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Abstract: Cropland expansion is expected to increase across sub-Saharan African (SSA) countries in
the next thirty years to meet growing food needs across the continent. These land transformations will
have cascading social and ecological impacts that can be monitored using novel Earth observation
techniques that produce datasets complementary to national cropland surveys. In this study, we
present a flexible Bayesian data synthesis workflow on Google Earth Engine (GEE) that can be used
to fuse optical and synthetic aperture radar data and demonstrate its ability to track agricultural
change at national scales. We adapted the previously developed Bayesian Updating of Land Cover
(Unsupervised) algorithm (BULC-U) by integrating a shapelet and slope thresholding algorithm to
identify the locations and dates of cropland expansion and implemented a tiling scheme to allow the
processing of large volumes of imagery. We apply this approach to map annual cropland change from
2000 to 2015 for Zambia (750,000 km2), a country that is experiencing rapid growth in agricultural land.
We applied our cropland mapping approach to a time series of unsupervised classifications developed
from Landsat 5, 7, 8, Sentinel-1, and ALOS PALSAR within 1476 tiles covering Zambia. The annual
cropland changes maps reveal active cropland expansion between 2000 to 2015 in Zambia, especially
in the Southern, Central, and Eastern provinces. Our accuracy assessment estimates that we have
identified 27.5% to 69.6% of the total cropland expansion from 2000 to 2015 in Zambia (commission
errors between 6.1% to 37.6%), depending on the slope threshold. Our results demonstrate the
usefulness of Bayesian data fusion and shapelet, slope-based thresholding to synthesize optical and
synthetic aperture radar for monitoring agricultural changes in situations where training data are
scarce. In addition, the annual cropland maps provide one of the first spatially continuous, annually
incremented accounts of cropland growth in this region. Our flexible, cloud-based workflow using
GEE enables multi-sensor, national-scale agricultural change monitoring at low cost for users.

Keywords: agriculture; change detection; Bayesian fusion; Zambia; Google Earth Engine

1. Introduction

Africa’s food needs are expected to more than triple during the next 30 years, and at
least 140 million hectares of new cropland will be needed to satisfy this demand [1–3]. Such
a large-scale land transformation, which is already underway [4,5], will have substantial
social, economic, political, and environmental consequences that will be felt from local to
global scales [2,6,7].

Given the rapid pace of change and their potential consequences, it is essential to
measure and monitor agricultural changes as they unfold over the continent, across the
range of spatial scales that they will impact. The demand and production for food supplies
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are jeopardized by the challenges of climate change, disease, pests, and increasingly lower
productivity and yields urging for more effective and timely monitoring [8]. Conducting
such monitoring is difficult, as comprehensive national survey datasets are typically lacking,
out of date, and of low spatial resolution [4,9,10]. As such, the only feasible way to
undertake this task is with remote sensing. However, developing accurate, remotely sensed
maps of Africa’s smallholder-dominated agricultural systems is hard to accomplish [11–14].
For one, the nature of these systems—small fields, often mixed in with the surrounding
vegetation types [13]—is a major source of confusion for the models used to convert remote
sensing imagery into maps, while the spatial resolution of the imagery is often too coarse to
separate small-scale agriculture from the surrounding vegetations [13,15–19]. In addition
to this, the data needed to train and assess mapping models is either lacking or not publicly
available, and is expensive to develop [12,13,16,17,20,21], while mapping over large regions
at frequent time steps is a major computational challenge [13] with higher spatial resolution
imagery. Given these limitations, the available regional land cover maps that include
agricultural land tend to be infrequently produced (e.g., made once or twice per decade)
and may contain substantial errors [9,20–22]. Moreover, the available maps tend to be
produced for different years and from separate efforts, using different training data, models,
and classification schemes, resulting in inconsistencies that make their combined use and
comparison difficult [15,22]. These factors cause large uncertainties as to where and how
much cropland exists [20,23] and how it is changing.

Fortunately, recent advances in Earth Observation methods are making it increas-
ingly possible to conduct accurate, large-area monitoring over hard-to-map regions [16,24].
Among the first of these advances was the opening of the multi-decadal Landsat archive
under the free and open data policy in 2008 [17,25], as well as the rapid growth in Earth-
observing satellites, which are increasing the frequency, resolution, and depth of information
available from spaceborne observations [18], while lowering the cost. This increasing num-
ber of observations enables continuous, frequent mapping of land cover, while providing
detailed imagery that can be used to create the training and reference data (labels) required
by mapping algorithms [9,19,26]. Synthetic aperture radar (SAR) sensors, such as Sentinel-1
and ALOS, can characterize agricultural landscapes [27] due to their spectral ability to ac-
tively illuminate a target regardless of atmospheric effects using microwave frequencies [28].
SAR has proved useful for estimating crop planting area, yield, and other crop variables [29],
not only because of imperviousness to atmospheric effects, but also its sensitivity to the
geometric structure and dielectric properties of crops [27,30,31]. Some studies have used
multi-scale and multi-sensor approaches to understand field scale phenology by combin-
ing SAR and optical sensors resulting in a higher accuracy for mapping crop cover and
yield [30,32]. In one study comparing the ability of Landsat, Sentinel-1, Sentinel-2, and
the Moderate Resolution Imaging Spectroradiometer (MODIS) to analyze rapid changes in
field scale phenology of corn and soy [30], high accuracies were achieved using individual
sensors, with marginal improvements when combining all sensors. However, classification
performance was poor in regions of persistent cloud cover, thus it was concluded that
Sentinel-1 data may be critical for enabling crop mapping over large areas to mitigate the
loss of information due to atmospheric effects [30]. Similarly, other studies have also used a
sensor combination approach, but with radar sensors of different frequencies. In a study that
evaluated the potential of SAR for early season corn, soy, and hay-pasture detection, both the
TerraSAR-X and RADARSAT-2 sensors were compared [33]. These studies demonstrated
the importance of using multiple sensors, albeit in the same wavelengths, to increase the
opportunities for multiple observations and re-look opportunities.

There have also been large gains in the capabilities of the algorithms used to extract
meaning from satellite imagery, e.g., [34], as well as image analytical approaches that help
to minimize the requirements for training datasets. Such approaches include data fusion
methods, which gather evidence from multiple datasets to create new hybrid products,
such as cropland maps developed by synthesizing available land use land cover (LULC)
products [35,36]. These approaches vary from those that rely on expert ranking of the qual-
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ity of different input datasets [37] to probabilistic techniques such as the Bayesian Updating
of Land Cover (BULC) algorithm [38–44], which weighs the evidence and uncertainty in
different input maps while constructing LULC time series.

Another key development is the growth of cloud-based Earth Observation analytical
platforms, most prominently GEE [24], which bring together the pre-processed image
archives, algorithms, and computing power to enable their application at large scales. Such
platforms have given rise to several important breakthroughs in monitoring, including
the creation of 30 m resolution datasets for tracking annual changes in forest cover [45],
monthly changes in surface water across the entire globe [46], urban change [47], as well
as multi-decadal changes in irrigated cropland dynamics across major crop production
regions [44].

Despite these tremendous gains, there are two primary challenges that need to be
resolved to realize the capacity to remotely track the dynamics of complex smallholder-
dominated croplands. First, there is a critical lack of labeled data for training and assessing
the accuracy of mapping algorithms [16]. However, most algorithms that enable continuous
tracking of land cover change [45] typically require many land cover labels, especially when
the desired outcome includes classification of the type of change (“from to”) [19]. The
second challenge is that it is difficult to develop large area, long-term, high frequency
(yearly to sub-yearly) datasets of moderate (10–30 m) resolution imagery over areas of
persistent cloud cover [13,45,48,49].

In this study, we developed a mapping approach that addresses these outstanding
challenges, to track annual agricultural change at a national extent in locations where training
data are scarce and cloud cover is frequent. We demonstrate this approach by mapping
cropland expansion in Zambia, a large country (~750,000 km2) with an extensive and geo-
graphically diverse agricultural sector that is undergoing rapid agricultural change [5,50].
Cropland in Zambia is difficult to map accurately due to the predominance of small-scale
agriculture and the frequent cloud cover during the growing season [10,23]. To overcome the
challenge of limited training data, we used the Bayesian Updating of Land Cover (Unsuper-
vised) algorithm (BULC-U), an automated version of BULC that was developed to detect
change in long time series of Landsat imagery by combining unsupervised and object-based
classification within the Earth Engine platform [37,38]. A key feature of BULC-U is that it
greatly reduces the need for labeled data by using existing land cover maps to train the
algorithm. In this study, we used a single existing 30 m land cover map to train BULC-U
and extended BULC-U’s capabilities by applying linear regression and shapelets [51] to
estimate the year of agricultural expansion. To overcome the lower density of imagery due
to high cloud cover while leveraging the capabilities of SAR for improving cropland classifi-
cations [31], we constructed a detailed satellite record using Landsat 5, 7, and 8 archives with
SAR imagery collected by both the Sentinel-1 and the ALOS sensors. We implemented this
approach on GEE [24], which provided the infrastructure in terms of access to pre-processed
imagery, storage, and computational power [24] that we needed to conduct this large-scale
analysis. Our results indicate the potential of this approach for fine-grained identification
and analysis of agricultural expansion over large, hard-to-map areas.

2. Materials and Methods
2.1. Study Area

Zambia was chosen for our analysis because it is representative of other agriculturally
rich countries in sub-Saharan Africa (SSA) that have experienced rapid crop expansion [52,53].
Zambia is mainly a sub-tropical climate characterized by three seasons: hot and dry (mid-
August to mid-November), wet and rainy (mid-November to April), and a cool and dry
season (May to mid-August) [52]. Zambia is a large country with an area of 752,612 km2

that requires 41 Landsat scenes to cover its full extent (Figure 1). Zambia is categorized into
three major agro-ecological regions (i.e., Regions I, II, and III) according to the countries’
agronomist on precipitation, soils, and climatic attributes [52]. Across these agro-ecological
regions, agriculture is primarily rain-fed with little commercial irrigation [53]. Small-scale
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agriculture (farms < 5 Ha) is the most common form in Zambia, constituting more than
three-quarters of existing farms, with the remaining share consisting of medium- (5–100 ha)
and large-scale (>100 ha) farms [50]. Farm size distributions are changing rapidly, however,
as domestic agricultural investment has driven a rapid increase in the number of medium-
scale farms, which more than doubled between 2008–2014, and now occupy over 50% of
Zambia’s agricultural land [50]. These dynamics indicate substantial diversity in Zambia’s
agricultural systems, including substantial variations in the size and shape of fields and
the crops they grow. Maize, groundnuts, soybeans, cassava, and cotton were the five most
widely grown crops between 2015–2020 [54], with maize constituting over 50% of harvested
area on average. Regions I (semi-arid area) and III (high rain-fall area) are predominantly
small-scale farming systems that include the southern, eastern, western, and high northern
areas of Zambia. Some of these regions’ cropping systems include hand hoe, low input,
shifting, and semi-permanent cultivation techniques [52]. Region II, on the other hand, has
many commercial farms, which can be found in much of central Zambia [55]. The major crop
types are diverse and include a combination of staple and commodity cultivation, in addition
to dairy and livestock [52].
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Figure 1. Study area figure showing Zambia study region, cropland coverage, and Landsat tile
footprint. The 812 validation samples are shown in the lower right inset map, with cropland labels
for 2015 shown in blue and non-cropland labels in red.

In the following section, we outline the variable inputs (see Table 1) and methods
used in this study to track cropland changes in Zambia from 2000 to 2015 using GEE,
following the workflow illustrated in Figure 2. Our processing workflow begins with the
compilation of input data, including satellite imagery and the Global Food Security-Support
Analysis Data (GFSAD) derived from the 2015 satellite imagery [56], the source for our
binary crop base map starting in 2015. Satellite data was initially divided into smaller
analytical units, and then classified using an unsupervised K-means approach. Resulting
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unsupervised cropland maps were then updated by GFSAD backwards in time using the
BULC-U algorithm. Finally, areas of cropland expansion were assessed over the 15-year
time series to determine where and when cropland change occurred.
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Figure 2. An overview of our research workflow, which begins with the preparation of input datasets.
(1) Crop class extracted as mask from GFSAD. (2) Yearly optical and radar imagery spatially filtered
and pre-processed. (3) Identification of minimum mapping unit. (4) Cluster identification using a
K–means classifier and segmentation. (5) BULC–U Algorithm executed in descending order from
2015. (6) Determination of yearly cropland probabilities and expansion given the slope threshold
(7) Determination of statistically significant shapelets of crop expansion over time.

2.2. Description of Datasets & Pre-Processing Methods
2.2.1. Basemap

The Bayesian fusion algorithm (BULC-U) requires an input reference dataset to inform
the initial probabilities. We used the 30 m Global Food Security-Support Analysis Data
(GFSAD) cropland raster dataset for the year 2015 as our reference map [56]. Through
a combination of pixel-based and object-oriented classifiers in addition to a Recursive
Hierarchical Image Segmentation approach, the NASA Making Earth System Data Records
for Use in Research Environments (MEaSUREs) program was able to retrieve cropland
extent at a 30-m spatial resolution. Each GFSAD GeoTIFF file contains a binary classification
of cropland area and water bodies over a 10-degree by 10-degree area for the continent of
Africa. Preliminary evaluation of the GFSAD product in Zambia using stratified sampling
(see Section 2.3.4) had an overall accuracy of 81%, a producer’s accuracy of 89%, and a user’s
accuracy of 73% for the cropland class. We clipped the GFSAD map using Zambia’s national
boundary and remapped the class values to their respective binary classes (cropland or
non-cropland).

2.2.2. Landsat Annual Medoid Composites

To develop annual image composites, we utilized all available Collection 1 Level-1
Surface Reflectance scenes from the Landsat 8 Operational Land Imager (L8 OLI) [57],
Landsat 7 Enhanced Thematic Mapper Plus (L7 ETM+) [58], and Landsat 5 Thematic
Mapper (L5 TM) [59] sensors. These scenes were accessed using GEE [24] and represent
the highest quality datasets given their Level-1 Precision and Terrain correction, typified
radiometry, and well-adjusted inter sensor calibration across Landsat sensors. This col-
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lection was selected due to its higher-level Tier 1 processing to atmospherically corrected
surface reflectance using the USGS Land Surface Reflectance Code and Landsat Ecosystem
Disturbance Adaptive Processing System algorithms. The Landsat sensors used in this
study have a temporal coverage from 2000 to 2015 with a return time of 16 days at a 30 m
multi-spectral spatial resolution along a 185 (115 mi) swath [24,57–59].

Using a combination of various satellite sensors increased our ability to create more
cloud-free observations. Some studies have demonstrated the utility of Landsat sensor
combination by increasing the probability of cloud-free image observations, while simul-
taneously reducing the revisit interval [60,61]. This included 2813 images from L5 TM,
8164 from L7 ETM+, and 2714 from L8 OLI. We used the deprecated Landsat collections
that were available in GEE at the time of the analysis. The Landsat collections were first
harmonized using a least-squares regression to maintain temporal continuity over the vary-
ing sensors in the time series [48,62]. For each Landsat image, we selected the visible (red,
green, blue), near-infrared (NIR), and short-wave infrared (SWIR) bands. We calculated
the NDVI and the GCVI, the latter of which has been shown to capture greater areas of
vegetation given its leaf area index [9]. We then constructed annual composites between
the years 2000 and 2015 by calculating the medoid, which is a more temporally robust
alternative to median per-pixel compositing [62–64]. To fill any remaining data gaps, we
applied a focal mean filter with a 20-pixel radius as our last step in pre-processing the
annual Landsat composites.

2.2.3. Synthetic Aperture Radar Composites

To develop a time series of SAR data that maximized coverage of the study period,
we used four global 25 m Yearly Mosaic PALSAR images from 2007 to 2010 collected by
the Phased Array L-band Synthetic Aperture Radar-2 (PALSAR) aboard the Advanced
Land Observing Satellite-1 (ALOS) PALSAR from the Japan Aerospace Exploration Agency
(JAXA). These were accessed in the GEE data catalog [24,65], which houses the data for
analysis. The collection was already ortho-rectified and slope-corrected using the 90 m
SRTM Digital Elevation Model and destriped to equalize differences in intensity between
adjacent strips by GEE [24,66,67]. We converted the raw 16-bit DN horizontal-horizontal
(HH) and horizontal-vertical (HV) values to gamma naught values in decibel units (dB)
using the equation provided by GEE [24].

To increase observations from a second SAR sensor, we used 310 images from the
Sentinel-1 C-band Synthetic Aperture Radar Ground Range Detected (GRD) dataset for
the year 2015, which are provided within GEE already pre-processed using the Sentinel-1
Toolbox workflow [68]. We developed annual median composites from Sentinel-1 using
VV (vertical transmit, vertical receive) and VH (vertical transmit, horizontal receive) po-
larizations collected with the interferometric wide swath mode (IW) at a 10 m resolution.
Additionally, the VH/VV ratio, as well as ratios between VV median composites, were
calculated for two months (April and October) representing different seasons, calculated as
VVApril/VVOctober, representing cropland seasonality [69].
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Table 1. Overview of our variable inputs including our GFSAD basemap; Landsat ETM+, TM, and
OLI; JAXA ALOS PALSAR/PALSAR-2; and Copernicus Sentinel-1.

Variable Spatial & Temporal
Resolution Sensor Data Source

GFSAD Basemap 30 m, 2015 - [56]
Blue, Green, Red, NIR, 30 m, 2000–2015 Landsat ETM+, TM, OLI [57–59]
Normalized difference

vegetation index (NDVI) 30 m, 2000–2015 Landsat ETM+, TM, OLI [57–59]

Green chlorophyl
vegetation index (GCVI) 30 m, 2000–2015 Landsat ETM+, TM, OLI [57–59]

HH, HV 25 m, 2007–2010 JAXA ALOS PALSAR/
PALSAR-2 [70,71]

HH/HV 25 m, 2007–2010 JAXA ALOS PALSAR/
PALSAR-2 [70,71]

VV, VH 10 m, 2014–2015 Copernicus Sentinel-1
GRD [68,72]

2.3. Classification & Validation

Following the pre-processing steps, the Landsat, PALSAR-2/PALSAR, and Sentinel-1
observations were joined together in a time series stack. To enable the processing of these
data over a large area, we split the study area into smaller units, using a 50 × 50 tile grid with
a resolution of 25 × 22 km to divide the study extent, with 1476 of the resulting 2500 cells
intersecting Zambia (Step 3 in Figure 2). Processing the data within these smaller analytical
units also enabled a more replicable and flexible workflow for subsequent classification
and data fusion. The 25 × 22 km resolution used here was sufficiently small to limit the
computation time in GEE, enabling rapid display of intermediate results quickly, such
as unsupervised classification maps and avoiding potential memory limits. Confining
analyses within each tile also helped to improve performance by minimizing the amount
of within-class spectral variability presented to the mapping algorithm.

2.3.1. Segmentation and Unsupervised Classification

The provisional classifications of Zambia were created in two stages: segmentation
and unsupervised classification. We first segmented each composite into median objects
using the Simple Non-Iterative Clustering (SNIC) segmentation algorithm that is available
in GEE [24,41,73,74]. As an object-based processing technique, this segmentation algorithm
creates pixel clusters from input information such as texture, color or pixel values, shape,
and size, which is especially useful for mapping cropland [51,75,76]. The SNIC function
is an improved version of the Simple Linear Iterative Clustering (SLIC) computer vision
algorithm [73], making it well-equipped to run faster and more efficiently on the GEE
platform. SNIC is a bottom-up segmentation approach that uses “seeds” to group neighbor-
ing pixels into clusters based on the input data and function parameters like connectivity,
compactness, and neighborhood size. We used the code ‘Make_SNIC_cluster’ to apply the
segmentation algorithm to each gridded composite, setting the connectivity parameter to 4,
compactness to 1 (to enable more compact clusters), and neighborhood size to 16 pixels
(to avoid tile boundary artifacts), and used a square seed pattern with a super pixel seed
spacing of 8 pixels. Following the creation of the object vector boundaries, we summarized
the intersecting pixels into median spectral values for each object’s extent, resulting in a
segmented median composite for each year and grid.

After adding spatial context into the provisional classification through the SNIC
segmentation algorithm, we applied the K-means unsupervised classifier on the segmented
composites to differentiate cropland and non-cropland objects. K-means is an unsupervised
clustering algorithm available on the GEE platform that can be used to classify pixels or
objects [77,78]. We used an input value of 20-classes in the K-means algorithm, resulting
in a 20-class, segmented unsupervised classification for each of the 16 years and each of
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the 1476 grids. Initial tests showed that the visible, NIR, SWIR, and vegetation indices
were particularly useful for separating rainfed crop, irrigated crop, natural vegetation, and
urban areas in Zambia [9], and the number of clusters (k) did not impact the cropland
classification in cases where k was larger than the potential number of land cover classes.
These gridded time-series data stacks were then used as input into BULC-U to distinguish
cropland and non-cropland areas, as described in the next section.

To evaluate how well the unsupervised classifications distinguished cropland from
non-cropland, we analyzed the overlap between the unsupervised clusters and the cropland
and non-cropland classes derived from the GFSAD basemap in each tile. If the unsupervised
classifier was maximally effective, the pixels in each cluster should correspond with a single
land cover class (e.g., cropland), while the most ineffective classifier would contain an
equal mix of all classes. Therefore, to evaluate the accuracy of the classifier, we found the
proportion of the dominant class in each cluster and then calculated the mean proportion
across all clusters, weighted by the size of each cluster. The results of this analysis (see
Supplementary Information) reveal that the average proportion across all tiles was 92.1%,
with a standard deviation of 10.1%, showing generally good separability between classes.

2.3.2. BULC and Crop Expansion

The BULC-U algorithm is designed to examine a time series of unsupervised classifica-
tions with the goal of extracting signals about land-use/land-cover change [40]. By compar-
ing a given unsupervised classification’s classes with those in a known higher-quality map,
BULC-U uses Bayes’ formula to update probabilities of LULC change through time. When
quantifying the relationship between a given unsupervised class and the comparison map,
BULC-U adjusts the probability of classes being tracked based on the new evidence pro-
vided by each unsupervised classification. BULC-U’s developers demonstrated its ability
to map LULC change in an agricultural setting with unsupervised Landsat classifications
and the GLOBCover 2009 dataset, using BULC-U to refine the coarser GLOBCover map
while also producing a credible multi-decadal time series of change [40].

In this study, we followed the outlines of that approach while making several modifi-
cations to address the challenges of mapping in this setting. The current state-of-the-art
map for this region was the 30 m GFSAD product, which distinguishes cropland from
non-cropland classes. The basemap was used to initialize BULC-U, which we ran in re-
verse chronological order from 2015, with the algorithm comparing the results of each
unsupervised classification in each tile to the GFSAD map, and then producing a cropland
probability for each 30 m pixel for each year.

To identify pixels that experienced cropland gain, we fit a linear function to each
pixel’s probability time series and examined the slope, using a slope-based threshold to
distinguish areas of probable cropland gain from stable non-cropland areas, areas that had
intermittent or unclear cropland history, or croplands that became abandoned. We tested
a range of single slope thresholds to examine the relationship between the threshold and
resulting accuracy. Figure 3 shows examples of each: cropland gain showing a positive
slope (a, b); persistent crop and non-crop slopes that are effectively flat (c, d); cropland
loss indicated with a negative slope (e), and pixels with a land use signal that alternates
between crop and non-crop (f).
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regression (red line) for cropland gain (a,b), persistent cropland (c), and persistent non-cropland (d),
crop abandonment (e), and intermittent cropland (f).

2.3.3. Shapelet Analysis

Following the identification of pixels that experienced cropland gain, we identified
when the gain occurred. In a previous study [69], the shapelet method was developed to
detect change and classify the land cover responsible for that change based on the shape of
a Landsat-NDVI time series. The “shapelet” was defined as a temporal segment within
the Landsat-NDVI time series with a pattern that is highly predictive of its class. In that
study [69], which detected tree plantations, the pattern was one in which there was a time
period of consistently low vegetation cover (or bare ground) due to pre-planting land
clearing, whereas other land uses had consistently dense vegetation cover [79–82]. That
approach searched along an NDVI time series to identify shapelets characterizing intervals
with low NDVI values, followed by a simple statistical test that examined whether the
NDVI values in the shapelet were different than those in the time series outside of the
shapelet, resulting in a land cover classification and an estimate of the year in which the
plantation was established [79]. The advantage of the shapelet method is that it enables
more reliable detection of change in a time series by ignoring “unimportant” time points,
while improving classification results [79,80,83,84]. We adapted this shapelet method to
identify the year of cropland gain for a time series of cropland probabilities, as described in
the steps outlined below.

Step 1. For a given time series ts (here 2000–2015) with a yearly time step length of
l, we arbitrarily chose a window size (w) of 3. The size of the window can be any value
smaller than the length of the time-series but must also be greater than one and be narrow
enough to suggest the year that a time series shapelet method experienced the most change.

Step 2. Segment the ts into a candidate shapelet (also referred to as S_candidate), and
then one or two non-shapelet segments (or N_candidate) by moving the window from one
side of the ts (at t = 0, in our case, it is the year 2015) to the end year (at time t = l − w +1,
in our case, year-end 2000). For each time t, the window stands for a candidate shapelet
S_candidate at (t, t + − 1), and thus segments the rest of the ts into one or two non-shapelet
segments N_candidate or N_candidateleft and N_candidateright, depending on if the window
starts from t = 0 or is found at the end of ts.
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Step 3. We selected the candidate shapelet S_candidate segment that was most different
from its corresponding non-shapelet (s) as the final shapelet S using an unsupervised method
for identifying and extracting shapelets [79,81], which measures the mean and standard devi-
ation difference between S_candiate and the corresponding N_candidate to calculate an overall
“gap” score that quantifies the size of the decrease of crop probability in S_candiate. The final
selected shapelet S is the one that maximizes the gap score. In our study, we modified this ap-
proach by separating non-shapelets into N_candidateleft and N_candidateright, measuring their
standard deviation separately because the cropland probability before and after cropland gain
will have large differences, which should not be combined and measured. Then, we calculate
the mean of their standard deviation, or mean(NS_candidate_left_sd, NS_candidate_right_sd)
unless there is only one N_candidate, which indicates it is at the beginning or end of the
time-series. S_candidate_sd and NS_candidate_sd values that capture the steep monotonic crop
probability changes within the S_candidate and NS_candidate should be selected.

Figure 4 presents two examples of crop probability slopes and the selected shapelet
windows. The first (Figure 4A) represents cropland gain that occurred later in the time series,
which the maximum gap score identified as taking place in 2009, while the second (Figure 4B)
shows cropland gain that was identified as occurring earlier in the time series (2003).

Remote Sens. 2022, 14, x FOR PEER REVIEW 11 of 30 
 

 

 

Figure 4. The identified shapelet (blue box) for two cropland gain examples. The GAP score was 

labeled for each point and the point of max GAP score was labeled with a red triangle for 2009 (A) 

and 2003 (B). Note the moving window starts from 2015 and moves towards 2000, following the 

same direction as the BULC–U update, but for clarity the x–axis starts in the year 2000. 

2.3.4. Error Assessment 

To assess errors in our maps, we created a reference sample following best practices 

for stratified random sampling and map validation [85] to select a sample of 406 points 

for each class (crop and non-crop) over the study area. Using the Collect Earth land mon-

itoring platform [86] three experienced workers inspected each point using historical 

Google Earth imagery [87] that was collected on or near the years 2000, 2010, and 2015, 

providing a label for each class and time period. Points were labeled as cropland when 

more than 50% of a 90 m × 90 m square centered on the sample point was covered by 

agricultural fields as cropland, or otherwise labeled as non-cropland.  

The labeling task was difficult because the earlier years were primarily covered by 

lower resolution Google Earth imagery, which made it challenging to distinguish 

cropland from non-cropland, particularly when there was low contrast between land co-

vers. The labels (crop or non-crop) assigned by different workers to the same point there-

fore frequently disagreed, and there were several possible methods for reconciling these 

disagreements when assigning a final class for each point and time period, ranging from 

full agreement to majority agreement, or by assigning the label from the lowest frequency 

class if it was selected by at least one worker. In this case, the lowest frequency class is 

cropland, which represents approximately 10–15% of total area in Zambia [5,88]. Each ap-

proach has its advantages and disadvantages and will lead to different estimates—and 

thus different understanding—of map accuracy; complete agreement increases confi-

dence but shrinks the total pool of reference samples (if one worker disagrees, the sample 

is excluded), while majority agreement preserves the sample size, but may bias the sample 

towards the most dominant and easiest to recognize class (non-cropland in this case). The 

last approach, assigning the cropland class if at least one labeler selected it, which we refer 

to here as “cropland wins”, improves representation of the cropland class at the potential 

expense of increased commission error (i.e., non-cropland classified as cropland). For this 

study, we use the last two approaches, majority agreement and cropland wins, and report 

results from both. Further details on how the label methods vary in their impacts on map 

accuracy assessment can be seen in Figure S1.  

We used the resulting reference sample to conduct three different error assessments, 

the first of which was to evaluate the overall User’s (73%), and Producer’s (89%) accuracy 

of the 30 m GFSAD base map in 2015 as well as the BULC-U created cropland map for the 

year 2000. The second and third assessments respectively evaluated the ability of our 

Figure 4. The identified shapelet (blue box) for two cropland gain examples. The GAP score was
labeled for each point and the point of max GAP score was labeled with a red triangle for 2009 (A)
and 2003 (B). Note the moving window starts from 2015 and moves towards 2000, following the same
direction as the BULC–U update, but for clarity the x-axis starts in the year 2000.

2.3.4. Error Assessment

To assess errors in our maps, we created a reference sample following best practices
for stratified random sampling and map validation [85] to select a sample of 406 points for
each class (crop and non-crop) over the study area. Using the Collect Earth land monitoring
platform [86] three experienced workers inspected each point using historical Google Earth
imagery [87] that was collected on or near the years 2000, 2010, and 2015, providing a label
for each class and time period. Points were labeled as cropland when more than 50% of
a 90 m × 90 m square centered on the sample point was covered by agricultural fields as
cropland, or otherwise labeled as non-cropland.

The labeling task was difficult because the earlier years were primarily covered by
lower resolution Google Earth imagery, which made it challenging to distinguish cropland
from non-cropland, particularly when there was low contrast between land covers. The la-
bels (crop or non-crop) assigned by different workers to the same point therefore frequently
disagreed, and there were several possible methods for reconciling these disagreements
when assigning a final class for each point and time period, ranging from full agreement
to majority agreement, or by assigning the label from the lowest frequency class if it was
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selected by at least one worker. In this case, the lowest frequency class is cropland, which
represents approximately 10–15% of total area in Zambia [5,88]. Each approach has its
advantages and disadvantages and will lead to different estimates—and thus different
understanding—of map accuracy; complete agreement increases confidence but shrinks
the total pool of reference samples (if one worker disagrees, the sample is excluded), while
majority agreement preserves the sample size, but may bias the sample towards the most
dominant and easiest to recognize class (non-cropland in this case). The last approach,
assigning the cropland class if at least one labeler selected it, which we refer to here as
“cropland wins”, improves representation of the cropland class at the potential expense
of increased commission error (i.e., non-cropland classified as cropland). For this study,
we use the last two approaches, majority agreement and cropland wins, and report results
from both. Further details on how the label methods vary in their impacts on map accuracy
assessment can be seen in Figure S1.

We used the resulting reference sample to conduct three different error assessments,
the first of which was to evaluate the overall User’s (73%), and Producer’s (89%) accuracy
of the 30 m GFSAD base map in 2015 as well as the BULC-U created cropland map for
the year 2000. The second and third assessments respectively evaluated the ability of our
method to accurately detect cropland change and to estimate the year of cropland gain.
To conduct these last two assessments, we estimated the total cropland gain, loss, and
persistence between three different time intervals (2000–2010, 2010–2015, 2000–2015), using
the reference classes to assess the class transitions between each time interval based on the
quantity of samples in each class (Table 2). The sample revealed a net cropland expansion
of 11.3% between 2000–2010, and 2.9% between 2010–2015, and 14.7% overall between
2000–2015. To estimate how accurately the map identified cropland gain, we calculated the
percentage of map-predicted cropland change pixels that corresponded to reference sample-
identified cropland change, as well as the percentage of mapped cropland change pixels
that were identified as non-change points in the reference sample. Samples that experienced
cropland change were those that were non-cropland in 2000 but became cropland by 2015,
while those corresponding to no change were samples that were persistent cropland or
non-cropland in 2000, 2010, and 2015. To estimate how accurately the modeling approach
estimated the date of cropland change, we grouped the reference samples into classes of
persistent cropland, persistent non-cropland, early cropland gain (2000–2010), and late
cropland gain (2010–2015) and used these points to extract their corresponding estimated
year of change from the shapelet analysis.

Table 2. Validation points and label distributions grouped according to year of observation, and by
intervals defining different change periods.

Type 2000 2010 2015 2000,
2010

2010,
2015

2000,
2015

2000, 2010,
2015

C
ro

pl
an

d
w

in
s Cropland 324 358 368 - - - -

Non–cropland 488 454 444 - - - -
Persistent cropland - - - 302 343 299 296

Persistent
non-cropland - - 432 429 419 410

Cropland gain - - - 56 25 69 -
Cropland lost - - - 22 15 25 -

M
aj

or
it

y
ag

re
em

en
t Cropland 205 256 271 - - - -

Non–cropland 607 556 541 - - - -
Persistent cropland - - - 187 238 183 178

Persistent
non-cropland - - 538 523 519 -

Cropland gain - - - 69 33 88 -
Cropland lost - - - 18 18 22 -
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3. Results

We ran the entire workflow (Figure 1) for each of the 1476 tiles covering Zambia with
the goal of identifying cropland expansion and the year in which it occurred. We begin by
illustrating the analytical steps of this process within an example grid in western Zambia
that experienced cropland expansion between 2000–2015 (Figures 5 and 6). This example il-
lustrates results for 4 of the 16 years (2000, 2005, 2010, 2015) for this tile. The high-resolution
imagery and Landsat composites (Figure 5, rows 1 and 2) show the locations of cropland
during the four-time intervals, as well as the variability of the vegetation condition cap-
tured by the imagery between years. The third row details the segmentation/unsupervised
classification results, which shows the variability of the cropland and non-cropland areas,
while row 4 shows the probabilities calculated by the BULC-U algorithm. The slope of the
linear regressions fit to the time-series of BULC-U probabilities in each pixel is illustrated in
Figure 6 row 1 (column 1), along with identified cropland gains from three different slope
thresholds (columns 2–4), followed by shapelet results (Figure 6 row 2) illustrating the year
of cropland change.
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Figure 5. An example of the workflow output for four time points (2015, 2010, 2005, and 2000).
For each time point, the Google image (top row, for reference), Landsat composites (second row),
unsupervised classification with segmentation (third row), resulting cropland probabilities from
the BULC-U algorithm (fourth row) are shown. The white locator box highlights high probability
cropland that appears in 2010 and disappears in 2015, indicating a probable loss of cropland area.
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Figure 6. Post BULC-U analysis to identify cropland expansion and the expansion year between 2000
and 2015. The first row illustrates the calculated slope of probability values (column 1) along with
the areas of cropland gain identified by using different slope thresholds (columns 2–4). The last row
is the shapelet estimated cropland gain year without a mask (column 1) and with a mask applied
(columns 2–4) using masks from the first row.

For context, it is important to remember that the BULC-U procedure was started in
the year 2015 with the cropland and non-cropland classes in the GFSAD basemap set to
probabilities of 0.8 and 0.2, respectively. The 2015 BULC-U image therefore shows a distinct
contrast between low and high crop probabilities at the beginning of BULC-U updating
(Figure 5 row 3 column 1). The central northern area shows a clear pattern of high crop
probabilities with certain areas distributed into rows (likely associated with subsistence
row crop farming). The majority of the 2015 BULC-U probabilities are low, with some areas
close to zero, indicating a surrounding no crop area. The central portion (dark purple) of
the tile had the lowest crop probabilities, while the most eastern, western, and southern
edges of the tile show slightly higher cropland probabilities (lighter tone of purple). The
land cover in the bottom outer edges of the tile is likely associated with grasslands or open
canopy forest, which are spectrally similar to cropland. It may also be attributed to the
unsupervised classification producing clusters that were associated with both non-cropland
and cropland areas. In the year 2010, the extent of higher cropland probability pixels
increased, while the non-crop areas changed little in comparison to 2015. Then in 2005
and 2000, a similar distribution of crop probability pixels is still evident, with higher crop
probabilities occurring in the areas that were previously consistently low. The white locator
box overlaid on the BULC-U image highlights where the GFSAD basemap had an omission
error in the cropland class. This patch had low cropland probabilities (purple) in 2015, then
transitioned to high probability (yellow orange) in 2010, before reverting to low probability
in 2000. This transition indicates cropland that was initially missed by GFSAD but was
captured in 2010 given its spectral signature of cropland in the years from 2015 to 2010,
although the 2010 Google Image suggests a non-cropland area. Then, this cropland loss was
captured in early years, indicated by the decrease of the cropland probability in the 2005
and 2000 images. In contrast, the east and southwest edges of the image, which were not
cropland at any point in the study, showed increasing cropland probability from 2010 back
to 2000, which reflect the spectral similarities between cropland and shrublands (a term
we use here to encompass savannas, woodlands, and other non-cropland vegetation types
with varying degrees of woody vegetation cover), which was particularly pronounced in
2005 and 2000. Using the GFSAD cropland class as a mask helped to remove such areas of
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falsely detected cropland, thereby helping to reduce spurious detections of cropland and
cropland change (Figure 5, row 3). However, this masking excluded cropland areas that
were missed by GFSAD.

Following the BULC-U probability outputs, the slope of cropland probabilities was
calculated for each image pixel across the 15 annual probability values (Figure 6, row 1,
column 1). The region falling within the GSFAD 2015 mask had slope values ranging
from near zero (white) in areas where the cropland was present since 2000, such as the
north-central region, to positive values (blue) where cropland expansion occurred closer
to 2015 (e.g., towards the northwest). Near-zero slope values are also seen in the central
region because of the persistence of non-cropland between 2000–2015. Negative slopes are
evident in the east and west due to cropland probabilities decreasing from 2000 to 2015,
which reflects the false detections of cropland in earlier years. Adjusting the slope threshold
alters the amount of cropland expansion identified (Figure 6, row 1, columns 2–4). As the
slope threshold moves closer to zero, more pixels are identified as cropland gain.

The steps illustrated in Figure 5 were performed within each tile in the grid, followed
by the application of the shapelet method to detect the year of change. Figure 7 illustrates
the resulting cropland gain map for all of Zambia, along with the shapelet-estimated year.
The results show that cropland gain was widely distributed throughout the country and
steadily expanded within the vicinity of existing croplands over the 15-year time period.
Visual observation indicates our methods appeared to be effective in delineating individual
fields or clusters of fields, although some edge effects do exist (e.g., in the northeastern part
of the lower inset in Figure 7).
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Figure 7. The areas where cropland expanded in Zambia between 2000–2015, color-coded by the
year of expansion, shown in relation to cropland established prior to 2000 (white), as mapped by the
GSFAD cropland layer.

The trajectories of the probabilities at reference sample points (Figure 8) provides
further quantitative insight into BULC-U’s ability to distinguish cropland gain events (e.g.,
expansion between 2000–2010 and between 2010–2015) from areas representing persistent
cropland or non-cropland. As the BULC-U process began in 2015 and ran backwards
towards the year 2000, cropland probabilities in the persistent non-cropland class were
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expected to start at low values that remained low for all 16 years and persistent cropland
to have high values that remained high. In contrast, the two cropland gain classes that
were expected to have high probabilities that became low either between 2000–2010 (early
cropland gain) or between 2010–2015 (late cropland gain). In our assessment, which was
conducted for our set of validation points, these patterns generally held, with exceptions
indicating model error and the relatively small size of the samples in the two gain classes,
as well as variability related to the method used to develop the reference sample.
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Figure 8. Probability trajectories within four change-based classes in cropland wins reference dataset:
(a) Persistent Cropland; (b) Persistent Non-Cropland; (c) Early Cropland Gain (expansion between
2000–2010); (d) Late Cropland Gain (expansion between 2010–2015). The probability trajectories
within the same four classes, as assessed with the majority agreement reference dataset, are shown in
subplots (e–h). Cropland probabilities are summarized as box plots for each year in the time series,
with the bar indicating the median probability in each time period, the upper and lower ends of the
box showing the 75th and 25th percentile of probabilities, and the whiskers showing 1.5 times the
interquartile range. The initial probability distributions on the right side of each plot are drawn from
the probability value assigned to the two GSFAD classes (0.8 for cropland, 0.2 for non-cropland) prior
to BULC-U updating.
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For example, under the cropland wins reference sample, most persistent cropland
(Figure 8a) started from high cropland probabilities in 2015, and as updates proceeded
towards 2000, many cropland pixels retained high probability with the median annual
probability stable at ~0.8. However, the 25th percentile probability value gradually de-
creased from 0.8 to 0.6, with the range of values below the 25th percentile also gradually
declining to below 0.2, which indicates a general decrease in cropland probabilities within
the stable cropland class from 2015 towards 2000. The persistent cropland class showed the
same pattern when using the majority agreement reference set (Figure 8e), albeit with a
narrower range and smaller reduction in the probability values.

The persistent non-cropland (Figure 8b,f) showed a similar tendency under both
reference datasets, beginning with low cropland probabilities in 2015 (median = 0.2) that
remained low at all time points, but with slight increases towards a median of 0.4 as updates
moved towards 2000. In contrast to the persistent cropland class, however, the distribution
of cropland probabilities in the non-cropland class was much wider in each year (Figure 8f),
with the 75th percentile extending between 0.3 and 0.7 (up to 0.8 under the majority
agreement reference set), suggesting that there were numerous commission errors within
the persistent non-cropland class. These errors were most pronounced in 2015, reflecting the
GFSAD’s tendency to over-predict cropland. The high initial cropland probabilities in the
persistent non-cropland class (Figure 8f) might also be due to the potential omission error
in our majority agreement reference dataset since the requirement for majority agreement
rejects more cropland. It is therefore possible that GFSAD correctly classified such areas as
cropland and were placed into the persistent non-cropland class because of misclassification
in our reference labels. The increases in the median values towards 2000 might be explained
by the mix of cropland and non-cropland in the unsupervised classification.

The early cropland gain class (Figure 8c,g) had an initial high cropland probability
in 2015 and an overall decrease of median cropland in both cropland wins and majority
agreement reference dataset. For the cropland wins reference dataset (Figure 8c), the most
substantial decreases in median cropland probabilities were between 2009 to 2005, and
2003 to 2000. For the majority agreement reference set (Figure 8g), the most substantial
decreases occurred between 2008 to 2005 and 2003 to 2000. The declining median values
were accompanied by a substantial increase in the interquartile range (IQR, the range
between the 25th and 75th percentiles), which may indicate the difference in years in which
cropland to non-cropland transitions were detected as BULC-U updated towards 2000.
However, nearly 25% of the data in this class (upper whisker) had cropland probabilities
that were persistently greater than 0.8, although these cropland probabilities also decreased
slightly, given the decline in the 75th percentile towards 2000.

The late cropland gain class (Figure 8d,h) had an initial median probability of 0.5
when using the cropland wins validation sample (Figure 8d), with a relatively wide IQR
(0.2 to 0.83). For the majority agreement validation sample, the median initial probability
was 0.8 (Figure 8h), with the higher value reflecting the fact that the majority agreement
sample had a greater correspondence with GFSAD’s cropland class. Under the cropland
wins reference set, the increase in the median cropland probability between the initial
condition to ~0.6 in 2014, going as high as ~0.8 in 2012, could indicate the repair of
initial false negative error (cropland missed by GSFAD) by BULC-U, while the declines
in probabilities from 2012 to ~0.5 in 2009 shows the system detecting post-2010 cropland
gains. However, there is no clear trend in earlier years, and the number of observations
in this class is relatively small, which contributes to the noise. For the majority agreement
reference dataset, the cropland probability dropped from the initial condition of 0.8 to 0.6
in 2013, then increased a little to ~0.65 and stabilized until a sudden rise in 2000.

The percentage of cropland gain and the corresponding false positive error that oc-
curred between 2000 and 2015 varied according to the slope threshold that was used,
(Table 3 and Figure 9). For example, using a threshold of 0.03 captured 27.5% of the crop-
land gain in estimate using the reference sample, with a false positive rate of 6.9%. Since
the update is based on the basemap (GFSAD), if we exclude the validations points falling
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outside the basemap, then this threshold captures 35.8% of reference cropland gain, with
a false positive rate of 13%. As the slope threshold moves towards zero, the amount of
cropland gain captured increases, but at the cost of a higher false positive rate. However,
between the thresholds of 0.03 and 0.01, the gains in percentage of cropland gain captured
increased from just over 25% to nearly 51%, while the overall false positive rate remained
less than 18%. Lowering the slope threshold from 0.01 to 0.005 increased the amount of
cropland gain captured to 70% and increased the false positive rate to 38%. The high
commission error when evaluating cropland gain confined to the base map was caused
by the relatively high commission error in the base map together with the improvements
in map accuracy resulting from BULC-U updates. In other words, areas falsely classified
by the basemap as cropland in 2015 had their probabilities reduced by BULC-U in earlier
years, which caused these areas to be falsely identified as cropland gain.

Table 3. The percentage of actual cropland gain (per the reference sample, refer to Section 2.3.4) cap-
tured by the mapped cropland gain by slope threshold, along with the commission error (commission
error represents areas that did not have cropland gain but were mapped as such).

Slope
Thresh

Cropland
Gain

Captured
(Zambia)

Commission
Error

(Zambia)

Cropland
Gain

Captured
(GFSAD 2015)

Commission
Error

(GFSAD 2015)

C
ro

pl
an

d
w

in
s 0.005 0.696 0.37 0.736 0.598

0.01 0.507 0.178 0.623 0.329
0.015 0.435 0.144 0.547 0.269
0.02 0.406 0.108 0.509 0.198

0.025 0.348 0.084 0.453 0.158
0.03 0.275 0.069 0.358 0.13

M
aj

or
it

y
ag

re
em

en
t

0.005 0.705 0.36 0.77 0.596

0.01 0.5 0.166 0.581 0.316
0.015 0.466 0.132 0.554 0.254
0.02 0.42 0.099 0.5 0.187

0.025 0.375 0.073 0.446 0.143
0.03 0.33 0.06 0.392 0.117

Finally, to evaluate the accuracy of the estimated year of cropland gain, we intersected
the reference labels for early (2000 to 2010) and late (2010 to 2015) gain with the years
estimated from our shapelet method, excluding cropland gain labels that were omitted by
our slope method. Figure 10 (lower) shows the histogram of shapelet-detected gain years
for both cropland gain classes (early and late), corresponding to reference labels developed
using the majority agreement strategy (see Section 2.3.4). Although there is substantial
overlap in the distributions of gain years between each class, and only 11 observations in
the late gain class, 55% of the detected years in the late gain class were after 2010 while
77% of the values for the early class were before 2010, with the mode at the year 2003. Both
percentages are larger than the outcomes expected purely by chance, which would be 33%
of detected gain years in each 5-year bin (with 67% in the two pre-2010 bins). Results of the
same analysis based on the reference labels developed using the cropland wins strategy
(see Figure 10 upper) showed lower performance for the late gain class, with just 44% of
the late gain class correctly identified, although this sample size (8) was even smaller. The
early gain class was more accurate, with 69% of the sample correctly detected, although the
model value (7, or 22%) occurred around 2014.
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strategy to determine label class) of early cropland expansion (2000 = non-crop, 2010 and 2015 = crop)
and late cropland expansion (2000 and 2010 = non-crop, 2015 = crop), and their corresponding
estimated cropland expansion year (x-axis) from the shapelet method. A slope threshold of 0.005
was used to detect cropland expansion, to maximize the amount of cropland gain detected. The
histograms do not include cropland expansion events that the method failed to detect. Darker bars
indicate the number of gain events in individual years, while lighter bars summarize the number of
events in five-year intervals.
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4. Discussion

This study demonstrated a new capability to track agricultural change at medium
resolution over large areas by mapping annual cropland expansion over 16 years in Zambia,
a country that covers 750,000 km2. To enable this capability, we leveraged and extended the
large-scale processing capabilities of GEE and the Bayesian-synthesis approach provided
by the BULC-U algorithm, which we trained using a single high quality cropland base map,
thereby removing the need to collect extensive training data. We applied this method to
annually composited Landsat Surface Reflectance and synthetic aperture radar (Sentinel-1
and ALOS PALSAR) data at 30 m resolution, which improved the depth and variety of
information available to the classifier, while helping to overcome the limits to observation
posed by frequent cloud cover. Applying regression and shapelets to the BULC-U-generated
cropland probability time series enabled us to identify where and when cropland expansion
occurred. Using validation protocols for change detection (cropland gain versus non-
cropland gain) and land-cover classification (cropland versus non-cropland) accuracy, we
found that this approach showed fair to good performance in detecting cropland expansion
events in a hard-to-map environment, while helping to improve the accuracy of annual
cropland maps. Although we confined our analysis to cropland expansion, which is by far
the dominant mode of agricultural land cover change in this region [5], our method can be
adapted to analyze other cropland change patterns (e.g., loss, shifting agriculture patterns).
This method complements similar recent global-scale efforts [89] by providing an ability
to map cropland change at higher temporal frequencies, which can provide additional
opportunities for understanding the drivers and impacts of those land cover changes.

In the following sections, we provide a detailed discussion of the effectiveness of the
individual components of our approach, including suggestions for further improvements.

4.1. Factors Impacting Classification Accuracy

The complexity and diversity of Zambian croplands, together with the spatial-spectral
similarities between croplands and shrublands, caused confusion in our provisional clas-
sifications, especially for the annual Landsat mosaics. Distinguishing between these two
classes with 30 m Landsat TM imagery can be challenging [10], and we saw this error
reflected in the overall increase in cropland probability in areas covered by shrublands, as
highlighted in Figure 5. This confusion was caused by the inability of the unsupervised
classification to differentiate cropland from shrubland. Beyond those errors, there was
also confusion between natural vegetation and small-scale crop fields, which often have
remnant large trees and indistinct boundaries, or may be fallow [90]. There are opportuni-
ties to reduce this misclassification by including predictor variables that can further help
distinguish cropland from non-cropland, such as seasonal NDVI composites [91] and a
spatial index [92].

In this study, we used annual median composites because the lack of cloud-free
observations prevented us from making seasonal composites, especially during the growing
season, as is common in many agricultural regions [43,93]. As seasonal composites provide
better separability between croplands and non-croplands [51,92], future studies could
focus on integrating observations from other sensors, such as Sentinel-2 or PlanetScope,
in order to create higher temporal resolution composites that can provide this seasonal
contrast. The moderate spatial resolution of Landsat is too coarse in some instances
to classify smallholder cropland, as the average size of crop fields in such systems is
<0.64 ha [94], which underscores the value of integrating higher spatial resolution data
into the composites. Further gains may be obtained by incorporating data from active
sensors, as we found that SAR backscatter helped to increase observations in cloud-heavy
regions while providing complementary information that helped to distinguish croplands
from other land covers [95]. Unfortunately, there are limitations to accessing raw SAR
observations prior to the launch of Sentinel-1 in 2014, because data from other SAR satellites
are not publicly accessible or have limited availability on the GEE data catalog. For example,
the ALOS PALSAR data we used in this study that was shared on GEE are not the raw
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observations but rather a yearly mosaic, and ALOS PALSAR is only available for the years
2007–2010 [24,66].

4.2. BULC-U for Tracking Cropland Change

The unsupervised, object-based classifications from annual multi-sensor observations
were effectively fused together by BULC-U to construct annual cropland maps for Zambia.
In this study, we focused on a binary classification (cropland and non-cropland) problem,
but the BULC/BULC-U algorithm can be extended to multiple land-cover classes. Future
work could track multiple land cover conversion pathways using the workflow that we
have developed, with minor input parameter changes in BULC-U.

BULC-U was able to integrate additional evidence from the input classifications to
improve upon the quality of the base map when calculating the initial class probabilities.
The GFSAD we used to initialize BULC-U missed some smaller regions of croplands
(Figure 5), but as the update events were synthesized in BULC-U, the omitted cropland was
detected by the unsupervised classifications and the cropland probabilities increased in the
direction of BULC-U updates (backwards in time). This ability to improve the accuracy of
an existing map is one of the features of BULC-U [40] and could be further improved by
increasing the frequency of updated events (e.g., by applying unsupervised classifications
to seasonal image composites), or by running BULC-U backwards and then forwards
again [44]. Another means for improvement is to start with a more accurate base map,
which should in turn enhance BULC-U’s ability to map cropland gain. The accuracy of the
base map is crucial because it was used to calculate the initial cropland probability against
the first provisional classification input. Based on the comparison of the GFSAD with
our reference data, the GFSAD had a high producer’s accuracy (89%) but a lower user’s
accuracy (73%). In terms of our results, these base map errors were propagated into our
dataset through the initialization of the cropland and non-cropland probabilities (Figure 8).
As a result, most cropland was correctly assigned with a high initial cropland probability
(Figure 8, lower-right) in BULC-U because its high producer’s accuracy of GFSAD meant
that it was less likely to miss cropland. However, some non-cropland pixels were initialized
with high cropland probability because of the relatively low user’s accuracy of cropland in
GFSAD (non-cropland was mapped as cropland). Therefore, future studies could explore
using a basemap with higher accuracies to create more robust initial probabilities, and
even potentially interspersing multiple basemaps within the time series. As mentioned
in the previous section, newer sources of imagery together with improved classification
algorithms, particularly neural networks [34], offer the possibility of generating improved
basemaps [96,97].

4.3. Benefits of Gridded Processing Units

In addition to being necessary for processing a long time series of imagery over a
large area, we found that there were additional advantages to using a smaller gridded
processing unit in mapping workflow. First, the computational load scales linearly with
the study area, thus the smaller unit enables rapid processing of the imagery, followed by
application of BULC-U on the data stacks, and then downloading the resulting probabilities
for visualizing or post-processing on a local computer. This ability to rapidly analyze and
then re-run improves accuracy by allowing more permutations to be assessed and helps to
catch coding and analytical errors. Second, the relatively small study area provided by the
tiled grids were less impacted by the quality of radiometric correction or the atmospheric
conditions across the processed image’s extent [98]. Although advances in Landsat data
processing have improved the consistency of the radiometric response over the land surface
within and across Landsat scenes [99], as with the LEDAPS [100] surface reflectance product,
radiometric variability over large areas remains a problem that can influence results. Using
smaller processing units helped to limit the impacts of such radiometric bias in the resulting
classifications of annual Landsat mosaics and subsequent Bayesian data fusion. Third, a
smaller processing unit helped to reduce regional errors from low-quality unsupervised
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classifications or inaccurate reference map data. By using the gridded system, such errors
were isolated within their own grids, limiting their influence on the BULC-U algorithm.
Furthermore, the gridded processing system enables the application of local modifications
to the algorithm, such as varying thresholds, which can help to further improve overall
accuracy. However, future applications could explore ways to limit edge effects (e.g., by
building in and then averaging across tile overlaps), as we found from our uniformed slope
thresholding. While we ran BULC-U using 25 km by 22 km gridded tiles in our study, we
found that using larger grid sizes is also feasible.

This gridded processing system can also support the use of other advanced data
fusion and classification methods available in GEE, which may also have high memory and
computing resource requirements and would not complete if the study area is too large.

4.4. The Effectiveness of the Threshold and Shapelet Method

We found that the slope-based threshold method was effective for identifying cropland
gain given the clear boundaries of cropland in this region (Figures 5 and 7). Instead of
choosing a final slope threshold in this study, we tested a sequence of slopes experimentally
to allow us to identify the best threshold for the given features. Future studies could use a
subset of our cropland and non-cropland regions to identify the ideal slope that maximizes
the separation of cropland and non-cropland samples.

The shapelet method, which was previously shown to be effective for detecting the
year of tree crop plantings [79], proved useful for estimating the year of cropland expansion.
In our study, we applied multiple methods to evaluate the effectiveness of the shapelet
method using historical imagery from Google Earth, visual interpretation of example sites,
and reference points for the validation of the entire results. From the example sites, we
found that the shapelet method was generally able to capture the relative chronological
order of cropland expansion. Figure 10 also gave an estimation of the effectiveness of the
shapelet method, indicating it can distinguish between earlier and later cropland expansion,
although the number of gain observations in our reference sample was too small to precisely
measure how well the timing of gain events were captured. Future work should increase
the sample size within gain classes and could apply annual validation to further evaluate
the shapelet method’s strength for identifying cropland gain. In addition to improving
classification accuracy, adding more frequent intra-annual observations to the time series
could also improve the shapelet method’s effectiveness. Finer time intervals would allow
the shapelet method to identify cropland gain in a window of one year instead of three
years. Detecting multiple shapelets could also help to identify fields in areas of shifting
cultivation (e.g., in Northern Zambia) within the cropland probability time series. To
achieve this, both the direction and magnitude of cropland probability change would need
to be used to detect multiple shapelets.

4.5. The Impact of Reference Label Uncertainty on Understanding Performance

An important point to note regarding our reported results is that the range in assessed
classification accuracy and change detection performance in large part reflects the vary-
ing levels of confidence within the reference label classes used (see Section 2.3.4). The
uncertainty in the reference labels arises from the fact that they were developed through
visual interpretation of imagery that was of varying, and primarily moderate, resolution.
Identifying smallholder cropland within moderate resolution imagery can be difficult,
resulting in higher labeling error and greater between-labeler disagreement. The reliability
of our reference sample was therefore lower in the earlier years of our study period (see
Figure S1), when the image archives are primarily composed of Landsat data. That uncer-
tainty, and the way it was handled when aggregating the sample, had substantial impacts
on the performance metrics for each of the three assessments.

Another limitation of our reference data is that it only covered three time points, which
limited our ability to assess how well our methods can detect annual change events. These
factors demonstrate that the lack of high-quality reference data remains one of the major
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hurdles to land cover change mapping [101,102]. A fuller assessment of the performance of
our methods will therefore require a higher quality reference dataset, as the accuracy of the
reference labels sets the upper bound on knowable map accuracy.

4.6. Detecting Other Patterns of Cropland Change

Our current method is limited to detecting cropland gain events, but the probability
time series generated by BULC-U provides the ability to detect other patterns of cropland
change, such as cropland abandonment, or cycles of gain and loss that commonly occur in
swidden agricultural systems. Detecting other, more complex events (e.g., cropland gain fol-
lowed by cropland loss) will require methods that can recognize change points within more
complex, polynomial functions. Therefore, more sophisticated temporal segmentation algo-
rithms could be used, such as the trajectory detection method described in LandTrendr [64],
or approaches based on continuous change detection and classification [103,104].

5. Conclusions

In this study, we demonstrated how to use a flexible GEE-based workflow using
BULC-U, slope-thresholding, and shapelets to identify cropland expansion between 2000
to 2015 across a large region experiencing rapid agricultural growth, in this case Zambia.
By initializing the workflow with a single existing land cover map, our approach also
demonstrates a potential solution for overcoming the challenge of limited training data,
while showing how optical and SAR data can be combined to improve the frequency and
depth of information needed to effectively distinguish cropland from other land cover
types in a cloudy region. Future opportunities exist to build upon the methods presented
here by using more accurate land cover data to initialize the workflow, and by integrating
a more sophisticated time-series shape detection method. Ultimately, our flexible approach
makes mapping cropland change dynamics across large areas more accessible, further
advancing opportunities for cropland monitoring on cloud-based processing platforms.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs14194896/s1. Figure S1: Label consistency among three workers.
First row: Crop labels. Second row: non-crop labels. Note: circle sizes were scaled in each subplot
and were not comparable to other subplots. Figure S2: The consistency among three workers in
the created crop labels. Worker A has a smaller crop label size in all three years compared with
workers B and C (first row). Three candidate strategies were considered to unify the validation
labels as vote (second row), favoring crop (third row) and favoring non-crop (last row). Figure S3:
Cluster Purity Score. Figure S4: Comparison of validation points. red: more than two people think
it is non-crop; blue: more than two people think it is crop; green: only one person thinks it is crop.
Table S1: Comparison of the accuracy of a BULC-U derived crop map for 2000* compared to the base
GFSAD 2015 cropland map, including the overall accuracy and User’s and Producer’s accuracy of the
cropland class. The cropland map for 2000, which we made by subtracting the area of cropland gain
identified by BULC-U with a 0.03 slope threshold from the 2015 base map, had similar but slightly
lower levels of overall, User’s, and Producer’s accuracy than the base map.
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