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Abstract: Convolutional neural networks (CNNs) are widely used for hyperspectral image (HSI)
classification due to their better ability to model the local details of HSI. However, CNNs tends to
ignore the global information of HSI, and thus lack the ability to establish remote dependencies,
which leads to computational cost consumption and remains challenging. To address this problem,
we propose an end-to-end Inception Transformer network (IFormer) that can efficiently generate
rich feature maps from HSI data and extract high- and low-frequency information from the feature
maps. First, spectral features are extracted using batch normalization (BN) and 1D-CNN, while the
Ghost Module generates more feature maps via low-cost operations to fully exploit the intrinsic
information in HSI features, thus improving the computational speed. Second, the feature maps are
transferred to Inception Transformer through a channel splitting mechanism, which effectively learns
the combined features of high- and low-frequency information in the feature maps and allows for the
flexible modeling of discriminative information scattered in different frequency ranges. Finally, the
HSI features are classified via pooling and linear layers. The IFormer algorithm is compared with
other mainstream algorithms in experiments on four publicly available hyperspectral datasets, and
the results demonstrate that the proposed method algorithm is significantly competitive among the
HSI classification algorithms.

Keywords: ghost module; inception transformer; high frequency; low frequency; hyperspectral
image

1. Introduction

Due to the maturation of spectral imaging technology in recent years, hyperspectral
imaging (HSI) is able to capture a large amount of valuable spatial information, spectral
features, and other information, and is widely used in various fields such as agricultural
monitoring [1], medical imaging [2], mineral exploration [3], food safety [4], and military
defense [5] as information that complements remote sensing application techniques [6].
Many techniques have been proposed to capture rich data features in order to exploit the full
potential of HSI data in areas such as image denoising [7,8], spectral unmixing [9], anomaly
detection [10,11], target detection [12], and landcover classification [13–15]. However, HSI
classification has been an active topic in the HSI community and presents a huge challenge.

Initially, researchers extracted information from a spectral perspective to study HSI clas-
sification, and proposed many traditional methods such as K-nearest neighbor (KNN) [16],
Bayesian estimation method [17], multinomial logistic regression (MLR) [18], and the sup-
port vector machine (SVM) [19]. Furthermore, in order to make full use of spectral features,
methods applied to feature selection and feature extraction [20,21] have been proposed,
including principal component analysis (PCA) [22], independent component analysis
(ICA) [23], and linear discriminant analysis (LDA) [24]. Although these methods perform
effectively in mining the potential features of HSI, they easily ignore the correlation of spa-
tial neighborhoods for the spatial structure in HSI. Therefore, researchers have continued
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to propose new methods to address these issues, including morphological profile (MP) [25],
extended MP (EMP) [26], and extended multi-attribute profile (EMAP) [27]. Nevertheless,
the above methods have some limitations and problems, such as features needing to be ac-
quired manually and the experimental parameters being unusually complex, which greatly
hinder the mining of potential features of HSI data and are not conducive to improving the
identification of HSI object classes.

Since deep learning has been very successful in recent years as a technique to ac-
tively capture potential features, many HSI classification methods based on deep learning
have been proposed. For example, Chen et al. [28,29] first proposed deep belief networks
(DBNs) for both unsupervised and supervised learning, targeting the deep features of HSI.
Among most deep learning methods, convolutional neural networks (CNNs) [30] have
received much attention in the domain of remote sensing image processing due to their
ability to extract non-linear and hierarchical features. Therefore, some CNN-based module
structures have been developed for HSI classification, due to its good practicality and
classification performance; for example, three new HSI classification network structures,
1D-CNN [31], 2D-CNN [32], and 3D-CNN [33], as well as variant networks of CNN [34],
which effectively enhance the working characteristics of the networks. In order to reduce
the number of network parameters and the computing complexity, deep residual learning
block, proposed by Zhong et al. [35], worked on the classification of HSI and obtained a
better performance than that with CNN only. A fast, densely connected spectral spatial
convolutional network (FDSSC) [36] based on densely connected modules was proposed,
which also achieved a better classification performance. Inspired by the attention mecha-
nism, Ma et al. [37] proposed a network with a dual-branch multi-attention mechanism
for the best classification results, in order for the network to focus more on HSI detail
information. Li et al. [38] similarly proposed a two-branch dual-attention mechanism HSI
classification network in order to improve the experimental performance and to reduce
the number of training samples in the attention mechanism. Although the classification
accuracy of HSI has been improved based on different CNN models, some shortcomings
and drawbacks persist, such as the tendency to ignore global feature information, and the
increase in computational cost as the number of network layers increases, as well as the
excessive redundant features.

Transformer had a great impact and achieved excellent results when it was first
proposed in the natural language processing (NLP) field. Transformer is a model that
uses the attention mechanism to improve the training speed of the model. The entire
network structure consists entirely of the attention mechanism and the feed-forward neural
network. Its success has drawn the attention of many researchers to its adaptation in the
computer vision field, such as object detection [39,40] and semantic segmentation [41,42].
As a result, there has been a significant amount of work applying transformers to the HSI
field. The authors in [43] proposed a model that uses a modified Transformer to capture the
sequence spectral relations, with a multilayer perceptron performing the final classification
task, called the spatial-spectral Transformer (SST). Similarly, Qing et al. [44] proposed a
new Transformer model in an end-to-end form to extract spectral-spatial features for HSIs
through a spectral attention mechanism and a self-attention mechanism. In the same year,
Hong et al. developed a novel network, SpectralFormer (SF) [45], which can learn the
local sequence information of the band from the neighboring bands of HSI by Transformer.
However, as mentioned before, Transformer is excellent at HSI classification, but still not
very outstanding at capturing local information.

Actually, theories on visual perception agree that low spatial frequencies carry coarse
information, whereas high spatial frequencies carry fine details [46]. On the one hand,
due to multi-head self-attentions (MSAs) being low-frequency filters, Vision Transformer
(ViT) [47] and ViT-based methods prefer to capture the global information. On the other
hand, CNNs are high-frequency filters, so CNNs prefer to capture the local edges and
textures. In order to be able to fully utilize the Transformer model to address the above
issues, we therefore propose an HSI classification feature extraction method with the
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Inception Transformer (IFomer) model, which can flexibly extract high-frequency spatial
information from the feature maps obtained from HSI according to the Ghost Module,
and effectively model global dependencies on low-frequency detail information. The model
first extracts non-linear features in HSI using a 1D-CNN layer, which effectively avoids
feature redundancy in HSI and inaccurate classification due to the Hughes effect. More
features are then generated by applying fewer parameters to the spectral features according
to the Ghost Module. Thirdly, to extract the high- and low-frequency information from the
feature maps, we input the generated feature maps into Inception Transformer, which can
effectively capture specific frequency information from the corresponding channels. Finally,
a linear classifier based on softmax is used to assign each pixel the maximum probability of
belonging to a class with an independent label.

The main contributions of this article are as follows:

1. Due to the corresponding reduction in critical information when extracting non-
linear features for HSI, the Ghost Module is a novel cost-effective plug-and-play
module, and is capable of generating more features with fewer parameters. It not only
obtains more essential feature maps without changing the size of the output feature
maps, but also significantly reduces the total number of parameters required, and the
computational complexity.

2. Since the Ghost Module generates a large number of features, we introduce a simple
but efficient Inception Transformer module to reasonably capture and exploit the
global and local information of HSI. Inception mixer in the Inception Transformer
uses the convolutional-maxpooling and self-attention paths run in parallel with the
channel splitting mechanism to extract local details from high-frequency information,
and global information from low-frequency information, respectively, thus reducing
information loss.

3. The proposed IFormer method is compared with other recent methods on four
datasets, namely Indian Pines, University of Pavia, Salinas and LongKou, and the
experimental results demonstrate that the model can achieve a high degree of accuracy
and a low time complexity with a small number of samples.

The rest of the article is structured as follows. Section 2 introduces the relevant aspects
of the proposed IFormer method. In Section 3, the sensitivity of the parameters of the
method is analyzed mainly on four real HSI datasets, and the classification performance
is compared with the classification results of other mainstream methods under different
samples. Finally, Section 4 presents the conclusions and a discussion on future work.

2. Methods

In this section, we will focus on describing the structure and details of the IFormer,
as shown in Figure 1 and Algorithm 1, by describing how to extract high- and low-frequency
information from the HSI, so that the HSI features can be classified at a fine-grained level.
The network structure consists of two main components: the Ghost Module processes the
spectral features to generate more feature maps, and then the Inception Transformer can
effectively learn from the feature maps to a combined feature containing both high- and
low-frequency information from the ground. We elaborate on both parts in the follow-
ing subsections.
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Algorithm 1 IFormer method for HSI classification steps

Input: The HSI dataset X ∈ Rh×w×b; 1D-CNN dimension d = 128; spatial neighborhood
block size s; channel ratio r; number of Inception Transformer layers L.

1: Construct a training patch and a test patch from the original HSI X, with a training
patch size of 20 and a test patch size to 300.

2: Patch P ∈ Rs×s×b is processed into P′ ∈ Rs×s×d using BN and 1D-CNN methods to
extract spectral features and non-linear features.

3: Further, the feature map Y ∈ Rs×s×n is generated by the Ghost Module in an inexpen-
sive manner of operation.

4: for l to L do
5: Zl = Yl + ITM(LN(Yl));
6: Hl = Zl + FFN(LN(Zl));
7: end for
8: H = Pooling(HL);
9: F = Softmax(H);

Output: Predicted labels for test pixel F.

2.1. Ghost Module

Given the original HSI data X ∈ Rh×w×b, in which b is the number of the input
channels, h is height of the input data, and w is the width of the input data. The spectral
dimension of each pixel in X is b, forming a one-hot category vector L = (l1, l2, · · ·, lC) ∈
R1×1×C, where C denotes the number of classes. Consider an HSI calculation for patch size
as P ∈ Rs×s×b using a BN and 1D-CNN model to obtain the spectral features P′ ∈ Rs×s×d,
where s represents the spatial neighborhood block size and d indicates the dimension of the
generated spectrum, and non-linear features were extracted. However, since the feature
maps generated directly using CNN convolution have a large amount of redundancy,
the Ghost Module was introduced to use a small amount of filtering in order to be able
to generate more features to reduce the computational effort [48]. Feature maps that are
outputted directly through the convolution layer commonly contain more redundancy,
and there are some feature maps that have similarities. Therefore, it is not necessary to
have a large number of parameters in order to generate these redundant feature maps. We
assume that the output feature map is a “ghost” of the intrinsic feature map that can be
transformed cheaply by a small number of parameters. Specifically, the Ghost Module is
divided into two main stages.

In the first stage, we generate m intrinsic feature maps Q′ ∈ Rs×s×m for the spectral
feature P′ ∈ Rs×s×d using a primary convolution layer, formulated as follows:
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Q′ = P′ ⊗ f + b (1)

where Q′ ∈ Rs×s×m is the output of the feature map, m ≤ n, ⊗ is the convolution operation,
f ∈ Rd×k×k×m are the convolution kernels in this stage, and b indicates offset. Furthermore,
k× k represents the size of the convolution kernels f.

In the second stage, we perform a series of linear operations on each intrinsic feature
in Q’ in order to obtain the required n feature mappings, and therefore generate w “ghost”
features in an inexpensive manner, according to the following function:

yij = Φi,j(qi
′) ∀i = 1, ..., m, j = 1, ..., w. (2)

where qi
′ is the i-th feature map in Q′, and Φi,j is the j-th (except the last one) linear

arithmetic operation to generate the j-th “ghost” feature map yij; qi
′ can generate one

or more “ghost” feature maps {yij}w
j=1. Φi,w is expressed as the identity mapping that

maintains the intrinsic feature maps, as illustrated in the upper Ghost Module in Figure 1.
With the calculation of Equation (2), n = m · w feature maps Y = [y11, · · ·, ymw] can be
obtained and used as the output data of Ghost Module, as displayed in the upper Figure 1.
As can be seen from the computational complexity, the linear operation Φ works on each
channel, and its computational cost is much lower than that of ordinary convolution.

2.2. Inception Transformer

In order to effectively utilize the feature maps generated by Ghost Module, we further
extract high- and low-frequency features from them using Inception Transformer. While
the traditional Transformer performed well in building remote dependencies, it showed
a lack of ability in capturing high-frequency local information, and the over-propagation
of global information would enhance low-frequency representations and weaken high-
frequency information parts, such as local information. In the case of HSI classification
tasks, the high-frequency information is also discriminatory and can be beneficial for
modeling scene details. Therefore, to compensate for the Transformer’s inability to capture
high-frequency information, we introduce an efficient end-to-end form of the Inception
Transformer structure [49], as depicted in the lower part of Figure 1.

Considering that CNNs obtain more local information through the sensory domain,
an Inception token mixer (ITM) is proposed in the Inception Transformer, which transposes
the powerful ability of CNNs to extract high-frequency representations into the Transformer,
effectively combining the advantages of CNNs and Transformers, aiming to boost the
extraction of high- and low-frequency information from the Transformer. The Inception
Transformer differs from the previous Transformer in that instead of directly feeding a
series of patch tokens into MSAs, the input features are first segmented proportionally
along the channel dimension, and then for the segmented features, they are fed into a
high-frequency mixer and a low-frequency mixer, respectively. The high-frequency mixer
contains two operations: maximum pooling operation and parallel convolution, while the
low-frequency mixer is mainly performed using self-attention. Technically, the input feature
maps are given as Y ∈ Rs×s×n, and Y is decomposed into high-frequency feature maps
Yh ∈ Rs×s×nh and low-frequency feature maps Yl ∈ Rs×s×nl along the channel dimension,
n = nh + nl, where nh = n ∗ r, and r denotes the channel ratio. Yh and Yl are then assigned
to the high-frequency mixers and low-frequency mixers, respectively.

High-frequency mixer : Since the maximum filter is sensitive to features and the
convolution operation is equally detail-aware, we use a parallel structure for detailed
features to learn the high-frequency components, (i.e., local features and boundaries). We

divided the high-frequency component Yh, in the channel dimension into Yh1 ∈ Rs×s× nh
2

and Yh2 ∈ Rs×s× nl
2 . For the high-frequency mixer, Yh1 is fed into a max-pooling and a linear

layer, and Yh2 is embedded in a linear layer and a deep convolution layer, as presented in
Figure 2.
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Figure 2. Structure diagram of the Inception token mixer in Inception Transformer.

Both of the output feature maps can be expressed using the following formulas:

Zh1 = FC(MaxPool(Yh1)) (3)

Zh2 = DWConv(FC(Yh2)) (4)

where Zh1 and Zh2 are the output feature maps of the high-frequency mixers.
Low-frequency mixer: We still use MSA to pass information between all tokens of

the low-frequency mixer, due to its excellent ability to extract low-frequency information.
Although the self-attention mechanism is highly capable of targeting global representations,
it can be computationally intensive at a shallow level for large resolution feature maps.
Thus, to reduce the spatial scale of Yl, only the original spatial dimension is recovered
through the use of an average pooling layer before the self-attention operation, and an
upsampling layer after the self-attention operation. Such operations can effectively reduce
the consumption of computational costs and enable attention operations to be centrally
embedded in the global information. The output feature maps can be expressed using the
following formula:

Zl = Upsample(MSA(AvePool(Yl))) (5)

where Zl means the output feature maps of low-frequency mixers.
Fusion: In the end, we concatenate the channel dimension of the high-frequency

mixers and the low-frequency mixer:

Zc = Concat(Zl, Zh1, Zh2) (6)

Considering that the upsampling operation in Equation (5) would in turn select the
value of the closest point at each location without considering the other points; this would
lead to excessive smoothing between neighboring markers. Therefore, a fusion module
is proposed that subtly compensates this problem by exchanging information between
patches in a deep convolution while maintaining a linear layer across channels, so that,
like the previous Transformer, it can continue working at each position. The final output
features are described below:

Z = FC(Zc + DWConv(Zc)) (7)

Inception Transformer has a feed-forward network (FFN), as does ViT, but with the
difference being that Inception Transformer replaces the MSA mechanism with the ITM
and applies LayerNorm (LN) before ITM and FFN. Therefore, Inception Transformer can
eventually be expressed using the following formulae:



Remote Sens. 2022, 14, 4866 7 of 21

Z = Y + ITM(LN(Y)) (8)

H = Z + FFN(LN(Z)) (9)

With the Inception Transformer module, the input feature size is equal to the output
feature size. The output feature patch is passed through a linear layer and a softmax function
to calculate the probability that the output feature belongs to one of the feature categories
for the final classification, and the label with the highest probability value is the category in
which the sample is located.

3. Experimental Result and Analysis

In order to verify the effectiveness of the proposed IFormer model in HSI classification,
we experiment and analyze it in this section. First, the dataset used for the experiments is
briefly described and compared with other advanced algorithms on the dataset, as well
as parameter analysis. Finally, to authenticate the validity and competitiveness of the
proposed method, we perform IFormer and ablation experiments in terms of time cost and
under different samples.

All classification experiments were performed on a workstation equipped with Intel
Core i9-10900KF, Nvidia Geforce GTX3070Ti GPU, and 32 GB RAM. The IFormer model
proposed in this paper is implemented using the Python language with PyTorch library,
and other comparison methods use the corresponding original experimental environment.

3.1. DataSets Description
3.1.1. Indian Pines (IP) Dataset

The Indian Pines dataset was collected using an Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) sensor in Northwestern Indiana, USA. The 24 absorbing bands are
removed, so that the next 200 bands are retained out of 224 spectral bands. The dataset
has a spatial size of 145 × 145 pixels, a spatial resolution of 20 m/pixel, a spectral resolu-
tion of 400–2500 nm, and a labeled pixels count of 10,249, covering 16 object categories.
The composite images, training set, test set, and legend are presented in Figure 3, and the
number of training samples, the number of validation sets, and the number of test sets for
the corresponding categories are provided in Table 1.

Table 1. The number of training sets and test samples covered by each surface selected on the IP
dataset, and the number of all in each class.

Class No. Class Name Total Sample Training Validation Test
1 Alfalfa 46 5 2 39
2 Corn_N 1428 143 14 1271
3 Corn_M 830 83 8 739
4 Corn 237 24 2 211
5 Grass_P 483 49 4 430
6 Grass_T 730 73 7 650
7 Grass_P_M 28 3 2 23
8 Hay_W 478 48 4 426
9 Oats 20 2 1 17
10 Soybean_N 972 98 9 865
11 Soybean_M 2455 246 24 2185
12 Soybean_C 593 60 6 527
13 Wheat 205 21 2 182
14 Woods 1265 127 12 1126
15 Buildings_G_T 386 39 3 344
16 Stone_S_T 93 10 2 81
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(a) (b) (c) (d)

Figure 3. IP dataset. (a) Composite image. (b) Training set. (c) Test set. (d) Legend.

3.1.2. University of Pavia (UP) Dataset

The University of Pavia dataset was collected by the ROSIS-03 sensor at University
of Pavia, Italy, in 2002, measuring 610 × 340 pixels with a spatial resolution of approxi-
mately 1.3 m. The dataset contains nine main landcover classes in the wavelengths range of
0.43v0.86 µm, with a total of 42,776 labeled pixels, in addition to the background. The orig-
inal dataset had 115 bands, and after removing 12 high-noise bands, the remaining 103
bands were selected for the experiment. Figure 4 and Table 2 give detailed information on
the UP dataset.

Asphalt
Bare 
Bitumen
Bricks
Gravel
Meadows
Metal
Shadows
Trees

(a) (b) (c) (d)

Figure 4. UP dataset. (a) Composite image. (b) Training set. (c) Test set. (d) Legend.

Table 2. The number of training sets and test samples covered by each surface selected on the UP
dataset, and the number of all in each class.

Class No. Class Name Total Sample Training Validation Test
1 Asphalt 6631 67 66 6498
2 Meadows 18,649 187 187 18,275
3 Gravel 2099 21 21 2057
4 Trees 3064 31 31 3002
5 Metal 1345 14 14 1317
6 Bare 5029 51 50 4928
7 Bitumen 1330 14 11 1305
8 Bricks 3682 37 37 3608
9 Shadows 947 10 10 927

3.1.3. Salinas Valley (SV) Dataset

The dataset scene has a spatial resolution of 3.7 m/pixel and was acquired using
AVIRIS sensor photography in Salinas Valley, California. Additionally, the scene consists of
512 × 217 pixels, and after removing 20 water vapor bands, 204 water vapor bands remain.
The SV dataset contains 16 classes and 54,149 pixels as ground truth. Figure 5 shows the
composition map, training label map, test label map, ground truth, and legend of the SV
dataset. The training set, validation set, and test set are picked according to the description
in Table 3.
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Figure 5. SV dataset. (a) Composite image. (b) Training set. (c) Test set. (d) Legend.

Table 3. The number of training sets and test samples covered by each surface selected on the SV
dataset, and the number of all in each class.

Class No. Class Name Total Sample Training Validation Test
1 Brocoli_G_W_1 2009 21 20 1968
2 Brocoli_G_W_2 3726 38 36 3652
3 Fallow 1976 20 20 1936
4 Fallow_R_P 1394 14 14 1366
5 Fallow_S 2678 27 26 2625
6 Celery 3579 36 36 3507
7 Stubble 3959 40 40 3879
8 Grapes_U 11,271 113 113 11,045
9 Soil_V_D 6203 63 62 6078
10 Corn_S_G_W 3278 33 33 3212
11 Letttuce_R_4 1068 11 11 1046
12 Letttuce_R_5 1927 20 19 1888
13 Letttuce_R_6 916 10 9 897
14 Letttuce_R_7 1070 11 11 1048
15 Vinyard_U 7268 73 73 7122
16 Vinyard_V_T 1807 19 18 1770

3.1.4. WHU-Hi-LongKou (LK) Dataset

The WHU-Hi-LongKou dataset was photographed using an 8 mm focal length hyper-
spectral imager in the LongKou town area of Hubei Province, China [50,51]. The spatial
resolution of the airborne hyperspectral images is approximately 0.463 m. The dataset is
550 × 400 pixels in size and has 270 bands, located between 400∼1000 nm. The research
scenario focuses on crop areas, with nine landcover types such as corn, cotton, and sesame.
The main falsecolor image of the LK dataset, the training sample set, the test set, and the
reference color code are shown in Figure 6. For the experiment, 1% of datasets was used for
each of training and validation, and 98% was used as the test set, as shown in Table 4.

Corn

Cortton

Sesame

Broad_L_S

Narrow_L_S

Rice

Water

Roads_Houses

Mixed_Weed

(a) (b) (c) (d)

Figure 6. LK dataset. (a) Composite image. (b) Training set. (c) Test set. (d) Legend.
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Table 4. The number of training sets and test samples covered by each surface selected on the LK
dataset, and the number of all in each class.

Class No. Class Name Total Sample Training Validation Test
1 Corn 34,511 346 346 33,819
2 Cotton 8374 84 84 8206
3 Sesame 3031 31 30 2970
4 Broad_L_S 63,212 633 632 61,947
5 Narrow_L_S 4151 42 41 4068
6 Rice 11,854 119 118 11,617
7 Water 67,056 671 670 65,715
8 Roads_Houses 7124 72 71 6981
9 Mixed_Weed 5229 53 52 5124

3.2. Experimental Setting and Analysis
3.2.1. Experimental Setting

The overall accuracy (OA), average accuracy (AA), and kappa coefficient (Kappa) are
employed to evaluate the superiority and effectiveness of the algorithm. OA means the
probability of correctly predicted labels among all labels, AA is expressed as the number of
correctly predicted labels in each category as a percentage of the number of all samples in
that category, and the kappa coefficient is used to define the identity between the tested
true labels and the predicted labels.

In addition, to maintain the fairness of the experiment, all comparison methods, as well
as the proposed method, were executed 10 times with randomly selected training samples,
as well as the obtained means of OA, AA, and Kappa, and the standard deviations, with
the middle number of () denoted as the standard deviation of the three evaluation metrics.
For the training process of the model on the four datasets, we use cross-entropy as the loss
function, and the optimizer updates the parameters of the model by stochastic gradient
descent (SGD) to avoid overfitting, with the learning rate and epoch set to 0.001 and 150,
respectively.

1. SVM [52] is mainly used as a traditional classification method to extract the spectral
information of HSI using LibSVM toolbox [53], with radial basis function (RBF) kernel,
and to perform five-fold cross-validation.

2. The overall structure of SSRN [35] is a combination of 3D-CNN [54] and ResNet [30],
where the input size is 7 × 7 × B, and B denotes the number of bands.

3. The 1D-CNN [31] is structured using a convolutional layer with a filter size of 20,
a BN layer, a pooling layer of size 5, a ReLU activation layer, and finally, a so f tmax
function that can extract only the spectral feature of HSI.

4. The 2D-CNN [55] is a network containing two 2D-CNN layers, three ReLU activation
layers, and a max-pooling layer, which has an input patch size of 7 × 7 × B.

5. FDSSC [36] is proposed on the basis of DenseNet, [56] combined with the spectral
and spatial structure of HSI. The input patch size is 9 × 9 × B, which we reduce
to 5 × 5 × B because the LK dataset is too large and the computational memory is
insufficient.

6. The structure of DBDA [38] is composed of DenseNet as the backbone network and
the DANet [57] attention mechanism, with an input patch size of 9 × 9 × B and the
same size of 5 × 5 × B on the LK dataset.

7. CGCNN [34] takes the entire HSI as the input and extracts HSI features by guiding
the CNN convolution kernel through features, where the convolution kernel size is
5 × 5.

8. SF [45]: SF as a Transformer structure, learns local spectral features from HSI adjacent
bands and skips connections using cross-layers; the input patch size is 7 × 7 × 3.
Since the LK dataset scene is too large, the input size is set to 5 × 5 × 3.
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3.2.2. The Proposed Algorithm Compared with the Advancement of Existing Methods

First, the performance of the proposed method, IFormer, is compared with other
advanced algorithms on IP datasets with small sample scenarios. A proportion of 10% of
the samples are selected as training samples, and 1% and 89% of the samples are used as
the validation and test sets, respectively. From the qualitative analysis in Table 5, it is more
intuitive that the proposed method, IFormer, shows some advantages in both the OA and
Kappa evaluation metrics. IFormer yields 15.3% accuracy relative to SVM, which indicates
that deep learning shows a clear advantage in HSI classification. In addition, among the
deep learning methods, IFormer has some advantages over other recent advanced algo-
rithms, such as CGCNN and DBDA, in terms of recognition accuracy in categories such
as Corn_M, Hay_W, and Soybean_N, as seen in Figure 7. Nevertheless, the classification
accuracy of IFormer for Alfalfa is 18.7% lower than that of FDSSC, and 33.56% lower than
that of CGCNN for oats, which may be due to the imbalance in the number of samples in
the dataset scenario; especially as the category of Oats contains only 20 samples, and as we
selected the training samples proportionally, it is thus easy to cause IFormer to pay less
attention to the category with fewer sample categories to focus less attention. In addition,
the proposed method is almost 10% higher than the SF in the OA and Kappa evalua-
tion metrics, which indicates that IFormer makes full use of the high- and low-frequency
information in HSI.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 7. Classification results of ground truth and comparison methods for the IP dataset. (a) Ground
Truth. (b) SVM. (c) SSRN. (d) 1D-CNN. (e) 2D-CNN. (f) FDSSC. (g) DBDA. (h) CECNN. (i) SF.
(j) IFormer.

Table 6 displays the classification results that were given using the comparison method
on the UP dataset, and Figure 8 presents a classification map for the corresponding al-
gorithm. As we can visually observe in Table 6, IFormer performs 2% more accurately
than most classification methods for the four categories of Asphalt, Meadows, Bitumen,
and Metal, and with 100% accuracy for Bitumen. DBDA introduces the DANet attention
mechanism [56], and expects to be able to learn detailed information from HSI, but the accu-
racy in classifying the Trees categories is not as good as it should be. All three classification
metrics of DBDA with the introduction of the DANet attention mechanism outperformed
FDSSC and CECNN, because the attention mechanism allows for more attention to im-
portant detailed information in the HSI. The proposed method then achieves the best
classification results and performance compared with the method that also introduces
the attention mechanism; one of the reasons for this is that the Ghost Module in IFormer
is able to generate more important features, while the Inception Transformer considers
high- and low-frequency information in the feature map, thus highlighting the respective
represented features.
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Table 5. Accuracy comparison of different methods on IP dataset.

Class No.
Classification Accuracy Obtained by the Proposed Method and Different Comparison Methods (in %) 1

SVM SSRN 1D-CNN 2D-CNN FDSSC DBDA CGCNN SF IFormer

1 65.61(15.6) 97.85(6.42) 33.41(7.32) 70.48(17.4) 99.72(0.81) 95.37(7.67) 94.51(6.54) 25.12(6.45) 80.98(19.7)
2 79.69(1.98) 97.14(2.27) 79.30(2.18) 93.19(1.67) 98.45(1.54) 98.18(1.06) 98.04(1.08) 87.85(4.05) 97.95(0.54)
3 69.73(2.68) 98.01(1.34) 64.32(3.41) 92.51(2.20) 98.47(2.12) 98.81(1.08) 90.19(6.60) 86.15(2.14) 99.31(0.27)
4 62.44(8.34) 96.71(3.74) 52.39(6.97) 86.19(4.18) 98.03(2.83) 97.04(4.03) 92.79(3.66) 90.98(4.49) 96.16(3.17)
5 89.40(2.74) 98.63(1.04) 88.34(4.91) 95.47(2.43) 99.23(1.09) 97.41(1.72) 96.36(2.98) 89.07(1.71) 97.49(1.54)
6 95.48(1.85) 99.04(0.97) 97.51(0.71) 99.16(0.36) 98.84(0.97) 99.25(1.05) 99.43(0.82) 97.64(1.68) 98.95(0.29)
7 76.40(7.41) 50.00(50.0) 36.40(24.5) 74.80(12.9) 94.44(12.9) 92.67(13.5) 98.80(1.83) 48.40(8.48) 85.80(15.3)
8 98.09(1.36) 98.63(1.41) 97.65(2.18) 99.76(0.20) 99.31(1.36) 100.00(0.0) 99.92(0.15) 99.62(0.31) 100.00(0.0)
9 42.78(19.8) 10.00(30.0) 28.33(20.3) 90.55(7.47) 79.56(28.6) 95.06(7.59) 99.44(1.66) 38.23(17.6) 65.88(20.5)
10 78.40(3.14) 92.30(9.24) 71.70(4.72) 94.36(2.17) 95.70(4.06) 95.73(3.18) 95.09(2.42) 89.92(2.35) 98.19(2.41)
11 85.54(0.89) 97.51(4.13) 80.65(1.99) 94.99(0.95) 98.31(1.42) 99.07(0.60) 98.47(1.28) 93.42(3.03) 98.98(0.62)
12 73.60(3.56) 95.58(3.06) 77.75(2.45) 83.29(4.37) 91.32(18.5) 98.16(0.60) 96.10(2.83) 81.53(4.48) 96.33(2.41)
13 96.41(2.64) 99.56(0.72) 98.43(1.14) 99.94(0.16) 99.24(1.55) 98.77(2.17) 99.56(0.21) 99.78(0.26) 99.78(0.27)
14 94.92(2.37) 99.27(0.37) 95.01(1.04) 98.10(1.04) 98.79(0.96) 98.84(0.84) 99.35(0.52) 95.56(1.05) 99.59(0.27)
15 57.12(3.74) 98.05(1.75) 63.48(6.36) 89.91(4.69) 98.25(2.40) 98.62(1.33) 98.82(1.09) 60.83(6.22) 98.34(0.80)
16 85.18(4.02) 96.21(5.32) 84.16(3.06) 96.78(4.39) 96.41(4.30) 93.39(6.67) 98.19(3.37) 99.03(1.18) 99.88(0.37)

OA(%) 83.12(0.90) 97.11(1.55) 80.91(0.75) 94.28(0.38) 97.19(2.95) 98.28(0.61) 97.31(0.75) 90.05(0.89) 98.44(0.45)
AA(%) 80.69(1.03) 89.03(3.45) 71.80(2.65) 91.22(1.12) 96.50(2.39) 97.27(1.29) 97.19(0.82) 80.20(1.71) 94.54(3.13)
Kappa 78.17(2.14) 96.71(1.77) 78.16(0.85) 93.47(0.44) 96.82(3.30) 98.04(0.69) 96.93(0.85) 88.64(1.00) 98.22(0.52)

1 Optimal precision is bold.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 8. Classification results of ground truth and comparison methods for the UP dataset.
(a) Ground Truth. (b) SVM. (c) SSRN. (d) 1D-CNN. (e) 2D-CNN. (f) FDSSC. (g) DBDA. (h) CECNN.
(i) SF. (j) IFormer.
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Table 6. Accuracy comparison of different methods on UP dataset.

Class No.
Classification Accuracy Obtained by the Proposed Method and Different Comparison Methods (in %)

SVM SSRN 1D-CNN 2D-CNN FDSSC DBDA CGCNN SF IFormer

1 89.56(3.10) 97.82(2.41) 91.07(1.52) 94.09(1.74) 97.00(1.89) 97.21(1.96) 92.41(2.28) 72.80(7.11) 99.94(0.06)
2 88.36(3.04) 95.26(5.24) 81.74(2.41) 90.02(3.85) 99.46(0.29) 98.15(2.07) 95.23(2.71) 89.33(4.91) 99.85(0.04)
3 75.27(6.85) 97.75(3.60) 75.70(4.33) 83.96(4.29) 85.84(15.7) 96.94(4.22) 97.29(5.33) 57.48(8.14) 94.18(1.60)
4 77.20(4.41) 90.00(3.67) 84.18(1.83) 90.00(1.87) 98.60(0.88) 88.97(4.78) 91.98(8.47) 94.15(3.29) 97.13(0.26)
5 94.04(1.93) 99.60(0.51) 87.71(1.39) 90.57(1.81) 99.45(0.31) 96.63(1.45) 98.51(0.78) 99.91(0.10) 99.97(0.05)
6 68.03(4.39) 85.20(16.7) 69.76(3.23) 78.21(3.72) 99.45(0.31) 97.46(3.33) 39.97(21.9) 33.61(9.55) 97.09(2.13)
7 91.92(0.74) 99.18(0.46) 96.34(0.45) 98.44(0.36) 98.96(0.31) 99.41(0.40) 86.13(9.54) 95.12(1.74) 100.00(0.0)
8 98.33(1.55) 99.91(0.09) 98.61(0.64) 99.74(0.37) 92.69(5.68) 99.37(1.13) 99.99(0.02) 67.67(10.2) 92.06(3.03)
9 99.97(0.05) 99.30(1.43) 99.55(0.26) 96.99(2.96) 98.45(1.63) 93.89(4.84) 99.86(0.21) 96.97(2.02) 95.64(1.03)

OA(%) 88.68(0.68) 96.62(1.79) 90.34(0.42) 94.05(0.68) 97.27(1.12) 97.49(0.56) 88.38(4.60) 77.73(1.66) 98.30(0.46)
AA(%) 86.96(1.23) 96.00(2.06) 87.19(0.59) 91.34(0.63) 96.65(1.30) 96.95(0.65) 89.04(3.09) 78.56(1.38) 97.32(0.53)
Kappa 84.84(0.92) 95.54(2.35) 87.12(0.57) 92.08(0.91) 96.38(1.30) 96.67(0.75) 85.08(5.66) 70.29(2.05) 97.74(0.61)

We further compare the classification results of IFormer with other advanced algo-
rithms in the SV scene; therefore, 1% of the training samples are randomly selected in this
scene, and it can be seen in Table 7 that the classification accuracy of all deep learning
methods reaches more than 90%, except for two methods, CECNN and SF. In addition,
as seen in Table 7, SVM, 1D-CNN, and 2D-CNN all focus on only one type of feature
in terms of the spectral and spatial features, and to some extent, they do not effectively
combine the spectral and spatial features or utilize additional information, resulting in
information loss. Although both the SSRN and FDSSC methods utilize spatial-spectral
binding techniques and are not obvious between the classification results, both methods
are computationally expensive and have complex network structures. In contrast, SF and
IFormer both have simple structures, but the classification accuracy of SF is lower than
that of both traditional SVM methods, especially as the classification accuracy for Bare is
only 33.61%. However, IFormer achieves the highest OA result of 98.46%, with 99.39% and
97.37% classification accuracies for the categories Lettuce_R_7 and Vinyard_U, respectively,
which reflects the excellent ability of the IFormer method to extract local detail information.
Finally, as can be observed in Figure 9, IFormer is able to extract information from global
and local regions in the HSI better, with less misclassification.

Table 7. Accuracy comparison of different methods on SV dataset.

Class No.
Classification Accuracy Obtained by the Proposed Method and Different Comparison Methods (in %)

SVM SSRN 1D-CNN 2D-CNN FDSSC DBDA CGCNN SF IFormer

1 99.73(0.57) 99.98(0.02) 99.47(0.48) 99.25(0.67) 100.00(0.0) 100.00(0.0) 100.00(0.0) 87.72(10.6) 100.00(0.0)
2 99.09(0.28) 99.80(0.25) 99.59(1.05) 99.32(1.40) 99.93(0.13) 99.97(0.04) 99.81(0.35) 99.09(0.79) 100.00(0.0)
3 92.50(1.65) 98.16(1.33) 98.17(1.11) 97.10(2.71) 98.61(1.64) 98.80(1.20) 33.29(6.20) 92.51(5.26) 100.00(0.0)
4 97.20(0.63) 98.90(0.58) 98.89(0.29) 99.23(0.31) 97.81(2.27) 95.72(3.65) 99.83(0.09) 96.31(1.42) 98.60(0.39)
5 97.19(1.04) 99.84(0.24) 97.99(0.57) 97.20(1.11) 99.51(0.60) 97.14(4.92) 76.48(22.1) 89.19(5.51) 99.57(0.25)
6 98.69(0.82) 100.0(0.00) 99.65(0.12) 99.56(0.25) 99.99(0.01) 99.65(0.61) 99.91(0.05) 99.99(0.12) 100.00(0.0)
7 99.95(0.06) 99.98(0.03) 99.61(0.19) 99.84(0.23) 100.00(0.0) 99.99(0.01) 99.85(0.12) 96.09(2.62) 99.96(0.04)
8 75.58(1.05) 91.72(3.98) 86.04(1.17) 84.13(1.48) 95.33(4.39) 93.27(6.55) 88.08(7.10) 83.84(6.82) 95.79(0.91)
9 98.73(0.35) 99.69(0.13) 99.46(0.31) 99.68(0.34) 99.60(0.29) 99.36(0.58) 84.50(17.4) 98.75(0.39) 100.00(0.0)
10 88.95(2.66) 99.11(0.73) 92.51(1.38) 91.87(2.29) 98.34(1.41) 98.63(1.19) 86.50(6.46) 92.76(2.64) 96.50(0.59)
11 90.58(4.15) 97.56(2.39) 95.73(2.66) 95.85(1.84) 96.99(2.29) 96.57(3.05) 89.53(22.1) 89.83(5.80) 99.66(0.54)
12 96.24(0.79) 99.31(0.83) 99.92(0.11) 99.77(0.42) 99.19(0.79) 99.32(1.37) 85.14(14.5) 91.70(9.17) 99.60(0.58)
13 93.37(3.23) 99.25(1.04) 98.88(0.84) 97.87(1.69) 99.57(0.68) 99.83(0.15) 34.97(31.5) 96.25(3.79) 99.97(0.07)
14 94.75(2.30) 98.68(0.88) 90.82(3.83) 95.89(1.48) 98.57(1.01) 96.97(3.07) 98.34(1.77) 97.70(2.27) 99.39(0.35)
15 74.66(2.89) 89.14(5.35) 65.08(2.66) 74.65(3.31) 84.68(12.9) 89.05(11.5) 60.47(25.6) 64.95(13.8) 97.37(0.78)
16 98.08(0.71) 100.0(0.00) 96.76(2.11) 93.58(4.83) 99.46(0.83) 99.97(0.08) 97.21(1.59) 82.17(5.75) 99.77(0.17)

OA(%) 89.64(0.48) 96.31(0.36) 91.20(0.50) 91.96(0.56) 95.73(2.25) 95.84(2.40) 84.02(4.30) 88.47(2.39) 98.46(0.17)
AA(%) 93.46(0.51) 98.19(0.19) 94.91(0.52) 95.30(0.49) 97.97(0.74) 97.77(0.98) 83.37(4.37) 91.18(2.56) 99.14(0.10)
Kappa 88.24(0.53) 95.90(0.40) 90.19(0.56) 91.05(0.62) 95.26(2.48) 95.37(2.66) 82.17(4.81) 87.14(2.68) 98.28(0.19)



Remote Sens. 2022, 14, 4866 14 of 21

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 9. Classification results of ground truth and comparison methods for the SV dataset.
(a) Ground Truth. (b) SVM. (c) SSRN. (d) 1D-CNN. (e) 2D-CNN. (f) FDSSC. (g) DBDA. (h) CECNN.
(i) SF. (j) IFormer.

As the LK dataset was taken using an unmanned aerial vehicle (UAV), and therefore
has better spatial resolution and less noise interference, comparing the results of the
previous three datasets, each method has higher results on the LK dataset, and Table 8
summarizes the quantitative results obtained using different methods on the LK dataset.
As can be seen from the visualization results in Figure 10, although the other methods give
better classification results, the IFormer (proposed in this paper) still gives good results in
most categories, especially Cotton, Narrow_L_S, and Mixed_Weed for training. Among
all of the compared methods, CGCNN and SF not only perform poorly on the first three
datasets, but they also classify as being worse than SVM on the LK dataset. However,
the IFormer method still has an advantage, because IFormer is able to generate more feature
maps with less time cost, and is able to obtain global features and local details in HSI based
on the high- and low-frequency information in the feature maps, and accurately identify
the boundary regions, thus having better classification performance.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 10. Classification results of ground truth and comparison methods for the LK dataset.
(a) Ground Truth. (b) SVM. (c) SSRN. (d) 1D-CNN. (e) 2D-CNN. (f) FDSSC. (g) DBDA. (h) CECNN.
(i) SF. (j) IFormer.

Table 8. Accuracy comparison of different methods on LK dataset.

Class No.
Classification Accuracy Obtained Using the Proposed Method and Different Comparison Methods (in %)

SVM SSRN 1D-CNN 2D-CNN FDSSC DBDA CGCNN SF IFormer

1 98.91(0.27) 99.84(0.09) 99.11(0.34) 98.94(0.33) 99.43(0.12) 99.83(0.07) 98.90(0.73) 99.06(0.89) 99.97(0.01)
2 86.00(2.70) 98.35(2.42) 86.89(3.35) 87.72(1.97) 98.94(1.17) 98.28(2.61) 95.60(5.03) 84.99(2.51) 99.62(0.20)
3 76.79(2.82) 99.38(1.08) 81.71(4.10) 82.32(5.09) 99.60(0.33) 97.02(5.36) 93.25(5.09) 80.32(8.96) 98.70(0.58)
4 97.22(0.24) 99.26(0.55) 97.26(0.48) 97.01(0.41) 99.56(0.32) 99.59(0.18) 86.09(9.44) 96.32(2.43) 99.83(0.06)
5 77.32(3.60) 97.05(5.71) 74.85(5.25) 77.37(2.99) 98.18(1.61) 95.79(3.37) 88.04(11.2) 80.55(8.91) 98.47(0.54)
6 99.27(0.35) 99.77(0.51) 98.92(1.43) 99.35(0.02) 99.94(0.05) 99.94(0.04) 96.59(1.54) 97.87(1.46) 99.97(0.02)
7 99.93(0.04) 99.97(0.02) 99.97(0.00) 99.96(0.02) 99.97(0.01) 99.97(0.03) 99.82(0.31) 99.86(0.12) 99.95(0.02)
8 86.99(2.31) 95.53(3.25) 90.97(1.75) 91.34(1.29) 95.70(3.78) 93.22(7.26) 97.72(1.24) 93.05(5.97) 96.17(0.81)
9 81.38(2.61) 96.90(1.88) 87.85(3.05) 86.90(3.15) 94.70(2.18) 95.40(2.66) 90.19(2.68) 81.28(4.53) 97.96(0.71)

OA(%) 96.59(0.18) 99.32(0.21) 96.99(0.18) 96.99(0.16) 99.43(0.16) 99.22(0.34) 94.41(3.16) 96.51(0.89) 99.67(0.02)
AA(%) 95.51(0.23) 98.45(0.82) 90.84(0.63) 91.21(0.54) 98.48(0.31) 97.67(1.05) 94.02(2.43) 90.36(2.51) 98.96(0.16)
Kappa 89.31(0.55) 99.11(0.28) 96.04(0.23) 96.04(0.21) 99.26(0.21) 98.98(0.45) 92.81(3.98) 95.42(1.16) 99.57(0.03)

3.3. Experimental Parameter Sensitivity Analysis
3.3.1. The Influence of Spatial Neighborhood Block Size s

Different sizes of spatial neighborhood blocks size s have a degree of influence on our
proposed IFormer method. Therefore, we set the range of spatial neighborhood sizes to
3 × 3, 5 × 5, 7 × 7, 9 × 9, and 11 × 11. In this case, the LK dataset was too large, resulting
in insufficient memory for the calculation, so the spatial neighborhood block size was not
set to 11 × 11. Figure 11 illustrates the results for the spatial neighborhood blocks in the IP,
UP, SV, and LK datasets. With the increase in the spatial neighborhood block size, the three
evaluation metrics OA, AA, and Kappa of the IP dataset show a trend of first increasing
and then decreasing, so the spatial neighborhood size of the IP dataset is fixed to 9 × 9.
The UP, SV, and LK datasets are relatively larger scenes than the IP dataset, and as can be
seen in Figure 11, the larger the spatial neighborhood size, the larger the evaluation criteria,
so both the UP and SV datasets are set to 11 × 11, while the LK dataset is set to 9 × 9.
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(a) (b) (c) (d)

Figure 11. The impact of input spatial neighborhood block size on network performance. (a) Indian
Pines dataset. (b) Universit of Pavia dataset. (c) Salinas dataset. (d) Long Kou dataset.

3.3.2. Analysis of the Layer L of the Inception Transformer

The layer of the Inception Transformer has a significant impact on the performance
of the IFormer network, and generally speaking, an increase in layer does not necessarily
increase performance, but rather, decreases it. Therefore, it is important to choose an
appropriate network layer to ensure the robustness of the network. For the four datasets,
we set the layers L = 1, 2, 3, 4, and 5 to evaluate the performance of the IFormer method
at different layers. In this subsection of the analysis of layer L, we use not only three
evaluation indices, as well as the standard deviations of OA, AA, and Kappa as evaluations
of IFormer. The performance results of IFormer on the IP and LK datasets (see Figure 12)
revealed that OA and Kappa fluctuated less as the number of layers deepened, while AA
fluctuated more and gradually increased, with a higher sensitivity to the deepening of the
Inception Transformer network layers; therefore, the number of Inception Transformer
network layers on the IP and LK datasets was set to 4. IFormer performed best on the
UP and SV datasets when the layer was 3 for all three metrics. This is especially true for
the UP dataset, probably because the UP dataset features are scattered and small, and the
deepening of the network is not conducive to feature identification, so that the network
layer is fixed at 3 for the UP and SV datasets.

(a) (b) (c) (d)

Figure 12. Effect of Inception Transformer’s layer L on the performance of IFormer network structures.
(a) Indian Pines dataset. (b) Universit of Pavia dataset. (c) Salinas dataset. (d) Long Kou dataset.

3.3.3. Analysis of the Ratio r of High-Frequency Information to
Low-Frequency Information

We adopted a channel splitting mechanism and introduced a channel ratio as a way
to better balance the ratio r of high- and low-frequency components in HSI. The four
datasets in Figure 13 will be scaled at 0.1 intervals, taken from 0.1 to 0.9, to select high-
and low-frequency information. As the proportion of channels rises, the classification
accuracy of the IP, UP, and SV datasets exhibit a decrease, a phenomenon that may occur
because the inability to focus too much on high-frequency information or low-frequency
information can lead to the neglect of global information or local detail considerations.
In contrast, on the LK dataset, changes in ratio have a more consistent effect on classification
accuracy, due to the distribution of landcovers on the LK dataset, most of which are large
scale and simple in structure. Therefore, we fixed the ratio of the four datasets at 0.5 in
all experiments.
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(a) (b) (c) (d)

Figure 13. The influence of the ratio r of high-frequency channels to low-frequency channels on the
performance of IFormer networks. The margin of error is expressed as the standard deviation of
the evaluation index. (a) Indian Pines dataset. (b) University of Pavia dataset. (c) Salinas dataset.
(d) Long Kou dataset.

3.4. Analysis of the Role of Different Training Samples on the Classification Effect of the Proposed
Method and the Comparison Algorithm

In order to compare the performance of the proposed method IFormer with other state-
of-the-art methods under different training samples, Figure 14 shows the performance of
the proposed method IFormer. Considering the reasons for the unbalanced sample in the IP
dataset, 2%, 4%, 6%, 8%, and 10% were selected according to the proportional distribution
of each category. The remaining three datasets had large sample sizes, so training samples
were selected at intervals of 5, from 10 per class to 30 per class, respectively. In the
beginning, all OAs in the four datasets increased with the training samples. However,
when the number of training samples increases, most methods reach a maximum or
fluctuate, and DBDA, in particular, is heavily influenced by the training samples. Figure 14
demonstrates that although the recognition accuracy of most algorithms remains constant
once the required number of training samples is reached, IFormer remains more competitive
than the other algorithms as the training samples increase and the classification accuracy
continues to increase.

(a) (b) (c) (d)

Figure 14. Performance of our proposed method and comparison methods on different datasets with
different training samples. (a) Indian Pines dataset. (b) University of Pavia dataset. (c) Salinas dataset.
(d) Long Kou dataset.

3.5. Comparing the Training Times and Testing Time Consumptions of Different Algorithms

The average training time and average test time after 10 executions of all compared
methods and the proposed method IFormer are recorded in Table 9. Obviously, be-
cause deep learning methods have a lot of parameter tuning and forward propagation,
SVMs take less time to train. While there are some comparison methods that have similar
accuracies to the proposed method IFormer, the comparison methods have higher training
and testing costs, particularly for methods such as FDSSC and DBDA, which may be due
to the increased focus on detail, resulting in an increased cost to time. The 1D-CNN and
2D-CNN have less testing time but do not make sufficient use of the HSI features, so the
accuracy is low. Although SF has some advantages in training time and testing time on the
four datasets, it does not distinguish the feature characteristics well enough to obtain better
classification results. Further, the IFormer is competitive in terms of training time and
testing time within the allowed range, and still has some advantages for the classification
of landcover.
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Table 9. Comparing the computational cost consumption of different methods with the proposed
method on four HSI datasets.

Dataset Evaluations
Calculated Cost Consumption of the Comparison Method and the Proposed Method (in s)

SVM SSRN 1D-CNN 2D-CNN FDSSC DBDA CGCNN SF IFormer

IP Training 0.16 4299 161.15 216.84 10,196.12 1583.52 459.91 142.31 121.85
Test 3.52 38.25 1.07 1.34 49.93 63.56 1.52 1.86 0.86

UP
Training 0.01 2116.45 137.98 159.84 5484.60 432.94 947.43 204.32 51.88

Test 5.34 117.82 4.29 1.14 188.71 190.39 4.28 7.77 4.19

SV
Training 0.03 1370.59 180.3 261.4 7188.72 710.25 353.74 374.46 65.98

Test 6.95 109.85 1.21 1.73 322.42 411.31 3.83 9.62 5.75

LK
Training 0.18 10433.04 682.89 1099.33 16,044.62 3144.63 1623.79 1809.78 281.09

Test 26.99 936.83 4.27 8.66 2222.2 2095.54 8.96 24.47 19.65

3.6. Analyzing the Impact of the Ghost Module and Inception Transformer on the IFormer Network

To fully verify whether the Ghost Module and Inception Transformer modules behave
in IFormer, we therefore conducted ablation experiments on the four datasets shown in
Table 10, without the Ghost Module and Inception Transformer modules, without the Ghost
Module, without the Inception Transformer (replacing the original Transformer), and with
the proposed method IFormer. Firstly, the results in Table 10 show that OA without the
inclusion of two modules exhibits the lowest classification performance on all four datasets.
Then, when either of the two modules, Ghost Module and Inception Transformer, is added,
there is a more obvious improvement in the classification performance compared to the
previous one without the module, which indicates that the Ghost Module can effectively
extract and utilize the rich features, while the Inception Transformer pays more attention
to the high- and low-frequency information in the extracted feature maps, to some extent.
Finally, we can see from the table that IFormer with two modules included has better
classification performance and smaller standard deviation on the four HSI datasets, which
reflects that using two modules at the same time can both extract the rich features in
HSI and fully capture the global and local features in HSI, which further proves that
IFormer facilitates the extraction of deeper feature information in HSI, and thus helps the
classification performance.

Table 10. Analysis of the effect of Ghost module and Inception Transformer to affect the OA of
IFormer on HSI dataset. X means use of the module.

Ghost Module Inception Transformer IP UP SV LK

88.94(2.11) 84.80(1.54) 89.66(1.12) 97.82(0.37)

X 95.83(1.09) 96.92(0.41) 97.21(0.31) 99.29(0.11)

X 96.84(0.87) 96.27(0.31) 97.08(0.29) 99.39(0.06)

X X 98.44(0.45) 98.30(0.46) 98.46(0.17) 99.67(0.02)

4. Conclusions

To effectively balance both the high- and low-frequency information (i.e., the local
and global features) of HSI data, we propose a new IFormer method to improve HSI clas-
sification performance, which is implemented using a 1D-CNN convolutional layer for
non-linear feature extraction; then, more feature maps are efficiently generated with a plug-
and-play Ghost Module. Finally, the Transformer’s perceptual capability over the spectrum
is extended using the Inception Transformer encoder simply and efficiently, allowing for
more attention to be focused on HSI high- and low-frequency information. Extensive exper-
iments on four datasets demonstrate that the proposed method still provides satisfactory
classification results with limited training samples. Since some datasets perform poorly on
a single category, we will work on how to improve better classification performance when
the samples are unbalanced in HSI, in the future.
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