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Abstract: In recent years, extreme weather events caused by global climate change have occurred
frequently, intensifying the frequency of flood disasters. For flood hazard analysis, high-quality
data and a reasonable weight assignment of the relevant factors are critical. This study conducts
four rainfall fusion methods, to fuse the Tropical Rainfall Measuring Mission (TRMM) 3B42 and the
observations in Dazhou City, China. Then, the random forest was applied to obtain the weights
of various factors to facilitate a comprehensive flood hazard analysis under four rainfall durations.
The results show that (1) the linear regression performs best out of the four fusion methods, with
a correlation coefficient of 0.56; (2) the Digital Elevation Model (DEM) is the most impact factor
with a weight of more than 0.2; and (3) the proposed flood analysis system performs well, as 70%
of historical flood points are distributed in high and sub-high hazard areas and more than 93% of
historical flood points are distributed in medium hazard areas. This study identified the flood hazard
grade and distribution in Dazhou City, which could provide a valuable methodology to contribute to
flood hazard analysis and disaster management with satellite rainfall. Furthermore, the results of this
paper are profound for future work on the high-resolution flood risk assessment and management in
Dazhou City.

Keywords: flood hazard analysis; rainfall fusion; TRMM; random forest

1. Introduction

A flood disaster is a complex phenomenon closely related to the natural environment
and the human social system [1]. The hazard and frequency of floods and their impacts
are expected to increase, especially in the low latitudes of Africa and Asia [2–5], owing to
climate change, population growth, and economic development. Although many structural
and non-structural measures have been proposed to reduce flood damage, the effects
of flood hazards remain impactful at the county level [6]. As one of the countries most
threatened by flood disasters, China suffered 125 major disasters from 1950 to 2004, with
1.465 billion people affected and USD 11.675 billion in losses [7], which seriously restricts
the sustainable development of China’s economy [8,9]. Liu et al. [10] counted the number
of flood disasters in seven major river basins in China in the past 150 years and found that
each basin had witnessed more than 20, especially the Yangtze River and Yellow River
basins. Since the 21st century, the significant damage and loss caused by flood disasters
has still been a severe problem to be solved. Thus, it is urgent to improve the accuracy of
the research related to flood disasters and to develop scientific and practical measures for
flood control and disaster reduction [11–13].
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Flood disaster research based on historical statistical data often uses statistical methods,
such as time series and regression analysis, to clarify the distribution law and develop flood
disaster trends for effective countermeasures [14,15]. The early warning and assessment
of flood disasters have always been a hotspot in flood research [16,17]. Researchers try to
use remote sensing technology to quickly obtain flood disaster information, such as the
degree [18], time [19], dynamic characteristics of floods [20], and flooded social attributes
such as affected houses, population, crops, and infrastructure [21–23]. Then, combined with
historical disaster data and GIS technology, the scope, nature, and degree of a flood disaster
hazard are analyzed by using an artificial neural network [24,25], random forest [26,27],
and analytic hierarchy process [28,29].

A flood hazard analysis, as the essential element of flood control assessment, is crucial
for the prediction and early warning of regional flood disasters [30]. Moreover, identifying
the flood factors, such as rainfall, topography, and the distribution of river networks, is
the most critical step of a flood hazard analysis [31,32]. Yalcin et al. [33] selected seven
natural factors, including the annual rainfall, watershed size, basin slope, gradient of the
main drainage channel, drainage density, land use, and soil types for the assessment of
a flood hazard. Stefanidis et al. [34] added three anthropogenic factors related to human
intrusion and flood control technology, increasing the number of considered flood hazard
factors to 10. Moreover, multi-criteria analysis methods were proposed by Ologunorisa [35],
Mansor et al. [36], and Sanyal and Lu [37] to combine the factors related to a flood hazard.
However, none of them considered the importance of each factor, which is necessary for an
accurate flood hazard analysis.

Rainfall significantly impacts a flood hazard analysis, especially heavy rainfall for
a short period, as it is the most critical and direct cause of a flood disaster [38,39]. The
rainfall data currently used for a flood hazard analysis is mainly collected from gauge
observation and satellite estimation [40–43]. However, due to the uneven distribution of
the rainfall gauges and the low accuracy of satellite data, the accuracy of precipitation for
a flood hazard analysis is insufficient [44–47]. Therefore, obtaining highly accurate and
wide-ranging rainfall data is a meaningful way to improve the ability of a flood hazard
analysis, which could be beneficial in reducing the impact of flood disasters.

Rainfall data fusion is an effective and feasible way to improve the accuracy of satel-
lite rainfall data [48–50]. The commonly used fusion methods can be divided into two
categories. One is simple correction methods, such as Mean Bias Correction (MBC) [51],
Double-Kernel Smoothing (DS) [52], and Linear Regression (LR) [53]; another is local cor-
rection methods, such as Optimum Interpolation (OI) [54], Kalman Filter (KF) [55], and
Geographically Weighted Regression (GWR) [56]. Liu et al. [57] applied the LR method
to fuse the TRMM 3B42 data and gauge rainfall data in China, and the accuracies of this
fusion rainfall data were improved at the monthly and annual scales. Li et al. [58] fused
the rainfall data from TRMM 3B42 and gauges in Australia by using the DS method. The
cross-validation results showed that the DS method could improve the accuracy of the
fusion rainfall. Duan et al. [59] employed LR, GWR, and KF to fuse the TRMM 3B42 and
the gauges in Sichuan Province, China. The results showed that LR had the best merging
effect at both the daily and monthly scales, while the KF presented the highest accuracy. It
can be found that the optimal fusion method is not unique for TRMM 3B42 rainfall data
in various study areas, due to the different climatic characteristics. Therefore, exploring
the appropriate method to fuse rainfall data in a specific area with a few gauges is neces-
sary. Moreover, the selection of hazard factors and their evaluation is critical for aflood
hazard analysis.

This paper aims to conduct a flood hazard analysis based on the fused rainfall data
and nine hazard factors, to solve the low accuracy rainfall and incomprehensive flood
hazard evaluation in Dazhou City, Sichuan Province, China. This study employs four
fusion methods, OI, GWR, KF, and LR, for fusing the TRMM 3B42 satellite rainfall and the
gauge rainfall. After clarifying the applicable fusion method, it can be applied to obtain the
fusion rainfall, solving the defects of uneven distribution, limited range, and low precision.
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Moreover, we propose a system for determining the weights of flood hazard factors and
performing a flood analysis in this paper. Considering that few researchers have studied
the impact of the instantaneity of rainfall on flood hazard, we set up four rainfall durations
(3 h, 6 h, 9 h, and 12 h) according to the time scale of the TRMM 3B42 data and then carried
out our flood hazard analysis. This study provides a new method for the hazard assessment
of frequent flood disasters and is of great significance for the acquisition of guidelines for
disaster management.

2. Study Area and Materials
2.1. Study Area

Dazhou City, located in the eastern part of Sichuan Province, between the longitude of
106◦39′–108◦32′ and the latitude of 30◦19′–32◦20′, is one of the major cities in southwest
China, as shown in Figure 1. It is called the “East Gate” of Sichuan Province, with a
population of more than five million, due to its advantaged location at the junction of
Sichuan Province, Chongqing City, Hubei Province, and Shanxi Province. Moreover, it
lies in the Chengdu–Chongqing Economic Belt, in the upper reaches of the Yangtze River.
The topography of Dazhou City decreases from the Daba Mountain in the northeast to the
hilly areas in the southwest, with an elevation range from 2458.30 to 222 m. The terrain
in Dazhou City is classified into three types, i.e., mountainous areas (which account for
70.70% of Dazhou City’s area), hilly areas (28.10%), and flat areas (1.20%).

Figure 1. The location, DEM, rainfall station, and river net of the study area.

As the climatic boundary between north and south China, Dazhou City has a subtrop-
ical humid monsoon climate with frequent droughts and floods in summer and continuous
rains in autumn. It has a forest coverage of 44.34% and annual average precipitation of
about 1200 mm. It is hot and rainy simultaneously, and the annual average temperature is
between 14.7 and 17.6 ◦C. Due to the complex terrain, the regional climate varies greatly.
The low mountains, hills, and valleys below 800 m have a mild climate and four distinct
seasons; the low and middle mountain areas with an elevation of 800 to 1000 m are cool and
damp; and the middle mountains above 1000 m have a long cold period with insufficient
sunlight and heat resources.
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2.2. Materials
2.2.1. Rainfall Data

The satellite rainfall product used in this study is TRMM 3B42, with a spatial resolution
of 0.25◦ and temporal resolution of 3 h, provided by the National Aeronautics and Space
Administration (NASA) Goddard Earth Sciences (GES) Data and Information Services
Center (DISC) (https://disc.gsfc.nasa.gov/datasets (accessed on 6 August 2021)) [60]. This
data range covers the period from 1998 to 2019 [61,62]. The process of the original TRMM
3B42 data with HDF format is accomplished using the MATLAB program.

Rainfall gauge data of 3 h precipitation observations (from 1986 to 2012) of the seven
rainfall stations over Dazhou City are provided by the China Meteorological Administration
(CMA). According to the rain gauge distribution (Figure 1), the XuanHan station located
in the center was chosen as the test point. The observed rainfall from the remaining six
stations is interpolated using the inverse distance weighting method (IDW) [63,64], to
generate grid gauge data, which has the exact spatial resolution as the grid satellite data.
Moreover, the latitude and longitude coordinates of the rainfall gauges in the study area
are counted to facilitate single-point data fusion.

2.2.2. Historical Flood Points

To evaluate the accuracy of the flood hazard analysis results, we collected historical
flood data from 1952 to 2019 from the Dazhou Water Authority. According to the flood
information, a total of 2254 historical flood points are shown in Figure 2, by counting the
flood disaster locations and vectorizing them on ArcGIS.

Figure 2. Distribution of historical flood points in Dazhou City.

3. Methodology

Figure 3 shows the schematic diagram of the flood hazard analysis system in this
study. Firstly, nine flood hazard factors are chosen and calculated. Secondly, four rainfall
fusion methods are applied to fuse the TRMM 3B42 and gauge rainfall. Thirdly, random
forest (RF), linear weighted sum method (LWS), and certain factor (CF) model are used to
form a system to conduct the flood hazard analysis. Finally, fused rainfall and flood hazard
analysis results are comprehensively evaluated.

https://disc.gsfc.nasa.gov/datasets
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Figure 3. Schematic diagram of flood hazard analysis system.

3.1. Flood Hazard Factors Calculation

The appropriate factors are critical for flood hazard analysis [65], and nine repre-
sentative ones are chosen for this study, as shown in Table 1, according to the previous
studies [59,66–68]. They are three topographic factors: Digital Elevation Model (DEM),
Elevation Standard Deviation (ESD), and Depression Point Density (DPD); five hydrologi-
cal factors: Flow Accumulation (FA), Soil Permeability (SP), Land Use (LU), Distance to
River (DR), and Topographic Wetness Index (TWI); and one precipitating factor: maximum
precipitation (MAP), of which 3, 6, 9, and 12 h are denoted as MAP-3 h, MAP-6 h, MAP-9 h,
and MAP-12 h, respectively. The spatial distribution of these factors, except MAP, in this
study is shown in Figure 4, and the calculations are described in the following contents.

Table 1. Nine flood hazard factors in this study.

Factor Type Specific Factors Abbreviation

Topographic Digital Elevation Model DEM
Elevation Standard Deviation DSD

Depression Point Density DPD
Hydrological Flow Accumulation FA

Soil Permeability SP
Land Use LU

Distance to River DR
Topographic Wetness Index TWI

Precipitating Maximum Precipitation MAP
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Figure 4. Spatial distribution of the topographic and hydrological flood hazard factors. The
factors are standardized in the range from 0 to 1. (a) Digital Elevation Model (DEM); (b) Eleva-
tion Standard Deviation (ESD); (c) Depression Point Density (DPD); (d) Flow Accumulation (FA);
(e) Soil Permeability (SP); (f) Land Use (LU); (g) Distance to River (DR); and (h) Topographic Wetness
Index (TWI).

(1) Topographic factors
DEM (m): the flow trends run from areas with higher altitudes to lower areas, making

the higher probability of flood events for flat terrain. The DEM data used in this study
comes from Geospatial Data Cloud (https://www.gscloud.cn (accessed on 6 August 2021)),
with a spatial resolution of 30 m.

ESD: this factor can sensitively reflect the study area’s topographic fluctuation. The
areas with smaller ESD values are less conducive to the flow, which could easily form
waterlogging. Thus, it is a negative factor for flood hazard. The ESD values are calculated
within a circle of 0.25◦ radius for each grid by the Spatial Analyst Tools in ArcGIS software,
based on the DEM map, and the formula is:

ESD =

√
1

nc − 1 ∑
i∈C

(zi − z)2 (1)

where C is the circle with a radius of 0.25◦ corresponding to each grid; i is the grid within
the circle C; zi and z, respectively, represent the elevation value of the i-th grid and the
mean elevation of all grids within the circle C; and nc is the number of grids within the
circle C.

DPD: this can intuitively reflect the degree of depression filling in the region. Ac-
cording to the definition of depression, the greater DPD is, the higher flood hazard is. We
collected the DPD map of Dazhou City by using ArcGIS Spatial Analyst Tools to process
DEM data, and the formula is as follows:

DPD =
ni
Si

(2)

where ni is the number of depressions in the i-th grid; Si is the area of this grid.
(2) Hydrological factors

https://www.gscloud.cn
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FA: this refers to the accumulation of surface runoff in each grid. The greater FA means
more accumulated surface runoff, so it is easier to form waterlogging. Accordingly, FA has
a positive effect on flood hazard. FA map was obtained through the flow direction and
accumulation calculation with ArcGIS Hydrology Analyst Tools.

SP: soil permeability of various soil textures is coded by numbers, which come from
Harmonized World Soil Database (HWSD) [69], as shown in Table 2. A larger number
for SP indicates the more potent the soil infiltration capacity is, and the less likely it is to
accumulate water.

Table 2. Soil permeability of various soil textures.

Soil
Texture

Haplic
Alisols

Cumulic
An-

throsols

Eutric
Cam-
bisols

Dystric
Cam-
bisols

Rendzic
Lep-

tosols
Haplic

Luvisols
Chromic
Luvisols

Gleyic
Luvisols

Eutric
Regosols

Calcaric
Regosols

Water
Bodies

Soil
texture

code
25 48 62 63 100 106 108 113 156 157 198

Soil per-
meability

(SP)
4 1 9 8 5 6 7 2 3 10 11

LU: there are apparent differences in runoff conditions under different land uses, which
are often distinguished by runoff coefficients ranging from 0 to 1. The values of the positive
indicator LU in humid areas are always greater than those in arid areas. This is according
to “Standard for Design of Building Water Supply and Drainage” (GB 50015-2019) [70] and
“Standard for Design of Outdoor Wastewater Engineering” (GB50014-2021) [71], as shown
in Table 3.

Table 3. Runoff coefficients of various land use types.

Land Use
Types Farmland Forest Grassland Shrubland Wetland Water Artificial Land Nudation Sparse

Vegetation

Runoff
coefficients 0.6 0.15 0.2 0.18 0.5 1 0.95 0.7 0.9

DR: the water level in the river channel is generally high during the flood season, and
the heavy rainfall causes it to overflow the embankment, leading to floods. The areas close
to the river are susceptible to flooding and have a high degree of danger, so the DR has a
negative effect on the flood hazard assessment. In this paper, we applied ArcGIS to extract
the river channels in the study area and used the Euclidean distance method to calculate
the distance from each grid to the rivers.

TWI: this can clearly show the change of the runoff coefficient under different terrain
conditions and provide an important way to explore the spatial distribution of soil moisture.
The greater TWI is, the higher the surface runoff of the grid, and the more prone it is to
floods. Thus, TWI is a positive factor. We obtained the TWI map, according to its definition
formula, through the grid calculator tool in ArcGIS:

TWI = ln(
α

tan β
) (3)

where α is the catchment area corresponding to the unit contour length in each grid; β is
the slope.

(3) Precipitating factors
MAP: heavy rainfall in a short period is the most crucial factor in triggering flooding.

This study set up four rainfall duration cases, including 3 h, 6 h, 9 h, and 12 h. MAP-3 h,
MAP-6 h, MAP-9 h, and MAP-12 h, accordingly, are selected as flood-inducing factors for
the corresponding duration. Specifically, MAP-3 h was the average of the maximum rainfall
from 1986 to 2019 (the rainfall data from 1986 to 1997 is observed, the part from 1998 to 2012
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is the fusion rainfall in this study, and the data from 2013 to 2019 is taken from the TRMM
3B42 dataset). MAP-6 h, MAP-9 h, and MAP-12 h are obtained by accumulating MAP-3
h. In order to avoid the situation where the maximum value of some factors affects the
final superposition results of all factors in the flood hazard analysis, the factors mentioned
above are separately standardized to [0,1].

3.2. Rainfall Data Fusion Methods

This study applies four frequently used fusion methods, LR, KF, GWR, and OI, to fuse
the TRMM 3B42 and the observed rainfall.

3.2.1. Linear Regression (LR) Method

LR is a regression analysis method that uses the least squares function to establish a
relationship model between one or more independent variables and dependent ones [72,73].
Accordingly, in the linear fusion experiment of TRMM 3B42 and gauge rainfall, we, firstly,
conduct a correlation analysis between the two datasets to establish their linear regression
model. Then, the coefficients in the regression model are obtained by the least squares
method to correct the TRMM 3B42 in Dazhou City. The basic steps are as follows.

Assuming that the linear regression equation between TRMM 3B42 and gauge
rainfall is:

Pg = A ∗ Ps + B (4)

A = r
σPg

σPs

, B = Pg − A ∗ Ps (5)

Combining Equations (4) and (5), we obtain:

Pg − Pg = r
σPg

σPs

(Ps − Ps) (6)

where A and B are regression coefficients; Pg is gauge rainfall data; Ps is TRMM 3B42 in
the corresponding grid; r is the correlation coefficient; Pg and Ps are the mean of the gauge
and TRMM series, respectively; and σPg and σPs are the mean square errors of them. The
calculation formulas are as follows:

r =
∑n

i=1 (Psi − Ps)(Pgi − Pg)√
∑n

i=1 (Psi − Ps)
2
(Pgi − Pg)

2
(7)

σPg =

√
∑n

i=1 (Pgi − Pg)
2

n− 1
(8)

σPs =

√
∑n

i=1 (Psi − Ps)
2

n− 1
(9)

where Pgi is the gauge rainfall of the i-th ground station; Psi is TRMM 3B42 data of the grid
corresponding to the i-th ground station; and n is the number of ground stations.

3.2.2. Kalman Filter (KF) Method

KF is an optimal recursive data processing algorithm, which has been widely used
in various fields, such as image recognition, fingerprint recognition, and the control of
intelligent robot systems [74,75]. KF method assumes that the optimal estimation of the
point is related to the previous point and uses the statistical estimation method to obtain
the optimal estimation by analogy. The advantage of KF is that it requires little memory
and runs efficiently. The time update equations in KF can be expressed as follows:

x̂k = Ax̂k−1 + Buk + wk−1 (10)
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where x̂k−1 is the posterior state estimate of the point k−1; x̂k is the prior state estimate
of the point k; wk is the process noise and is assumed to have zero mean value; A is the
state transition matrix; B is the matrix that transforms the input into a state; and uk−1 is
measurement noise.

Pk = APk−1 AT + Q (11)

where Pk−1 is the posterior covariance estimate of the point k−1; Pk is the prior covariance
estimate of the point k; and Q is the covariance of process excitation noise.

As for the KF measurement update equations:

Kk =
Pk HT

HPk HT + R
(12)

x̂k = x̂k + Kk(zk − Hx̂k) (13)

Pk = (I − Kk H)Pk (14)

where H is the transformation matrix from state variables to observations; R is the covari-
ance of measurement noise; Kk is the filter gain matrix; x̂k is the posterior state estimate
of the point k; zk is the input of filtering, i.e., measured values; and Pk is the posterior
covariance estimate of the point k.

3.2.3. Geographically Weighted Regression (GWR) Method

GWR is a robust algorithm successfully used in fusing rainfall [56]. It assumes that the
rainfall gauge Pg and the satellite precipitation Ps are set to measure a constant quantity:

Pg = X + Vg (15)

Ps = X + Vs (16)

where Vg and Vs are random errors existing in observation and detection; Vg ~ N(0, σg
2);

and Vs ~ N(0, σs
2). Moreover, assuming that the estimated value X̂ of the actual rainfall X

is linearly related to the Pg and Ps, X̂ is an unbiased estimate of X:

X̂ = wgPg + wsPs (17)

where wg and ws are the weights of two rainfall data.
The estimated error X̃ and its mean square error E(X̃) can be expressed as:

X̃ = X− X̂ (18)

E(X̃) = E
{
[X− wg(X + Pg)− ws(X + Ps)]

2
}

(19)

3.2.4. Optimal Interpolation (OI) Method

Choosing a dataset as the optimal values’ background field is the OI method’s first
step [76,77]. We selected satellite rainfall data with high spatial coverage and denoted it as
F. The gauge rainfall is taken as the observation value due to the high accuracy, and we
denoted it as O. Accordingly, the optimal rainfall, denoted as A, obtained by the optimal
interpolation method can be expressed as:

Ak = Fk + ∑n
i=1 Wi(Oi − Fi) (20)

where k is the efficient grids in the divided analysis range, which is the circles with a radius
of 0.25◦; Wi is the weight assigned to the estimation of the bias between the observations
and the background values. The error variance of the optimal values at the analysis
point k is:

E2 = (Ak − Tk)
2 (21)
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where Tk is the actual rainfall of point k.
It is assumed that the errors of the observation and the initial background field are not

correlated, that is:
(Oi − Ti)(Fj − Tj) = 0 (22)

Combining Equations (20)–(22):

E2 = (σ
f
k )

2
+ ∑n

i=1 ∑n
j=1 WiWj(τ

f
ij + τo

ij)− 2(∑n
i=1 Wiτ

f
ik) (23)

where (σ
f
k )

2
is the error variance of the initial background field; τ

f
ij = (Fi − Ti)(Fj − Tj)

and τo
ij = (Oi − Ti)(Oj − Tj) are the error covariance of the initial background field and the

observation filed, respectively.

3.3. Construction of Flood Hazard Evaluation System
3.3.1. Linear Weighted Sum (LWS) Method

As an evaluation function method, the LWS method assigns the corresponding weight
coefficients to each target according to its importance and then performs optimization for
its linear combination [78,79]. We applied the LWS method to construct the flood hazard
analysis system in this study. The specific formula of the linear weighted sum method is:

y = ∑n
i=1 wixi (24)

where y is the comprehensive evaluation value of the system or the object being evaluated;
n is the number of factor variables; xi is the i-th factor; and wi is the corresponding weight
coefficient.

3.3.2. Certain Factor (CF) Model

CF model is a probability function, first proposed by Shortliffe and Buchanan [80],
to clarify the hierarchical state weights of various factors that affect the occurrence of an
event [81,82]. It has been widely used in landslide-susceptibility zoning by combining it
with GIS technology, and its formula is:

CF =


Pa−Ps

Pa(1−Ps)
, Pa ≥ Ps

Pa−Ps
Ps(1−Pa)

, Pa < Ps
(25)

where Pa is the conditional probability that an event (flood) occurs in the classification
state a of the related factors. In practical applications, it is often expressed as the ratio of
the number of flood occurrence points to the area of the classification state a. Ps is the
probability of historical floods occurring in the study area; that is, the ratio of total flood
disaster points to the area of the study area.

The value range of CF is [−1, 1]. CF > 0 means that the event has a high possibility of
happening, and when CF < 0, it means that the event is less likely to happen. When CF = 1,
this event must happen, whereas CF =−1 is the opposite. If CF = 0, it is impossible to judge
whether the event has occurred.

3.3.3. Flood Hazard Analysis System

Random forest (RF) is a classification method that equips multiple decision trees
for effective classification through ensemble learning [26,83,84]. In this study, the RF
model with default hyperparameters was applied to obtain the weights of various factors.
Then, the LWS method was used to construct a flood hazard analysis system, as shown
in Figure 4. Specifically, several important parameters of the RF model and their default
values in the scikit-learn Python library are the number of decision trees (n_estimators = 100),
the minimum number of samples required to split an internal node (min_samples_split = 2),
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the maximum depth of each decision tree (max_depth = none, i.e., the nodes are expanded
until all leaves are pure or until all leaves contain less than min_samples_split samples), and
the number of features to consider when looking for the best split (max_features = ‘sqrt’,
sqrt is the total number of features).

Moreover, the holdout validation method was used to evaluate the analytical per-
formance of the RF model. As for the flood disaster data in Dazhou City, we extracted
2254 historical flood occurrence points (Figure 2), which are divided into 676 (30%) test
samples and 1578 (70%) training samples. The training of the RF classification model
requires at least two or more classification attributes. Accordingly, 2254 non-flood occur-
rence points were randomly generated in the study area through ArcGIS and divided into
676 test samples and 1578 training samples. Then, the CF value of the chosen factors at each
point is obtained by using the CF model. Moreover, the RF model established in Python is
used to classify the flood hazard factors to obtain the weight of each factor under the four
rainfall duration setups (3 h, 6 h, 9 h, and 12 h). Finally, the flood hazard analysis system in
ArcGIS is established, dividing the study area’s grids into five zones, low, sub-low, medium,
sub-high, and high, using the Natural Break Method.

3.4. Statistical Metrics

For the evaluation of the accuracy and overall errors of the fusion results of three-hour
rainfall data from 1998 to 2012, three popular metrics, correlation coefficient (R), mean bias
(MBIAS), and root-mean-square error (RMSE), are adopted in this paper:

R =
∑n

i=1 (Pg,i − Pg)(Ps,i − Ps)√
∑n

i=1 (Ps,i − Ps)
2
∑n

t=1 (Pg,i − Pg)
2

(26)

MBIAS =
∑n

i=1 (
∣∣Ps,i − Pg,i

∣∣)
n

(27)

RMSE =

√
∑n

i=1 (Ps,i − Pg,i)
2

n
(28)

For the performance evaluation of the proposed flood hazard system, the probabil-
ity of corrected analysis (PCA), refers to the ratio of correctly detected floods to total
observed floods:

PCA =
Nc

Nt
(29)

where Nt is the number of all sample points; and Nc is the number of points with correct
analysis results.

4. Results
4.1. Performance Evaluation of Four Fusion Methods

Figure 5 shows the performance of the four fusion methods (LR, KF, GWR, and OI)
in the fusion experiment of three-hour TRMM 3B42 and gauge rainfall from 1998 to 2012.
It can be found that the KF method has the lowest R-value, only 0.46. It means that the
fusion rainfall obtained by this method has the worst correction with the observations. The
GWR method has the highest R of 0.62, which is slightly better than the LR and OI, with
an R-value of 0.56. A previous study [59] validated that the TRMM 3B42 has an R of 0.2
in this area. Considering the MBIAS between the fusion rainfall from the four methods
and the gauge rainfall, the LR method has the lowest value, 0.20. However, the other
three are obviously inferior due to the higher MBIAS, which is around 4.00. The MBIAS
value of the OI method is slightly lower than that of GWR, and the highest value is from
KF. As for the RMSE, it has a similar performance to the MBIAS. LR obtains the fusion
rainfall with the lowest RMSE (0.10). KF, GWR, and OI have significantly higher RMSE,
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about 220. Therefore, the LR method is chosen for fusing the satellite and gauge rainfall in
Dazhou City.

Figure 5. Fusion data accuracy analysis of four methods.

As described in Section 2.2.1, four precipitating factors, MAP-3 h, MAP-6 h, MAP-9 h,
and MAP-12 h, are obtained based on the fusion rainfall using the LR method. The spatial
distribution of MAP-3 h is shown in Figure 6a, and MAP-6 h, MAP-9 h, and MAP-12 h,
acquired by accumulating MAP-3 h, are shown in Figure 6b–d. It can be found that the max-
imum precipitation during the various time scales in Dazhou City is mainly concentrated
in northern Wanyuan and central Xuanhan. The highest MAPs are always in northern
Wanyuan. The southern Qu and Dazhu also have relatively high MAP, gradually becoming
less significant as the time scale increases.

Figure 6. Spatial distribution of maximum precipitation (MAP) factor with four durations using the
LR method. (a) MAP-3 h; (b) MAP-6 h; (c) MAP-9 h; (d) MAP-12 h.
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4.2. Factor Weight Values from RF Model

As for the performance of the flood risk analysis system (Section 3.2) in design-
ing the weights for the nine factors (Section 2.2.2), the PCA values (Equation (29)) dur-
ing the training period under four rainfall durations, i.e., 3 h, 6 h, 9 h, and 12 h, are
0.824, 0.816, 0.818, and 0.821, respectively. During the testing period, the PCA values
are 0.802, 0.805, 0.811, and 0.789, respectively, with acceptable reductions. Overall, the
system’s performance is satisfactory, and, accordingly, the weight analysis results are
considered reasonable.

The weight values of the nine flood hazard factors under the four rainfall durations
obtained by the proposed flood hazard analysis system are shown in Figure 7. We can see
that all the highest weights are assigned to DEM in the four duration cases, and it is the
only one of the nine factors with an importance ratio that exceeds 20%. Thus, DEM is the
factor that contributes the most to the flood hazard. Two factors that contribute more to the
hazard of flooding, followed by DEM, are DR and LU, and the importance of DR is slightly
higher than that of LU. In descending order of importance, the flood hazard factors with a
weight ratio of about 10% are TWI, MAP, DPD, and ESD. Their contribution to the hazard
of flooding is moderate. The weights of SP and FA are relatively low, especially those of FA.

Figure 7. Weights of each flood hazard factor, as listed in Table 1.

4.3. Flood Hazard Analysis

Figure 8 shows the spatial distribution of flood hazard in the 3 h, 6 h, 9 h, and 12 h
rainfall duration cases in Dazhou City, based on the hazard index value obtained by the
LWS method, with the weight value of each factor obtained above. The studied areas with
high flood hazard are mainly concentrated in the south of Xuanhan, including the southern
part of Tongchuan, the western part of Kaijiang, the eastern part of Qu, and the central and
eastern parts of Dazhu. The relatively dangerous areas with sub-high hazard are mainly
distributed in the south of Dachuan, such as the western part of Kaijiang, the southern part
of Dachuan, the southeastern part of Qu, and the central and southeastern parts of Dazhu.
However, the moderately dangerous areas are scattered, such as Tongchuan, the central
part of Wanyuan, the southern part of Xuanhan, the mountainous areas at the junction of
Qu and Dazhu, and the western part of Dachuan. The remaining areas belong to safe and
relatively safe areas, mainly distributed in the eastern, northern, and northeastern parts
of Xuanhan and the western and eastern parts of Wanyuan. Moreover, with increased
rainfall duration, the area and distribution of each hazard zone did not change significantly.
Comparing the results of flood hazard distribution with various flood factors, it is not
difficult to realize that the areas with high flood hazard tend to be closer to rivers, with
lower terrain and land use with larger runoff coefficients. This is well consistent with the
weight assignment of each factor.
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Figure 8. Flood hazard distribution map in Dazhou City under four rainfall durations. (a) MAP-3 h;
(b) MAP-6 h; (c) MAP-9 h; (d) MAP-12 h.

To verify the rationality of flood hazard analysis results of the proposed system, we
counted the number of the collected historical flood points distributed in five flood hazard
zones, as shown in Figure 9. It can be found that there is little difference in the numbers of
historical flood points located in five hazard zones in the four rainfall duration cases. A
similar performance is that the number of historical flood points in the high-hazard zone
is the largest, accounting for more than 34%. It is followed by the sub-high hazard zone,
about 30% or more. This means that approximately 70% or more of the flood points are
distributed in relatively high flood hazard zones. More than 93% of flood points are located
in the medium-hazard area and above. The low and sub-low hazard zones have the fewest
historical flood points at less than 7%.

Figure 9. Number of historical flood points in each hazard zone under four rainfall durations.



Remote Sens. 2022, 14, 4843 15 of 20

5. Discussion

(1) Applicability of the rainfall fusion method
Since rainfall has great spatial and temporal variability, it has strong regional char-

acteristics [85,86]. Whether the method used in this paper is applicable in other regions
still needs further experimental verification. Moreover, the impact of ground observation
density on the performance of the fusion method remains to be verified. In addition, this
study only selected two rainfall datasets, which may lead to uncertainties in the fused
results. Although the liner regression method is proved the best among the four fusion
methods, it needs further experimental verification when we apply the fusion methods to
other areas with different gauge distribution and rainfall datasets.

(2) Impact of rainfall duration
In several cases with different rainfall durations, it can be found that, with the increase

in rainfall duration, both the weight values of MAP and DR show an increasing trend, while
that of DEM, LU, and SP are decreasing. There are no apparent changes in the weights of
other factors. These indicate that the changes in precipitation duration impact the weights
of flood hazard factors, but the limited impact makes it not decisive for the division of
factor importance. These finds are consistent with other studies [87,88], which indicate
that the impact of the rainfall duration factor on the flood hazard analysis needs to be
further addressed.

(3) Performance of the flood hazard analysis
We plotted the Receiver Operating Characteristic (ROC) curves of the flood hazard

in the four rainfall duration cases (3 h, 6 h, 9 h, and 12 h), as shown in Figure 10. Calcu-
lating the area under the ROC curves (AUC) of various cases, and they are about 0.847
(0.835–0.858), 0.853 (0.841–0.864), 0.856 (0.845–0.868) and 0.859 (0.847–0.870). All AUC val-
ues are in the range of 0.7–0.9, indicating that the proposed system has a great performance
in predicting the flood hazard and can be used to predict whether flooding will occur in
the study area.

Figure 10. Receiver Operating Characteristic (ROC) curves of the flood hazard for the four rainfall
duration cases.
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(4) Insights for the management of flood hazard
Several previous studies have addressed an end-to-end approach to realize the sci-

entific problem to the practical response, such as early warning [89,90], evacuation plan-
ning [91–93], and flood memory understanding [94]. As the results show in Figure 8, the
flood hazard areas in Dazhou are mainly concentrated near the river and the northwest of
Wanyuan. The lower dangerous areas are concentrated near the Qu River in Qu County
and the area near the river in Dazhu. The safe areas are mainly distributed in the east,
south, and southwest of Wanyuan, most of Xuanhan, and the north of Tongchuan. It could
provide managerial information for city planning, which can reduce the hazard for the
people and buildings to some extent. However, the resolution of this hazard map and the
hazard analysis results of this study still need to be improved in future work.

In short, the flood hazard analysis system proposed in this paper has a satisfac-
tory application in Dazhou City and is of great significance to flood hazard assessment
and management.

(5) Limitation of this study
Firstly, the satellite rainfall data used in this study has a spatial scale of 0.25◦ due to

the chosen period (1998–2019) not having finer datasets such as Integrated Multi-satellitE
Retrievals for GPM (IMERG) or Global Satellite Mapping of Precipitation (GSMaP) [95].
The application effect on a high-resolution spatial scale needs to be further tested and
analyzed in future work. In addition, to improve the ability to detect and predict flood
disasters, conducting the rainfall fusion at a finer temporal resolution, such as half an hour
or one hour, would be necessary.

Secondly, we mainly optimize and improve the rainfall factor, one of the nine selected
flood hazard factors, to improve the accuracy of hazard analysis. However, this paper does
not consider risk factors related to social and economic factors, which should be addressed
in our future research.

6. Conclusions

For the flood hazard analysis, high data quality and the reasonable weight assign-
ment of the relevant factors are very important. In this paper, taking Dazhou City as an
experiment case, we obtained the fused rainfall data with higher precision by applying
four rainfall fusion methods. Then, it was regarded as one of the important factors of the
flood hazard analysis. The following conclusions can be drawn from this study:

(1) For the fusion experiment of three-hour TRMM 3B42 and gauge rainfall from 1998 to
2012 in Dazhou City, the LR method has an outstanding performance, with the lowest
MBIAS (0.20) and RMSE (0.10) and an acceptable R (0.56).

(2) The RF model has a great performance in clarifying the weights of the nine hazard
indicators, which is reflected in the fact that the PCA values of the cases corresponding
to four rainfall durations, i.e., 3 h, 6 h, 9 h, and 12 h, which are all greater than 0.80
during the training period and are maintained at about 0.8 during the testing period.
In addition, the most critical flood hazard factor is DEM (topography), followed by
DR, while the least important one is FA.

(3) The distribution of the flood hazard in Dazhou City, obtained by the proposed system
using the higher-precision fusion rainfall and other eight flood indicators, is reason-
able. More than 70% of historical flood points were in high and sub-high hazard zones,
and the areas under the ROC curves were all within an acceptable range, 0.7–0.9,
which further reflects the reliability of the flood hazard analysis results.

This paper optimizes and improves the quality of the rainfall, a precipitating factor, to
improve the accuracy of the flood hazard analysis. In addition, a reasonable and effective
flood hazard analysis system is proposed, to contribute to flood disaster assessment and
management, especially for data-sparse areas. Moreover, the results of this paper can
provide profound information for high-resolution flood risk assessment and management
in Dazhou City in future work.
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