ability. This is a learning optimization process
and the goal is to attain Nash equilibrium between the two competing players.

For generator G, the random noise variable z (characterized by the distribution p(z))
serves as input. The sample generated by G conforming as far as possible to the distri-
bution p(x) of real data is characterized by G(z). Meanwhile, the input sample to the
discriminator D is labeled 1 if it is a real sample x, and it is labeled 0 if it is generated by
G(z). We reiterate that D aims to achieve the discrimination of the data sources, while G
seeks to ensure consistency between the performance D(G(z)) of the sample G(z) on D
and the performance D(x) of the real data x on D. The generator and discriminator are
competing with each other and the iterative optimization process leads to a continuous
improvement of the performance for each of them. Finally, the game approaches a state
that the discrimination ability cannot be further improved. At this state the generator G
might be safely assumed that it attains its goal of learning the distribution of the real data.
From the above process, the task undertaken by the GAN is to address a minimax problem.
The objective function of the GAN can be described as the minmax formulation:

mén mSXV(QD/GG) = Ex~p(x) [log D(x)] + Ez~p(z) [log(l - D(G(Z)))] 1

where E is the mathematical expectation, x ~ p(x) is the random variables that fit the
probability distribution of real samples, z ~ p(z) is the random variables that fit the
probability distribution of generated samples, 0p, 0 are two parts of loss function from
generator and discriminator. The GAN is trained via an alternating optimization method.
We start training by fixing the generator G and optimizing the discriminator D. Then, we
alternate by fixing the discriminator D and optimizing the generator G. The global optimal
solution is reached when and only when p(g) = p(x). The parameters of D are generally
updated k times while those of G are updated only once when training.

2.2. WGAN and WGAN-GP

However, the problems undermining the utility of the traditional GAN include train-
ing difficulties, incapability of the optimization function of the generator, and the lack of
diversity of the generated samples. Moreover, the GAN suffers the shortcoming of gradient
disappearance when training is based on gradient descent. The Jensen-Shannao diver-
gence measures the overlap between two distributions. The shortcoming arises when the
common part between the real and generated sample distributions is diminished, and the
Jensen—-Shannon divergence of the objective function used by conventional GAN becomes
a constant, thereby producing a discontinuity of the optimization objective. With an eye
on handling the deficiency of a disappearing training gradient, Arjovsky et al. were the
first to introduce the Wasserstein GAN (WGAN) [43] model, together with the associated
concept of the Wasserstein distance proposed by Rubner, Y., Tomasi, C. and Guibas, L.J. [44]
A mathematical transformation is used to convert the Wasserstein distance into a solvable
form, and this distance can be approximated through adding a parameter’s numerically lim-
ited in discriminator network. Subject to the approximate optimal discriminator obtained,
optimizing the generator to decrease the Wasserstein distance can effectively shorten the
distance between the generated distribution p(g) and the distribution p(x) of real data.
Mathematically, the objective function of WGAN is given by:

min maxEyp(x) [D ()] + Exzpg) D (¥)] @)
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where X is a random variable that fit the distribution of generated samples. Here D is the
set of 1-Lipschitz functions, which needs to satisfy Lipchitz continuity so as to use the
Wasserstein distance. Lipschitz continuity is a restriction on continuous functions, which
requires that the derivative of the functions must be less than a constant K.

To satisfy this condition, I. Gulrajani [42] et al. limits the weight of D to a range, thereby
introducing WGAN-GP as an improved version of WGAN. A new Lipchitz continuous
restriction technique named gradient punishment is proposed to handle both problems
of gradient disappearance and gradient explosion. Instead of directly constraining the
value of the gradient, the authors added a regularization term. Detailed formulas and
explanations are shown in the next section.

3. The Proposed Method

Figure 1 shows the overall framework for the HSI classification with a small sample
size based on the AC-WGAN-GP, which is composed of four parts: the preprocessing
based on Gaussian smoothing, the AC-WGAN-GP network, online sample generation, and
sample selection algorithm based on KNN.
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Figure 1. The framework of the proposed method for HSIs classification.

3.1. Smoothing-Based Preprocessing

The spectral vectors of neighboring pixels are assumed to be related because they are
likely to be part of an image of a semantically homogeneous component.

This paper uses gaussian filter to exploit the neighboring information because gaussian
filter has rotation invariance. Gaussian kernel has fixed parameters. Therefore, each pixel
will perform a weighted calculation with the neighboring pixels through the Gaussian
kernel. Gaussian filter weighted the sum of the pixels according to the spatial distance
between the neighboring pixels and the central pixels to obtain smoothed HSI patches. As
the data complexity increases, the structure of networks used for learning also needs to be
designed to be more complex. The smoothed HSI patches contain some spatial information
while discarding harmful information. We think that the generator and discriminator can
be designed with a simpler structure because of the smoothed input patches. The Gaussian
smoothing process can be considered a spatial feature extraction.

After the normalization of the original hyperspectral image, a patch is taken as the
input of gaussian filtering for each pixel x,;;, which can be expressed as x,;; € RM*NxH
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(where M is the width, N is the height, and H is the number of bands), and the smoothed
image is:
gomooth _ ¥ X xijexp(— || '(ifj) — (m,n) ||>/20?)
YiXjexp(— || (i,j) = (m,n) [[2/202)

where x;; is the pixel in x € RMxNxH (i i) is the spatial coordinate of the pixel, (m,1)
is the spatial coordinate of the central pixel x;,,. In practice, we restrict the sums to a
distance of 3¢ from (i, ), since pixels far from that have a negligible contribution. 3¢
is the window size and ¢ is adjusted when experimenting and selected from collection
[1,1.67,2.33,3,3.67,4.33, 5].

®)

3.2. AC-WGAN-GP

In the proposed method, the AC-WGAN-GP is constructed based on part of the
theories of AC-GAN and WGAN-GP. We design an input of the generator so that the
generator can be guided from the manual feature and different labels. So, the difficulty of
generating high quality samples in different categories decreases. We also design a new
structure by adding an auxiliary classifier to form a separate classifier C. Accordingly,
the new optimization function is also designed. Thereby, the output fake labels and the
generated samples are in parallel. Finally, fake labels and fake samples can be generated
simultaneously from a limited number of real training samples thus expanding the training
set. The architecture of AC-WGAN-GP is shown in Figure 2.

| 30 principal components l

Real data
i Single pixel
One-hot label 30 PC vectors
=

X _PC

| |
l Fake data .
Single pixel
U
G I —

Figure 2. The architecture of the proposed AC-WGAN-GP.

A network used to generate multi-category samples in different distribution is difficult.
Besides adding label information to the input of generator, we believe that the manual
features also can be used as prior information. So, the input of generator G introduces
the principal components of real sample pixel X,,, as additional constraints to guide
G. The vector of noise extends a number of dimensions to accommodate the principal
components extracted from X,,,; and one-hot labels. With the above input, the generator
can be guided to generate high-quality samples in a targeted manner. Furtherly, we employ
the Principal component analysis (PCA) to reduce the dimensionality of the HSIs. Indian
pines dataset has 200 spectral bands, Salinas dataset has 224 spectral bands, and KSC
dataset has 176 spectral bands. We select the first 30 principal components (PC), expressed
as Xpc. So, the input of generator G includes three parts: Gaussian noise variable z; one-hot
coded class information ¢; and 30-dimensional PC xp¢ of single pixel. On the basis of
traditional Gaussian noise, prior knowledge of various labels and samples are added. The
generated sample can be expressed as X = G (z,¢,xpc).

In our AC-WGAN-GP, an independent classifier C is used to output fake one-hot labels
independently. Refs. [39,40] show the methods of combining an independent classifier
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with GAN. The task of the generator in AC-WGAN-GP is generating samples of different
categories, which is difficult to control. So, we have to add the category-correct constraints
to the objective function. To reinforce the function of generating samples from different
categories, we separate a classifier C that uses part of the loss function of the generator.
Besides, it is difficult for the discriminator to discriminate between the real and fake samples
while outputting the category of the generated samples. The function of C includes two
points. Firstly, C is responsible for generating the labels of fake samples efficiently. Secondly,
when optimizing AC-WGAN-GP, the loss function of C could ensure the generated samples
belong to the corresponding input category information, thereby increasing the gap between
samples of different categories. A classifier based on CNN is suitable. The input of the
classifier C is the same as the input of the discriminator. The classifier is trained by real
samples and their labels and then predicts the labels of fake samples. The cross-entropy
loss of C is formally unified with the loss functions of the generator and discriminator.
Therefore, we consider AC-WGAN-GP as a whole network during training.

The input of discriminator D is composed of the real single pixel X,.,;, the generated
fake sample X, labeled as ¢, and the output of D is a probability distribution P(S|X).
The function of the discriminator is to judge the real or fake samples. The purpose of
designing D and C is that each part of the AC-WGAN-GP is assigned a specific task.

In the above framework, referring to Deep Convolution Generative Adversarial Net-
work (DCGAN) [45], G adopts the form of a fractionally-stride convolutional neural net-
work, while D and C adopt the form of a standard CNN. The Batch norm layer is used
in generator G and discriminator D to normalize features, which improves the training
speed and makes the training more stable. The Leak-ReLU activation function, not the
ReLU one, is used in the discriminator to prevent gradient sparsity, and no activation
function is used at the last layer of the discriminator. The ReLU activation function is
employed in the generator, while the tanh activation function is utilized solely in the output
layer. Classifier C consists of a convolutional layer and a full-connection one, and finally
connects a Softmax activation function to output the probability of classification. In the
training process, according to the idea of fixing one part to train another part, G, D and
C fix the parameters of two networks, optimize the remaining network parameters, and
iterate alternately in this way to complete the whole training process. The specific network
parameter design is shown in Section 4. The input to the generator is our designed vector,
a noise-label-principal component vector. We can select the output of the generator to the
parts we need, such as fake labels or fake pixel vectors.

After designing the architecture of the AC-WGAN-GP, we propose a suitable optimiza-
tion function. The multi-classification problem can be realized by the Auxiliary Classifier
GAN (AC-GAN), which was introduced by Odena et al. [35]. We treat its loss function as a
prototype. The objective function contains the likelihood of data source Lg and the likeli-
hood of category L. Updating the parameters of D is achieved by maximizing Ls + L,
while updating the parameters of G is attained by maximizing Lc — Lg.

Ls = E[IOgP(S = rea”Xreal)] + E[IOgP(S = fakeleuke)] (4)
L. = E[IOgP(C = C|Xreal)] + E[logP(C = C|Xfake)] &)

The structure of Ls, L. is similar and both use cross entropy loss. The two parts of L
are responsible for judging the real samples and fake samples respectively. S represents
the judgement result of the discriminator. Discrimination can also be viewed as a binary
classification problem. And the two parts of L. classify real and fake samples. C defines as
labels the classifier output, and ¢ represents the ground truth labels.

Based on above equations, the discriminator optimizes Lp in the training process is
obtained. We define £ as sampling uniformly along straight lines between pairs of points
sampled from the data distribution p(x) and the generator distribution p(g) in sample
space. £ ~ p(%) represents the random variable that fits the distribution of p(%). ¥ is the
random variable that fits the distribution of fake samples G (z, c, xpc). V is the gradient.
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The first and second part is responsible for judging whether the sample is real or fake. The
third part is the gradient penalty. Lp is showed in the following formula:

Lp = Ezp(g) [D(¥)] = Eyop(a) [D(x)] + AEg ) [([| VeD(£) [l2 —1)?] ©)

As a regular choice and part of the objective function of the generator, the class cross
entropy loss is the objective functions of the classifier. As shown in the following formula:

LC - _Epr(x) [logp(c = C|Xreul)] (7)

where C is defined as the labels of the network forward output, and c is the ground truth
labels of training samples.

The objective function of the generator consists of two parts. One part comes from
discriminator D, which ensures that the discriminator does not recognize the sample
produced by the generator. The other part comes from classifier C, which ensures that
the samples generated by the generator belong to the corresponding class c to the greatest
extent. The second part reinforces the connection between category information and
generated samples. Therefore, the sum of these two parts constitutes the objective function
for the generator G is defined as:

Lg = ~Ez () [D(®)] — Ellog p(C = ¢[ Xy, ®

3.3. Online Sample Generation

Generally, after GAN is trained, the parameters of each network are fixed, then the
required input data generator is sent to the generator to generate false samples. Although
the trained network can fit the distribution of training samples of different classes and
input gaussian noise Z is also random, the parameters and other inputs of GAN are fixed,
so the diversity of fake data generated by AC-WGAN-GP is poor. Therefore, we find it is
appropriate to design a GAN-friendly mechanism named online sample generation.

Firstly, AC-WGAN-GP is trained by the above training methods described in Section 3.2,
and then we observe the loss value of the network. After the network reaches a certain
section of convergence, the online generation strategy starts. Although the network is not
well-trained, and the loss curve is still trending downward, we can start to gather some
of the faked samples and labels at one certain epoch. Then AC-WGAN-GP will continue
to train to optimize network parameters. After a certain number of training epochs, AC-
WGAN-GP will generate samples online again. Finally, the samples generated online in
each time are collected. In order to ensure the diversity of samples and the balance between
different classes, we can keep the abundant online generated samples which might include
all categories of hyperspectral samples if the computer memory allows. In this way, we
can also alleviate the pressure to tune the variables of the online generation mechanism.
As shown in Figure 3, online sample generation can take advantage of plenty of models
to generate samples with higher diversity. And the abundant generated fake samples and
labels will be filtrated in the next part.
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Figure 3. The proposed online sample generation model.

3.4. Sample Selection Algorithm Based on KNN

The online sample generation guarantees the diversity of generated samples, but
due to GAN’s unique properties, it is not guaranteed that all generated samples have

good quality and be similar to real samples. Therefore, for the samples (X fakes C fake)

generated by GAN, an extra selection method is needed to select samples that are close to
real samples thus can promote classification accuracy. The algorithm includes two steps:
samples selection and label smoothing.

To ensure the total number of parameters and operation time of the entire framework
are appropriate, a brief and effective method is demanded. Firstly, the total set of original
real data is divided into a training set (Xj;i, Cirain) and a temporary set X;. We use the
clustering algorithm to divide the temporary set into N clusters. And then the central
samples of each cluster and a part of the temporary set samples around central samples X]
(X} € X¢) are randomly taken to form a mini set. The clustering algorithm we employ are
K-MEANS clustering algorithm, DBSCAN clustering algorithm, EM algorithm, and Mean
shift clustering algorithm. For each algorithm, we repeat the above operations, and finally
take the union of the mini sets to form Xj;. In the generated sample set, KNN is used to
select the closest sample to each test sample x;, (x;; € X;,). Finally, the selected generated
samples constitute the ultimate generated sample set. The generated fake samples selected
by this algorithm can be representative and similar with the real samples.

The samples in (X} ke Cj’( & e) originate from the overall generated distribution. Each

sample is characterized by its own label, but, nevertheless, it might mix information from
other classes. In deep learning, when calculating cross-entropy with one-hot coded labels,
only the loss of the correct class (the class with the label coded as 1) is considered, but the
loss of the wrong class (the class with the label coded as 0) is not considered. It may lead
to overfitting, gradient explosion or gradient disappearance [46]. In order to distinguish
the labels of generated samples and labels of real samples and reduce the negative impact
of labelling errors when training, we use label smoothing regularization (LSR) [47] to
consider the distribution of wrong classes. We conduct the LSR processing on the labels of
fake samples set. C} ke Tepresents the generated one-hot label, ¢ € [0, 1], K represents the
number of classes. The smoothing process is shown as:

1" s
Cfake = C}ake(l - 8) + K 9)

After the above operations, smooth labels improve the generalization ability of
the network.



Remote Sens. 2022, 14, 4910

10 of 27

After implementing the algorithm, we obtain the final fake hyperspectral samples
and their corresponding labels to augment limited training datasets. At the same time,
the quality and diversity of the generated samples are also guaranteed to a certain extent.
Algorithm 1 summarizes selection of generated samples and label smoothing.

Algorithm 1. Samples selection and label smoothing

Input: Generated sample set G, dataset D, the number of categories N, clustering algorithm list L
(K-MEANS, DBSCAN, EM and Mean shift), the hyperparameter represents the volume of random
set M, the hyperparameter for KNN k

Output: selected samples and smoothing labels <XJQ ke C}uke‘)

Stepl: Randomly divided D into training set A and temporary set B
Union the clustering set:
Fori=20,---,3,do
setB; = Lli](B)
Set central C = ©; € B;,len(®;) = N
Set random R = ®; € B;,len(®;) = M
Step3: Uniontheset: B = 01U @ U O3U O4U @1 U O U O3U Dy, len(B') =n,
Onthe G = {(x1,¢1), -, (x5,¢4) },
G' = KNN(B', G, k)
For ¢’ in G, do
¢’ = LSR(¢")
Step5:  Output G’ = {(x1,¢1), -+, (xp,cp’) },

Step2:

Step4:

4. Experiments and Result Analysis

In this experiment, firstly we introduce basic information such as datasets, training
samples, and evaluation metrics. Then detailed experimental settings are given. The third
section analyzes the quality of pixels generated using proposed method. In next section, we
study the effect of real and generated pixel ratios on the classification results and perform
the ablation experiments of the final sample selection module. Finally, we compare AC-
GAN-GP and CNN classifier with classifiers based on traditional methods, convolution and
GAN, demonstrating the effectiveness of our proposed method on task of hyperspectral
classification with small samples. We implemented AC-WGAN-GP with the tensorflow
framework on a PC server with two NVIDIA GTX1080TI GPU and 22 GB memory. The
average time for training AC-WGAN-GP, generating and classifying is 210 min and 15s.

4.1. Hyperspectral Datasets

In this experiment, three popular datasets of hyperspectral images are used as experi-
mental data named the Indian Pines dataset, the Salinas dataset, and the Kennedy Space
Centre (KSC) dataset.

Indian Pines: The dataset of the Indian Pines comprises a hyperspectral image of
agricultural and forest areas in India, which is collected by remote sensing equipment
utilizing an airborne visible/infrared imaging spectrometer (AVIRIS). Note that the image
in the dataset comprises 145 x 145 pixels, and its spatial resolution is 20 m/pixel. The
Indian Pines dataset consists of 220 spectral bands, 20 of which severely water-absorbing
bands are removed, and we conduct experiments on the remaining 200 spectral bands.
For this dataset, we consider 16 classes to be of interest, excluding background pixels.
Figure 4a shows the three-band false color image and the ground reference map of the
Indian Pines image.
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(b) ()

Figure 4. Ground truths (first row) and False-color composites (second row) of experimental HSI

datasets. Each color represents one kind of object. (a) Indian Pines; (b) Salinas; (c) KSC.

Salinas: Salinas data was also taken by the aforementioned AVIRIS imaging spec-
trometer, and it is an image of the Salinas valley, a prominent valley notable for being a
highly productive region in California, the United States of America (USA) The image
is with a spatial resolution of 3.7 m, and it originally had 224 bands, out of which we
used only 204 bands for classification. We exclude 20 bands that could not be reflected
by water, namely the 108th—112th, 154th-167th bands and the 224th band. The image is
characterized by a size of 512 x 217 pixels, which are divided into 16 classes. Figure 4b
shows the three-band false color image and ground reference map of the Salinas image.

KSC: The NASA’s AVIRIS equipment collected data over the Kennedy Space Centre
(KSC) in the south-eastern state of Florida, United States of America almost a quarter of a
century ago. This spectroradiometer equipment obtained 224 bands each characterized by
a width of 10 nm and having a median wavelength ranging from 400 nm to 2500 nm. The
image consists of 512 x 217 pixels and possesses a spatial resolution of 18 m/pixel. Only
176 bands are used for further analysis after all water absorbing bands and low SNR bands
are eliminated. For classification purposes, we define 13 classes, which represent a variety
of land cover types in the pertinent environment for the given site. Figure 4c shows the
three-band false color image and the ground reference map of the KSC image.
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For each of these three datasets, we divide the initial dataset into two subsets named a
training set and a testing one. The training set is composed of 200 samples, and is extracted
by random sampling. In other words, the proportion of training samples on the three
datasets are 2.0%, 1.0%, 3.8%, which satisfies the requirement of few-shot experiments. The
remaining samples are taken as the testing set. Tables 1-3 show the legend of each category.
Tables 4-6 present the number of training samples selected from each dataset and the total
number of samples.

Table 1. Land cover types and total number of samples in the Indian Pines dataset.

No. Color Name Number No. Color Name Number

1 B Alfalfa 46 9 [ Oats 20

2 = Corn-notill 1428 10 [ | Soybean-notill 972
3 [ | Corn-mintill 830 11 [ | Soybean-mintill 2455
4 ] Corn 237 12 [ | Soybean-clean 593
5 m Grass-pasture 483 13 [ Wheat 205
6 [ Grass-trees 730 14 [ Woods 1265
7 e Grass-pasture-mowed 28 15 [ Buildings-Grass-Trees 386
8 [ Hay-windrowed 478 16 (| Stone- Steel-Towers 93

Total Numbers 10,249

Table 2. Land cover types and total number of samples in the Salinas dataset.

No. Color Name Number No. Color Name Number

1 [ | Brocoli_green_weeds_1 2009 9 [ | Soil_vinyard_develop 6203
2 /= Brocoli_green_weeds_2 3726 10 [ | Corn_senesced_green_weeds 3278
3 [ | Fallow 1976 11 [ Lettuce_romaine_4wk 1068
4 ] Fallow_rough_pow 1394 12 [ | Lettuce_romaine_5wk 1927
5 B Fallow_smooth 2678 13 [ Lettuce_romaine_6wk 916

6 (I Stubble 3959 14 [ Lettuce_romaine_7wk 1070
7 [ | Celery 3579 15 | Vinyard_untrained 7268
8 [ Grapes_untrained 11,271 16 [ Vinyard_vertical_trellis 1807

Total Numbers 54,129

Table 3. Land cover types and total number of samples in the KSC dataset.

No. Color Name Number No. Color Name Number
1 [ Scrub 761 8 = Graminoid marsh 431

2 = Willow swamp 243 9 [ | Spartina marsh 520

3 [ | CP hammock 256 10 [ Cattail marsh 404

4 ] Slash pine 252 11 = Salt marsh 419

5 - Oak/Broadleaf 161 12 [ | Mud flats 503

6 1 Hardwood 229 13 [ | Water 927

7 [ Swamp 105

Total Numbers 5211
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Table 4. Land cover classes, number of training samples and total samples in Indian Pines.

Classes Name Train Numbers All Numbers
Alfalfa 3 46
Corn-notill 29 1428
Corn-min 17 830
Corn 5 237
Grass-pasture 10 483
Grass-trees 15 730
Grass-pasture mowed 3 28
Hay-windrowed 10 478
Oats 3 20
Soybean-notill 19 972
Soybean-mintill 49 2455
Soybean-clean 12 593
Wheat 4 205
Woods 25 1265
Buildings-Grass-Trees 8 386
Stone-Steel-Towers 3 93
Total 215 10,249

Table 5. Land cover classes, number of training samples and total samples in Salinas.

Classes Name Train Numbers All Numbers
Brocoli_green_weeds_1 20 2009
Brocoli_green_weeds_2 37 3726

Fallow 20 1976
Fallow_rough_plow 14 1394
Fallow_smooth 27 2678
Stubble 40 3959
Celery 36 3579
Grapes_untrained 113 11,271
Soil_vinyard_develop 62 6203
Corn_senesced_green_weeds 33 3278
Lettuce_romaine_4wk 11 1068
Lettuce_romaine_4wk 19 1927
Lettuce_romaine_4wk 9 916
Lettuce_romaine_4wk 11 1070
Vinyard_untrained 73 7268
Vinyard_vertical_trellis 18 1807

Total 543 54,129
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Table 6. Land cover classes, number of training samples, and total samples in KSC.

Classes Name Train Numbers All Numbers
Scrub 29 761
Willow swamp 9 243
CP hammock 10 256
Slash pine 10 252
Oak/Broadleaf 6 161
Hardwood 11 229
Swamp 4 105
Graminoid marsh 16 431
Spartina marsh 20 520
Cattail marsh 15 404
Salt marsh 16 419
Mud flats 19 503
Water 35 927
Total 200 5211

4.2. Experimental Setting

The training/testing sample used in the experiment is a single pixel. Each pixel can be
used as feature to train the AC-WGAN-GP and the CNN classifiers, as it corresponds to a
unique label. The number of classes in the dataset is represented by n. All HSIs data are
normalized between —1 and 1 at the beginning of the experiment. We utilize randomly-
selected training and testing sets to repeat the experiment 10 times, and subsequently report
the average obtained accuracy. For quantitative evaluation of the experimental results, we
utilize the popular metrics of the overall accuracy (OA), the average accuracy (AA) and
the kappa correlation coefficient (x). The definitions of all OA, AA, and Kappa are shown
as follows:

(1) OA: OA assesses the proportion of correctly identified samples to all the samples.

_ Zi; hii
04 = ==, (10)

where N is the total number of labeled samples, h;; represents the number of class i samples

divided into class i, and C is the total number of categories.
(2) AA: AA represents the mean of the percentage of the correctly identified samples.

AA= =Y 1 11
SN a1

where C is the total number of categories, h;; represents the number of samples of category
i divided into category i, and N; represents the number of samples of category i.
(3) Kappa: Kappa coefficient denotes the interrater reliability for categorical variables.

NYS hij— Y5 (hichy)

N2 — Y-F (hiy )

where h;, and h_;, respectively, represent the total number of samples of category i true
category and the number of samples predicted to be category i.

Kappa =

(12)
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The size of the window in Gaussian smoothing kernel is 11 and the sigma for the
Gaussian smoothing kernel is 0.1. The network structure and parameters for generators,
discriminators, and classifiers in AC-WGAN-GP are described in detail in Table 7. In the
table Deconv represents the fractionally-strided convolutional neural network layer, conv
represents the convolutional neural network layer, Fn represents the full connection layer,
BN represents the Batchnorm layer, stride represents the step size of convolution, and
Padding represents the way of filling. The input of generator G is a vector composed of
noise, one-hot label and 30-dimensional principal components. The sample generated by G
is a single pixel with the size of H x 1 x 1. The input of D is (Xf,lke, Cf,lke) and (X,ea1, Crear),
and the output is a scalar, which represents whether the input sample is a real sample or
a false sample. C has the same input as D, and the output is the probability that pixels
belong to each category. The size of the mini-batch is set to 64 for training AC-WGAN-GP
and CNN, the learning rate ranges from 0.1 to 0.0001, and the value of the label smoothing
parameter is 0.1.

Table 7. The architecture of the AC-WGAN-GP.

Net Number Input Size Layer Bn Stride Padding Actlva.tlon Output Size
Function
Fn
1 100+30+classnumber (1/16Hx512) Yes - - ReLU 1/16Hx1x512
Reshape
G Deconvld
2 1/16Hx1x512 (3x1x512x256) Yes 2x1 SAME ReLU 1/8Hx1x256
Deconvld
3 1/8Hx1x256 (3x1x256x128) Yes 2x1 SAME ReLU 1/4Hx1x128
Deconvld
4 1/4Hx1x128 (31128 64) Yes 2x1 SAME ReLU 1/2Hx1x64
Deconvld
5 1/2Hx1x64 (3x1x64x1) No 2x1 SAME Tanh 1/16Hx1x1
Convld
1 Hx1x1 (3x1x1x64) No 2x1 SAME LeakyReLU 1/2Hx1x64
Convld
D 2 1/2Hx1x64 (3x1x64x128) Yes 2x1 SAME LeakyReLU  1/4Hx1x128
Convld
3 1/4Hx1x128 (3x1x128x256) Yes 2x1 SAME LeakyReLU  1/8Hx1x256
Convld
4 1/8Hx1x256 (3x1x256x512) Yes 2x1 SAME LeakyReLU  1/16Hx1x512
Flatten
5 1/16Hx1x512 Fn(32H x1) No - - - 1
Conv
C 2 Hx1x1 (15x1x1x64) No 15x1 SAME Tanh 1/15Hx1x 64
Flatten
3 1/15Hx1x64 n No ; - Softmax c

(64/15HxC’)

4.3. Analysis of Generated Samples

Before using the generated samples for classification, we have to check the distribution
of the generated samples. We check whether the distributions of generated samples and
real samples are consistent. Because the distribution of each class is different, each class has
its own distribution. When generating samples, our method generates labeled samples, so
the generated samples belonging to the same category should possess the same distribution
as that of the real samples. In order to verify whether the generated samples and real
samples of the same class have the same distribution, we extract the principal components
of the generated samples and real samples through PCA first, and then select the two first
principal components. As shown in Figures 5-7, the red triangle represents the generated
sample, the blue point represents the real test sample, and the green point represents
the real training sample. The figure shows that, for most categories, the AC-WGAN-GP
network can generate samples that have a similar distribution to original samples in the
feature space. However, for the classes with too few real training samples, the generated
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Indian pines:Corn-notill

sample distribution and the real sample distribution show some differences. Such as
Grass-pasture-mowed class in the Indian Pines dataset, the number and distribution of
real samples and fake samples are different. In addition, it can be seen from the figure
that AC-WGAN-GP tends to imitate simple distributions better, but sometimes complex
distributions cannot be well fitted. There are two reasons for this difference. One is that too
few training samples are sent to AC-WGAN-GP network, the convergence is not complete;
the other is that the randomly selected training samples are not evenly distributed in the
class, which cannot represent the overall distribution of this class. For these two reasons,
GAN does not perform well in generating a small number of class samples. This is also a
common problem of GAN. Intuitively, the sample distribution generated by AC-WGAN-GP
is correct.
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Figure 5. The distribution of real samples and generated samples in different classes on Indian
Pines dataset. (a) Corn-notill class; (b) Grass-trees class; (c) Grass-pasture class; (d) Grass-pasture-
mowed class.

Figure 6. The distribution of real samples and generated samples in different classes on Sali-
nas dataset. (a) Stubble class; (b) Grapes_untrained class; (c¢) Vinyard_untrained class; (d) Fal-
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Figure 7. The distribution of real samples and generated samples in different classes on KSC dataset.

(a) Spartina marsh class; (b) Willow swamp class; (c) Water class; (d) Hardwood class.
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In the visualization experiment, three classes of generated fake samples and real
samples were selected from the three data sets for visual display, as shown in Figures 8-10.
The solid red line represents the real sample and the dotted black line represents the
generated sample. The figure indicates that the generated sample is very similar to the
real sample of the corresponding class, but not completely consistent, meet the demands
that generated samples need to be consistent with the real sample distribution and have
a certain diversity. The generator can learn the different characteristics of each class and
generate different samples according to the class. We obtain a model that fits multiple class
distributions and fills in the lack of diversity in the sample space using limited samples by
utilizing AC-WGAN-GP.
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Figure 8. The real data and generated fake data with same labels in different classes on Indian Pines
dataset. (a) Alfalfa class; (b) Woods class; (c) Soybean-clean class.
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Figure 9. The real data and generated fake data with same labels in different classes on Salinas
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dataset. (a) Brocoli_green_weeds_1 class; (b) Stubble class; (c) Fallow_rough_plow class.
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Figure 10. The real data and generated fake data with same labels in different classes on KSC dataset.

(a) Scrub class; (b) Spartina marsh class; (c) Water class.
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In addition to analyzing the distribution difference according to the visual results
obtained by the category, the experiments in this subsection also give numerical results on
whether the real samples and the generated samples are consistent in the global distribu-
tion. A 1-Nearest Neighbor classifier (1-NN classifier) is used for evaluating whether the
two distributions are consistent. Given two sets of samples, the real samples are labeled
as positive samples and denoted as S;, and the generated samples are labeled as negative
samples and denoted as Sy. Train 1 nearest neighbor classifier by S; and S¢, and then use
them as test samples to obtain new labels, calculate the classification accuracy of the 1-NN
classifier, and express it as the Transfer(T) accuracy. When the number of samples is very
large, if two distributions are consistent and not completely replicated, the T accuracy of
the 1-NN classifier should be 50%. Because when the generated samples are only the results
of simple replication of real samples, the T accuracy rate is 0%. When the two distributions
do not match at all, the T accuracy rate is 100%. Table 8 calculates the T accuracy of the
three HSIs datasets, and the table also shows the average spectral distance between the
generated samples and the real samples. We select the number of samples shown in the
first row of the table for calculation. The average T accuracies of the three datasets are
57.11%, 69.70% and 63.91%, respectively, which are relatively close to the ideal generative
distribution effect. When the average T accuracy rate is closer to 50% and the average
spectral distance is smaller, the effect of adding the generated samples to the real training
samples for data enhancement is more obvious.

Table 8. 1-NN accuracy (%) and average spectral distance of generated and real samples.

Dataset Indian Pines Salinas KSC

1S,| = ’5 f‘ 10,249 10,852 5211

1-NN accuracy (Real) (%) 58.22 65.03 74.24
1-NN accuracy (Fake) (%) 56.00 62.80 65.16
1-NN accuracy (Average) (%) 57.11 63.91 69.70
Average Spectral Distance 0.5028 0.3421 0.1135

4.4. Generated Sample and Real Sample Mixed Ratio Analysis

The ratio of the real samples and generated samples in training sets may affect the
result of classification. So, we conduct an experiment to investigate the effect of inject-
ing different proportions of fake samples on classification accuracy. We selected several
representative and common mixing proportions 1:0, 4:1, 2:1, 1:1, 1:2, 1:4. Table 9 lists
the experimental results, which indicate that both the Indian pines dataset and the KSC
dataset achieve the best classification accuracy when the ratio between the real samples
and the fake samples is 1:1, and the Salinas dataset achieves the best precision at 2:1. The
accuracy of the three datasets with fake samples is improved compared with that without
fake samples.

This experiment indirectly proves that the distribution of samples generated by AC-
WGAN-GP is correct and makes up for the lack of diversity of small training samples in
the sample space. The method has a positive impact on the classification results. Among
them, Indian Pines and KSC classification accuracy are the best when the ratio of real and
false samples is 1:1, and classification accuracy on Salinas is the best when the ratio of real
and false samples is 2:1. It may indicate that the sample quality generated by the model on
datasets Indian Pines and KSC is slightly better. From Tables 9-13, the bold number in the
tables represents the best result in the comparison.
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Table 9. Effect of different mixing proportions in training sets.
Real:Fake 1:0 4:1 2:1 1:1 1:2 1:4

Dataset Indian Pines
OA (%) 91.28 91.88 92.44 92.51 91.87 92.43
AA (%) 92.15 88.87 88.90 90.59 89.15 90.33

Kappax100 90.88 90.74 91.39 91.46 90.74 91.39
Dataset Salinas
OA (%) 96.06 96.83 96.97 96.86 96.78 96.73
AA (%) 97.43 98.26 98.47 97.93 98.29 97.79

Kappax100 95.61 96.48 96.63 96.50 96.41 96.37
Dataset KSC
OA (%) 97.56 98.71 98.84 98.92 98.86 98.91
AA (%) 95.43 97.38 97.66 97.46 97.69 97.43

Kappax100 97.29 98.57 98.72 98.80 98.74 98.74

4.5. Effectiveness Analysis of Sample Selection Algorithm

We make a comparison of the classification accuracy of KNN selecting fake samples
and randomly selected fake samples to verify the function of our selection algorithm.
Table 10 presents the experimental results and indicates that the accuracy of the KNN
sample selection method on the three datasets is higher than that of random sample
selection method. The OA, AA and KAPPA index using KNN selection on Indian Pines
dataset are respectively higher than the random selection method 0.2%, 1.06%, 0.21%. On
Salinas and KSC datasets, the number is 0.4%, 0.43%, 0.44% and 0.48%, 0.44%, 0.64%. It
shows that the KNN sample selection method is effective and necessary. The selection
algorithm we proposed selects the generated samples that are similar to the real samples
and has a positive effect on classification.

Table 10. Effect of fake sample selection method.

KNN Selection Random Selection
Method : :
Indian Salinas KSC Indian Salinas KSC
Pines Pines
OA (%) 92.51 96.97 98.92 92.31 96.57 98.44
AA (%) 90.59 98.47 97.46 89.53 98.04 97.02
Kappax100 91.46 96.63 98.80 91.25 96.19 98.26

4.6. Classification Result

As a most important way of assessing the performance, we compare it with several
other competing algorithms including SVM, CNN, and GAN on small-size training sets
(See Section 4.2 for specific quantities). Recognizing the well-known advantages of support
vector machines (SVM), this paper introduces some HSIs classifiers based on SVM for com-
parison, namely 3D-RBE-SVM and EMP-SVM [12]. 3D-RBF-SVM input is an image block,
the SVM classifiers are using the radial basis function kernel. As a typical deep learning
model, 1D-CNN [23] and 3D-CNN [24] also have good classification performance, and are
used to compare. Furthermore, 3D-Aug-GAN [37] also uses a GAN network to augment
the training set and improves classification accuracy, which is used for comparison with
our AC-WGAN-GP. Meanwhile, 1D-S-SVM and 1D-5-CNN are also used for comparison.
Where S stands for gaussian smoothing, 1D means that the input is a single pixel, and
the structure of CNN is the same as that of classifier C. These improved classifiers will
verify the effect of smoothing operation and whether AC-WGAN-GP augments the training
set thus improving the accuracy of classification. All of the above methods use the same
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training samples in a small size. Besides, we add a HSI classifiers also using samples with
small size named AML [48] for comparison.

The qualitative evaluation of various methods is shown in Tables 11-13. Table 14
shows the comparison of the recent classifier AML and AC-WGAN-GP. The visual classifi-
cation results are shown in Figures 11-13. Based on the above experimental results, some
observations and discussions can be focused on.

Table 11. The Classification Accuracy of various methods for Indian Pines. Bold values indicate the
best result for a row.

Indian Pines

3D-RBF- 3D-Aug- AC-WGAN-

Method SUM EMP-SVM 1D-CNN 1D-S-SVM CAN 1D-S-CNN 3D-CNN cp

OA (%) 58.01 69.34 67.18 88.31 91.10 91.28 86.47 92.51

AA (%) 50.56 52.63 55.18 81.07 83.76 92.15 70.41 90.59

Kappa x100 52.07 64.51 62.37 86.69 89.95 90.08 84.12 91.46

1 77.35 15.94 8.70 39.13 31.24 84.78 14.70 71.74

2 18.52 39.16 57.14 94.04 82.05 94.01 86.34 94.26

3 54.66 70.75 28.67 71.81 77.19 79.40 89.49 80.12

4 32.30 54.74 25.74 97.05 91.31 96.20 42.00 93.67

5 9.73 68.37 76.60 82.19 88.51 84.68 85.91 85.71

6 85.53 96.21 91.37 97.67 93.51 98.36 92.75 98.90

7 10.27 100.00 7.14 75.00 41.76 100.00 12.00 100.00

8 78.50 85.00 98.33 94.14 98.32 99.37 100.00 100.00

9 12.32 15.78 5.00 45.00 21.96 100.00 10.00 90.00

10 62.28 75.92 64.30 85.18 75.17 85.08 78.72 90.12

11 66.86 81.23 72.50 88.31 91.37 90.26 95.52 92.83

12 28.25 31.85 56.66 86.34 86.45 90.73 89.47 92.75

13 99.18 98.23 93.67 79.02 52.20 98.05 80.00 99.02

14 85.98 90.85 90.51 97.07 94.64 99.76 84.55 99.92

15 13.82 94.28 26.94 75.91 95.26 76.42 69.54 79.79

16 87.78 95.24 79.57 89.25 89.38 96.77 89.34 80.64

Table 12. The Classification Accuracy of various methods for Salinas. Bold values indicate the best
result for a row.

Salinas
3D-RBF- 3D-Aug- AC-WGAN-

Method SVM EMP-SVM 1D-CNN 1D-S-SVM GAN 1D-S-CNN 3D-CNN GP
OA (%) 83.09 85.90 85.28 95.76 93.67 96.06 88.15 96.86
AA (%) 85.46 82.53 89.29 96.96 90.89 97.43 77.76 97.93
Kappax 100 81.07 84.02 83.61 95.28 92.55 95.61 86.05 96.50
1 94.15 77.97 98.36 97.01 99.14 97.31 60.17 99.90
2 98.57 99.75 98.55 98.36 94.23 100.00 95.04 100.00
3 90.56 50.40 85.43 90.64 76.74 98.79 84.69 100.00
4 98.93 98.72 96.27 98.21 100.00 96.77 97.63 97.20
5 95.23 97.44 81.63 96.23 90.14 99.14 99.95 98.69
6 99.25 99.94 99.85 99.97 99.70 100.00 99.96 99.19
7 98.82 99.88 99.53 100.00 99.90 98.88 87.50 99.89
8 78.50 98.50 77.27 91.94 90.57 92.83 89.65 91.15
9 94.11 99.33 98.69 99.55 100.00 100.00 99.38 100.00
10 85.65 93.99 81.66 90.54 99.03 87.58 98.20 95.91
11 90.63 82.30 78.46 98.69 97.69 98.22 92.20 99.53
12 99.48 100.00 93.41 99.90 99.56 100.00 34.54 99.84
13 20.08 99.12 97.71 99.78 79.60 99.89 19.20 90.83
14 66.29 97.64 91.68 99.16 78.88 99.63 90.38 99.91
15 59.14 13.80 55.74 92.06 71.33 90.36 91.59 95.03

16 66.96 93.79 94.52 99.34 90.12 99.50 18.49 99.83
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Table 13. The Classification Accuracy of various methods for KSC. Bold values indicate the best

result for a row.

KSC
3D-RBF- 3D-Aug- Ac
Method EMP-SVM  1D-CNN  1D-S-SVM 1ID-S-CNN  3D-CNN  WGAN-
SVM GAN op
OA (%) 76.13 90.59 88.04 96.54 98.12 97.56 95.63 98.92
AA($) 64.60 85.83 81.35 94.46 94.76 95.43 89.65 97.46
Kappa x 100 73.52 89.41 86.67 96.15 98.05 97.29 94.95 98.80
1 88.68 87.82 96.32 100.00 98.71 100.00 91.71 100.00
2 69.77 80.14 88.07 100.00 81.28 100.00 89.73 100.00
3 70.73 87.64 85.16 77.73 98.57 76.95 92.16 97.66
4 57.32 86.64 51.19 88.89 87.63 89.68 86.94 100.00
5 42.85 77.02 49.69 73.91 98.89 7391 94.79 69.56
6 32.24 89.66 54.59 99.56 100.00 100.00 90.92 100.00
7 10.00 83.37 73.33 100.00 98.20 100.00 91.57 100.00
8 4223 91.78 85.85 89.09 75.05 100.00 96.22 99.77
9 84.00 97.12 94.23 100.00 99.32 100.00 99.53 100.00
10 81.88 97.06 99.00 100.00 100.00 100.00 99.81 100.00
11 96.75 99.64 91.89 98.81 100.00 100.00 99.79 100.00
12 86.32 99.24 89.07 100.00 97.71 100.00 97.69 100.00
13 100.00 100.00 99.14 100.00 100.00 100.00 100.00 100.00

Table 14. Compare the AML and AC-WGAN-GP with different sizes of training sets on Indian Pines.

Dataset Indian Pines Salinas
Training set 5% 10% 1% 5%
proportion

methods AML

OA (%) 77.04 82.95 91.63 94.54

AA (%) 77.72 83.29 94.58 97.15
Kappax100 74.46 81.89 93.15 95.52

Dataset AC-WGAN-GP

OA (%) 92.44 93.58 96.86 97.04

AA (%) 92.76 94.23 97.93 97.88
Kappax100 91.61 93.01 96.50 96.95

() (d)

Figure 11. The visual Indian Pines classification map. Mark clearly dominant areas with boxes.
(a) Ground Truth; (b) 1ID-CNN; (c) 1D-S-CNN; (d) Proposed method.
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(a) (b) (c) (d)

Figure 12. The visual Salinas classification map. Mark clearly dominant areas with boxes. (a) Ground
Truth; (b) 1D-CNN; (c) 1D-S-CNN; (d) Proposed method.

(©) (d)

Figure 13. The partially enlarged visual KSC classification map. Mark clearly dominant areas with
boxes. (a) Ground Truth; (b) 1D-CNN; (c) 1D-5-CNN; (d) Proposed method; (e) Enlarged 1D-S-CNN;
(f) Enlarged proposed method.

First of all, it can be seen from the visual classification map in Figures 11-13. Gaussian
smoothing of the data with the 1D-CNN classifier, and our proposed AC-WGAN-GP model.
It can be seen that the third and fourth column results are significantly better than the
second column. And significant differences between the third and fourth sets of prediction
plots are marked by white boxes. In Indian Pines, the classification result of the 1D-S-CNN
algorithm demonstrates that compared with the method only using CNN, the noise inside
the class is small, but the class boundary produces more error points, which shows that
the use of Gaussian smoothing can effectively smooth the spectral samples inside the class,
but it is easier to confuse the spatial features at the boundary, and obtain the wrong class
boundary. But after using AC-WGAN-GP to augment data, the class boundary in the
white box is significantly improved. In Salinas, algorithms confuse some of the categories
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8 and 15 samples in this data set, making more misclassification points. The reason for
this problem is that the spectral characteristics of the two types are relatively similar, and
the classification difficulty comes higher. It is difficult for many algorithms to completely
distinguish these two categories. Compared with the other two algorithms, the proposed
algorithm has a better classification effect on these two categories. And except for some
noise points and misclassification points at the boundary of the 10th and 5th categories,
the noise points of other categories in this dataset are less and the boundary positioning is
clearer. Compared with 1D-CNN, the noise points of the proposed algorithm are greatly
reduced, and compared with 1D-S-CNN, there are fewer areas of error points. In KSC, the
pixels are relatively discrete. Figure 13e,f shows that the main misclassification point of the
algorithm is that the samples of the fifth class close to the fourth class are wrongly classified
into the fourth class. The reason for this error is that the spectrum has the problem of the
same spectrum including different objects and the same object scattering in a different
spectrum, and the number of training samples is few. The classification results of our
proposed method still have obvious advantages in the same region. It can be seen that the
positive effect of AC-WGAN-GP data augmentation on classification.

From the Tables, it can be seen intuitively that our proposed method outperforms
other methods on most of the three metrics OA, AA, Kappa, and most of the category
classification accuracy.

Firstly, we observe that the method (i.e., 3D-RBF-SVM, EMP-SVM, 1D-CNN) uses the
single pixel or image block of the original data as input, and their classification accuracy
is lower than that of other methods (i.e., SVM, 1D-5-SVM, 1D-S-CNN, AC-WGAN-GP)
that adopt gaussian smoothing processing. For example, as can be seen from Table 11, the
OA of EMP-SVM is 18.97%, 21.94%, and 23.17% lower than 1D-S-SVM, 1D-S5-CNN, and
AC-WGAN-GP, respectively. Similar properties can be found in Tables 12 and 13. The
above phenomenon shows that gaussian smoothing can improve the classification accuracy,
because gaussian smoothing not only simply filters hyperspectral pixels, but also adds
neighboring information. At the same time, gaussian smoothing also makes the learning
task easier.

Secondly, the classification accuracy of AC-WGAN-GP is higher than that of 1D-S-
CNN with only original training samples. As shown in the experimental results of KSC
dataset, OA, AA, and Kappa of AC-WGAN-GP are all higher than those of 1D-S-CNN,
which are 1.36%, 2.03%, and 1.51% higher, respectively. The same results can be obtained
in the Salinas dataset. On the Indian Pines dataset, OA and Kappa were significantly
improved, while AA decreased slightly. Compared with 3D-CNN, the proposed method
still has an advantage. The experimental results of the Indian Pines dataset, OA, AA, and
Kappa of AC-WGAN-GP are all higher than those of 3D-CNN, which are 6.04%, 20.18% and
7.34% higher, respectively. In addition to the third category, we also outperform 3D-CNN
in specific categories. For example categories 12, 13, 16, and 3D-CNN are far below the
average due to poor training samples to learn and the proposed AC-WGAN-GP does not
have this problem.

Thirdly, by comparing the 3D-Aug-GAN with our proposed AC-WGAN-GP method,
it is observed from Table 12 that the OA, AA and Kappa of AC-WGAN-GP are 19.65%, 17.02%
and 0.25% higher than 3D-Aug-GAN, respectively. In specific categories, our method is
still leading. We can observe the same results from Indian pines and KSC data. The above
analysis verifies that the proposed method has higher classification accuracy than that
of 3D-Aug-GAN. We have made a little attribution on a GAN-based hyperspectral data
augmentation and classifier compared with the above old models.

Fourthly, AML is a method that combines LSTM and attention and aims at HSI
classification for small training size. On different proportion of training sets, we compare
the AML with our AC-WGAN-GP. The result in Table 14 shows that the performance of
our method is ahead of AML slightly.

Finally, we notice that high accuracy can be achieved using only 1D-CNN and the
smoothing module on the KSC dataset. Only categories 3, 4 and 5 do not achieve 100.00 ac-



Remote Sens. 2022, 14, 4910

24 of 27

curacy. Even in this case, the method using AC-WGAN-GP framework is still 1.36%, 2.03%,
1.51% higher on OA, AA, and Kappa, respectively. Specially, in Figure 14, we list distribution
of generated samples from three categories. These samples have low quality and lead to
low accuracy. In Alfalfa, we can see the distribution of real samples is discrete and irregular.
So it is difficult for AC-WGAN-GP to learn a better distribution. The generated samples
have obvious wrong. In Stone-Steel-Towers, the situation is similar. In OAK/Broadleaf, the
generated samples conform to the distribution of the real samples to some extent, but the
network has not learned the right sparse and density of real distribution. From the above
instances, we find that some categories have complex and uneven distribution. This tests

the performance of GAN. For AC-WGAN-GP proposed by us, the result is not ideal.
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Figure 14. Some generated samples that lead to the degradation of classification accuracy (a) Indian
Pines Alfalfa; (b) Indian Pines Stone-Steel-Towers; (¢) KSC Oak/Broadleaf.

5. Conclusions

This paper discusses the feasibility of using labeled fake samples as a method of data
augmentation in hyperspectral image classification with small sample sizes. Gaussian
smoothing makes use of neighboring information and makes the learning task of the
network simpler. The proposed AC-WGAN-GP model extends the traditional GAN frame-
work based on the WGAN-GP and AC-GAN. Then, a new sampling method is introduced
to generate labeled samples based online generation mechanism. Lastly, a sample selection
method is designed. The LSR processing of fake labelled samples can make the use of
fake samples more reasonable. The KNN method is used to select samples similar to the
test samples from the generated samples and add them to the original training set. The
combined training set is used to train the CNN and complete the hyperspectral images
classification task with small samples. We verified the results of the proposed method on
three popular well-known datasets by selecting few training samples with labels. When we
only use 2.0% samples in Indian Pines set, 0.37% samples in Salinas set, 3.8% samples in
KSC set, the classification accuracy obtained by our model is 92.51%, 96.86%, and 98.92%,
respectively. Compared with the models based on 3DCNN, the proposed model in this
paper increases by 6.04%, 8.71%, 3.29%, respectively. Compared with models based on
3DGAN, the proposed model in this paper increases by 1.41%, 3.19%, 0.8%, respectively.
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However, the complex distribution of original small samples is sometimes difficult for
our framework to learn. In our future work, we will try to design more effective GAN to
generate better samples or add other frameworks such as in [49].
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