
Citation: Collings, B.; Ford, M.;

Dickson, M. A Methodology for

National Scale Coastal Landcover

Mapping in New Zealand. Remote

Sens. 2022, 14, 4827. https://doi.org/

10.3390/rs14194827

Academic Editor: Maria Laura

Carranza

Received: 29 July 2022

Accepted: 26 September 2022

Published: 27 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

A Methodology for National Scale Coastal Landcover Mapping
in New Zealand
Benedict Collings * , Murray Ford and Mark Dickson

School of Environment, University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand
* Correspondence: ben.collings@auckland.ac.nz

Abstract: Satellite earth observation data has become fundamental in efforts to map coastal change at
large geographic scales. Research has generally focussed on extracting the instantaneous waterline
position from time-series of satellite images to interpret long-term trends. The use of this proxy can,
however, be uncertain because the waterline is sensitive to marine conditions and beach gradient. In
addition, the technique disregards potentially useful data stored in surrounding pixels. In this paper,
we describe a pixel-based technique to analyse coastal change. A hybrid rule-based and machine
learning methodology was developed using a combination of Sentinel multispectral and Synthetic
Aperture Radar composite imagery. The approach was then used to provide the first national-scale
pixel-based landcover classification for the open coast of New Zealand. Nine landcover types were
identified including vegetation, rock, and sedimentary classes that are common on beaches (dark
sand, light sand, and gravel). Accuracy was assessed at national scale (overall accuracy: 86%) and
was greater than 90% when normalised for class area. Using a combination of optical and Synthetic
Aperture Radar data improved overall accuracy by 14% and enhanced the separation of coastal
sedimentary classes. Comparison against a previous classification approach of sandy coasts indicated
improvements of 30% in accuracy. The outputs and code are freely available and open-source
providing a new framework for per-pixel coastal landcover mapping for all regions where public
earth observation data is available.

Keywords: coastal change; multispectral; synthetic aperture radar; classification; mapping; google
earth engine; sentinel; pixel-based techniques; change detection

1. Introduction

Coastal regions are vulnerable to hazards, which can manifest at a range of temporal
and spatial scales, caused by environmental and anthropogenic factors [1]. Human induced
climate change is a leading driver of coastal change and adaptation at the coast is a key
global issue [2]. Coastal monitoring plays an instrumental role in planning efforts to
mitigate and adapt to future hazards such as erosion and flooding [2,3] and shoreline
change investigations are considered an important part of such practises [4,5]. Remote
sensing and land surveying techniques have been used to monitor change through repeat
beach surveying or visual analysis of aerial photos [6–8]. In situ or airborne data, acquired
from video imaging or Light detecting and ranging (LiDAR) sensors, can provide very-high
spatial resolution data to monitor geomorphological features at beaches including the
shoreline position [8] up to regional scales [9]. Acquisition of such data can be expensive,
limiting temporal and spatial coverage [10]. Analyses of historic aerial photos can provide
insights at greater geographic scale but are limited by temporal resolution and quality of
available data [11].

Increased availability of earth observation satellite datasets provide global coverage at
spatial/temporal resolutions highly suitable for shoreline mapping and at low costs com-
pared to in situ surveying or aerial photography [8]. The development of cloud-computing
platforms such as Google Earth Engine (GEE) [12] has further enhanced accessibility to
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these data archives, providing analysis ready imagery that is atmospherically corrected,
orthorectified and easy to query in space and time. This has led to the development of
new techniques to monitor change at the coast. To date, most efforts have focussed on
extracting shoreline proxies/indicators from publicly available multispectral earth observa-
tion data archives such as Landsat or Sentinel with sub-pixel accuracy, deriving shoreline
position with accuracies exceeding the native resolution of the sensor using interpolation
techniques [13–19].

1.1. Shoreline Detection

Shoreline indicators can be defined as either a feature visible in imagery (e.g., most
seaward vegetation line), the intersection of a tidal datum with a coastal or elevation
profile (e.g., mean high water), or an indicator extracted through image processing tech-
niques [4,20]. Most coastal change detection work with multispectral satellite imagery
has focussed on extracting the instantaneous waterline (IW), where land and water are
separated based on differences in spectral characteristics obtained from time-series of
images to reveal a record of change to monitor short-term episodic events and long-term
trends [20]. Information from such analyses is necessary for coastal management strategies,
engineering and design of protection and, calibration/validation of coastal models [4].

Extracting the IW position from multispectral imagery can provide objective and re-
peatable approaches to assess coastal change at accuracies exceeding the spatial resolution
of the satellite sensor, but the technique is not without uncertainties. Georeferencing errors
of satellite imagery contribute positional uncertainty in derivation of the IW. The geo-
metric accuracy of Landsat Tier 1 data, which is recommended for time-series analysis,
is RMSE <12 m [21], which can be greater than the movement of the shoreline under
investigation. Further uncertainty is caused by the environmental conditions of a given
section of coast under investigation. The position of the IW is primarily driven by ma-
rine processes (waves/tides) and beach gradient. This can mean that for some coastal
settings the spatiotemporal variation of the IW position can be up to hundreds of me-
tres at near-instantaneous timescales where low gradient beaches are coupled with meso
(2–4 m) or macro (>4 m) tidal conditions and large wave runup or swash [22,23]. Tidal
influence has been corrected using compositing image techniques to limit short-term tidal
variation [19,24]. More recently, combining composite techniques with tidal models has
been implemented to remove images acquired at the highest and lowest observed tides
to obtain composite images focused around a particular tidal datum [25]. Accounting for
tidal influence is an important advancement that can remove some of the noise associated
with IW position, but the presence of waves remains a complicating factor [23].

Assessing trends in IW shoreline position is considered an effective indicator of change,
however not all drivers of change at the coast are associated with the movement of the
IW shoreline position. Remote sensing methodologies that provide information beyond a
single shoreline proxy should be investigated, because they are likely to contain valuable
information on changes across the coastal zone, not just the land/water boundary.

1.2. Pixel-Based Techniques

Per-pixel classification techniques offer low cost methods for land cover/use mapping
and change detection that can be implemented at large geographic scales [26]. A wide
variety of methodologies have been applied to quantify and monitor a range of differing
land cover types (e.g., forestry, mangroves, tidal zones and, surface water) from regional to
global scales utilising freely available multispectral data from platforms such as Landsat or
Sentinel [27–30]. Increased accessibility of cloud computing platforms that provide access
to analysis ready earth observation data, such as GEE, mean that per-pixel techniques can
be applied at increasingly larger scales without the requirement for local high-performance
computers. Workflows can incorporate geospatial datasets from multiple sensor types such
as multispectral and Synthetic Aperture Radar (SAR) efficiently without the requirement
for complex pre-processing steps.
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Despite the widespread use of pixel-based landcover classification in remote sensing,
applying these methods for coastal research has remained limited to a small number of
studies that have used pixel landcover classification to quantify sediment supply and
vegetation cover to assess coastal change for barrier islands at regional scales [31,32].
A global approach [24] estimated that 31% of the world’s ice free coasts are sandy beaches
using supervised image classification techniques, and [33] were able to estimate beach
width by comparing vegetation areas with IW position. However, these approaches,
among others, have continued to focus on the separation of land and water to detect the IW
shoreline position [13,15,24,33], and potentially useful information stored in pixels beyond
the land/water interface have been discarded. Further application of per-pixel classification
techniques at the coast might enable monitoring of different coastal land cover types (e.g.,
sand and gravel sediments, rock, vegetation), with implications for coastal management.
Successful per-pixel change detection requires a highly accurate land cover product [27].
This is a challenge at the coast over large geographic scales due to the complex physical
characteristics and some classes that can be spectrally homogenous (e.g., sand and gravels)
and difficult to separate using multispectral data alone.

The aim of this study is to develop and validate a hybrid rule-based and supervised
machine learning classification workflow that identifies coastal specific land cover types
for the New Zealand coastal zone from all Sentinel-1 (S1) and Sentinel-2 (S2) data available
for 2019 to establish a specific coastal landcover classification. Annual composite images
were derived and used in a per-pixel classification workflow that separates spectrally
heterogeneous land cover types with a hierarchal set of rules. Remaining spectrally similar
classes were classified using supervised machine learning that leverages both spectral
and SAR data. This was trained with a manually derived national scale coastal specific
training dataset. The final product was compared with the results obtained from a prior
per-pixel approach [24]. The suitability of the methodology is evaluated and the temporal
and spatial limitations are discussed in the context of coastal change monitoring at national
to global scales.

2. Materials and Methods
2.1. New Zealand Coastal Setting

The New Zealand spans 13 degrees of latitude in the south-west Pacific with climates
ranging from sub-tropical to sub-Antarctic (Figure 1). The coastline is diverse, and environ-
ments are dynamic and variable due to complex geology and a range of oceanographic and
climatic settings [34].

2.1.1. Geological and Sedimentary Components

New Zealand’s land mass was formed from tectonic processes along the Pacific-
Australia plate boundary occurring throughout the Quaternary [35]. These processes
have shaped the New Zealand coast and continue to characterise coastal evolution [36].
Earthquakes have led to rapid uplift and subsidence in several regions, for example Hawkes
Bay in 1931 and Kaikoura in 2016 [37,38]. In the North Island volcanism is a key source of
sediment along the west coast [7]. Volcanism is less prevalent on the South Island but uplift
in the Southern Alps provides large quantities of granular material, via fluvial transport,
to both the east and west coasts [36].

The diversity in sediment sources delivered to New Zealand’s coast results in varied
spatial distributions at local to regional scales, sometimes over small geographic extents
(Figure 1). This is evident, for example, in the Auckland region where the sources of sedi-
ment on the west coast are characterised as dark sands which contain high concentrations
of heavy minerals such as plagioclase, augite, and titanomagnetite [39] and the east coast
which is predominantly comprised of light sands that are typically dominated by minerals
such as quartz, feldspar and lithic/shell fragments [40,41].
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Figure 1. (a) New Zealand regional council areas and locations of interest indicating the diversity
of the coast. (b)Piha beach in Auckland region. (c) Tairua in Waikato region. (d) Gisborne city in
Gisborne region. (e) Kaikoura in Canterbury region. (f) Nelson and Motueka Island in Nelson region.

2.1.2. Climatic Processes

New Zealand’s coastline is exposed to waves from all directions and the full progres-
sion of the tidal wave [36]. Hindcasts used to generate a wave climate of NZ indicate
that the highest wave energy is found along the south and southwest coasts, and less
wave energy reaches the eastern and northern coasts due to sheltering and decreased
fetch [42–44]. Alburquerque et al. [42] found mean nearshore significant wave height (Hs)
in the southwest of the South Island was 3.4 m which decreased north-eastwards.

The east coast of both islands Hs was lower (1.6–1.9 m) due to shelter from prevailing
southwest waves. Due to the distribution of wave energy, different regimes have been
described for the east and west coasts of both islands [45]. Marine processes on the west
coasts are controlled by high-energy long period swells that lead to wave-dominated
settings [7,46]. Along east-facing coasts, it appears that climatic phases such as La Niña,
associated with pacific decadal oscillation, influence coastal systems due to the impact of
episodic storm events under these conditions [11,36].

2.2. Image Composite Development

The variability of the geological, sedimentary and climatic components of the coastal
system in New Zealand means that coastal morphology is complex. Any classification
workflow must be representative of multiple physical characteristics of the environmen-
tal settings under investigation. Local to regional variations in sediment composition,
for instance, can vary across small spatial scales (e.g., two beaches next to each other).

GEE was used to process imagery from S1 and S2 for 2019 and generate SAR and
multispectral composite images (Figure 2). The year 2019 was selected as this was the
most recent year where both satellite imagery and ancillary data used to validate and train
the classification was available at the national scale. Composites were generated from
aggregations of pixel values from multiple images in a given time period. A benefit of this
technique is that errors associated with cloud cover and marine processes (waves and tides)
driving short-term and episodic variation are minimised [19,28]. Compositing images
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through time can strip temporal information, but for the purpose of establishing a baseline
to assess long-term change, this is a simple technique for handling noise associated with
short-term processes. S1 and S2 data are available in GEE in analysis-ready formats. Both
Level-1C top-of-atmosphere and 2A surface reflectance S2 datasets are available where
atmospheric correction is performed using Sen2Cor [47].

Figure 2. Summary of the classification workflow. Composite development was performed with
Google Earth Engine, the classification and validation steps were performed with Python and QGIS
software packages.

S1 Ground Range Detected (GRD) data is available where thermal noise removal,
radiometric calibration, and terrain correction pre-processing steps have been applied and
values are reported as sigma nought (σ0) backscatter coefficient [48]. A 3 km coastal zone
was established for the entire New Zealand coastline using a 1.5 km buffer around the
mean high water mark from the New Zealand Topo50 1:50,000 topographic dataset [49].
All scenes acquired from both sensors in 2019 that intersected with the coastal zone were
used. Table 1 provides a full summary of the composite image bands passed to the
classification workflow.
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2.2.1. Multispectral Composite

A series of statistical aggregations of all selected pixel values were generated to create
a multiband composite image. A total of 3929 Top-of-atmosphere (TOA) and 2354 surface
reflectance (SR) images were used to derive annual composite images for 2019. SR images
ensure that multi-temporal data is comparable by correcting for atmospheric conditions at
the time each image was acquired [50]. However, issues exist with SR images in coastal
regions where the area of land in a scene is small relative to adjacent water that have been
found to effect the calculation of water based indices [21,51,52]. To address this, several
remote sensing methodologies have utilised S2 TOA image collections with water-based
indices where imagery is focussed around the coast [13,19,28,53]. The number of SR images
available in GEE is also lower than TOA collection as not all images have been processed to
SR. Hagenaars et al. [19] found that the more data used to generate temporal composites
improved the accuracy of annual mean shoreline positions. As water indices were more
sensitive to short-term temporal variation associated with marine processes, the TOA
collection was used to generate water indices to maximise the number of images available
to ensure minimal short-term noise. SR collections were used to generate composite
multispectral bands (visible to shortwave infrared), and vegetation indices (Figure 3).

Figure 3. For each image in the top-of-atmosphere collection normalised difference water index
(NDWI), modified normalised difference water index (MNDWI), and automated water extraction
index (AWEI) were calculated to derive the statistical aggregations to generate the composite bands.
Each image in the surface reflectance collection was used to calculate normalised difference veg-
etation index (NDVI). Multispectral and NDVI composite bands were derived from the surface
reflectance imagery.

S2 scenes where cloud cover exceeded 20% were omitted and cloud masking was
performed scene-by-scene using the cloud probability mask generated from the Sen2Cor
algorithm. The spatial resolution of the visible and near-infrared (NIR) bands were re-
sampled using nearest neighbour interpolation to 20 m to match the shortwave-infrared
bands. Normalised difference vegetation index (NDVI) [54] was calculated using the
following equation:

NDVI =
NIR − R
NIR + R

(1)

where NIR is the near-infrared band and R is the red band. This was done for all SR
images to derive the NDVI mean between the range of the 10th and 90th percentile, referred
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to as the interval mean. TOA images were used to calculate NDWI [55], MNDWI [56],
and automated water extraction index (AWEI) [57] using the following expressions:

NDWI =
G − SWIR1
G + SWIR1

(2)

MNDWI =
G − NIR
G + NIR

(3)

AWEInsh = 4 ∗ (G − SWIR1)− (0.25 ∗ NIR + 2.75 ∗ SWIR2) (4)

where G is the green band, SWIR1 and SWIR2 are the first and second shortwave-infrared
bands, respectively. AWEInsh was used as the impact of shadow was considered minimal
as the focus was open coastal areas [57]. Water indices were also calculated for all images in
the TOA collection and composite bands for the minimum, maximum, standard deviation
and percentile (10, 25, 50, 75, 90) pixel values were generated. SR images were used to
derive composite bands for the 15th percentile value for each S2 multispectral band, this
was an extra precaution to remove cloud and shadow pixels missed by the cloud probability
mask. Cloud and shadow has high and low reflectance values, respectively, using the 15th
percentile results in clear pixels for each image composite band [19]. A stack of 38 temporal
image composite bands were derived from the S2 data. This included all S2 image bands
from visible to shortwave infrared, and the indices bands (Table 1).

2.2.2. SAR Composite

While S1 data is analysis ready in GEE, some pre-processing steps were required
to account for sensitivity of SAR data to acquisition parameters [58]. Incidence angle
was filtered to remove observations with angles below 30°and greater than 45°. S1 offers
dual polarisation, transmitting and receiving in vertical and horizontal planes across four
acquisition modes. The primary mode acquires data in vertical-horizontal (VH) and vertical-
vertical (VV) polarisations over land [59]. In this study, VH and VV were used to ensure
greatest number of available images were used to derive a SAR composite. The ratio
between VH and VV was also calculated. Temporal mean composite bands were generated
and normalised by orbit and polarisation resulting in six bands (Table 1). Processing steps
to build the composite images was performed using GEE.

Table 1. Summary of the statistical aggregations included in the composite imagery for both earth
observation datasets used in the classification workflow.

Data Composite Bands

visible, NIR, SWIR 15th percentile
NDVI Interval mean 10–90

NDWI, MNDWI, AWEI
Minimum, Maximum, Median, Standard

deviation, 10th percentile, 25th percentile, 50th
percentile, 75th percentile, 90th percentile

SAR
VV ascending orbit, VH ascending orbit,

VH:VV ascending orbit, VV descending orbit,
VH descending orbit, VH:VV descending orbit

2.3. Hierarchal Rule-Based Classification

A supervised classification workflow was developed to identify nine coastal landcover
classes specific to the New Zealand coastline (Table 2). This was performed using Python
programming language with the Remote Sensing and GIS Library (RSGISLib) package [60],
using a virtual machine on the Australian National eResearch Collaboration Tools and Re-
sources (NeCTAR) Research Cloud (https://www.nectar.org.au/research-cloud, accessed
on 20 September 2021) with 8 cores and 16 GB of RAM. New Zealand is divided into
16 administrative regions that are managed at the first tier of local government (Figure 1).
Classification processing was iterated over each of the 16 regions. Running the classification

https://www.nectar.org.au/research-cloud
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at this scale provided outputs which made sense from a management perspective, while
also reducing computational load.

A mask was applied to remove pixels related to artificial surfaces to reduce confusion
arising from mixed pixels (Figure 4). The mask was generated from vector data of New
Zealand building footprints [61] and transport links [62] from 2019. Additionally, ports and
industrial zones extracted from the New Zealand landcover database (LCDB), available
from the Land Resource Information Systems Portal [63], were included in the mask.
The LCDB is a national scale thematic landcover classification for New Zealand that is
updated at five year intervals with accuracies exceeding 90% [64], but does not include
coastal specific classes. It was derived using image processing and manual digitising
techniques incorporating satellite imagery (SPOT 5 and Landsat) and aerial photos with a
minimum mapping unit of one hectare. The most recent version was used in this study
which was updated in summer 2018/19. All inputs were buffered by 20 m, dissolved
and merged to form a single mask for artificial surfaces. Artificial surfaces were removed
from the classification workflow but were still considered as a class to assess the ability
of the mask to reduce confusion between sedimentary classes and built areas. Ancillary
elevation data was used to remove most sections of cliffed coast, an threshold of 10 m was
generated from national freely available 15 m resolution digital elevation model [65] which
was resampled to 20 m resolution to match the composite images. Elevation data was not
used in the classification workflow but was used to remove cliffed coast as the focus of this
study was unconsolidated sections of the coast.

Table 2. Summary of class nomenclature.

Class Description Aerial Photo

Artificial surfaces
Any built surface or buildings associated with commercial,

residential or industrial use including surrounding infrastructure,
amenities and transport routes.

Bare rock Bare surfaces dominated by unconsolidated or consolidated material
that is coarser than coarse gravel.

Dark sand
Surfaces containing high concentrations of heavy minerals such as
plagioclase, augite and titanomagnetite material that is finer than

coarse sand (2 mm) along the coast.

Gravel Surfaces dominated by unconsolidated material that is finer than
coarse gravel and larger than coarse sand (2–60 mm).

Intertidal Standing or flowing saline water that includes estuaries, lagoons and
surfaces that are diurnally covered by water due to tidal inundation.

Light sand
Surfaces predominantly constituted by quartz, feldspar, mafic

minerals and residue (lithic and shell fragments) material that is finer
than coarse sand (2 mm) along the coast.
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Table 2. Cont.

Class Description Aerial Photo

Supratidal sand
Surfaces predominantly constituted by material finer than coarse

sand (2 mm), above the high water mark, that can be very sparsely
vegetated and texturally different due to aeolian processes.

Vegetation Any surface (managed or natural) that is dominated by vegetation of
any species in the coastal zone.

Water Offshore or inshore permanent saline or fresh open water in the
coastal zone including artificial lakes or ponds.

Figure 4. Example of the steps applied imagery to (a) Generate composite images. (b) Mask arti-
ficial surfaces. (c) Apply rules to separate land, water and intertidal areas. (d) Classify remaining
pixels with supervised machine learning. (e) Merge all classes and regions to produce a national
scale classification.



Remote Sens. 2022, 14, 4827 10 of 23

The first step of the classification framework was a set of hierarchal rules to separate
spectrally heterogenous classes which included, water, intertidal and vegetation (Figure 5).
The rule base was applied as spectrally heterogenous classes could be identified without the
requirement for manually derived training data. Reducing the number of pixels to be clas-
sified via machine learning also improved computational efficiency as less classes required
training. Automated Otsu thresholding [66] was applied to the 50th percentile MNDWI
band to separate water and non-water pixels. To identify intertidal pixels contained in
the water class, multi-level Otsu thresholding [67] was applied to the standard deviation
MNDWI band as it was assumed that water pixels with high standard deviation indicated
areas that were periodically submerged due to tidal influence. Non-water pixels were
separated into vegetation and non-vegetation pixels with Otsu thresholding applied to the
NDVI band. The remaining pixels were then classified using a random forest supervised
machine learning classifier [68].

Figure 5. Class hierarchy was determined by the rules that were used to separate spectrally distinct
classes. Remaining classes were identified with random forest machine learning.

2.4. Developing Coastal Specific Training Data

National scale training data was required for the remaining classes to ensure that
training was representative of all environments under investigation. To achieve this a
training dataset, underpinned by the Landcover Database (LCDB), was manually derived
based on the nomenclature developed in this study (Table 2). The LCDB was clipped to the
coastal zone and any subclasses associated with vegetation, water and artificial areas were
removed. The remaining classes (Sand/Gravel, Gravel/Rock and Estuarine water) were
then used as a basis for developing training data for the remaining coastal classes. For each
class, geometries were adjusted to ensure any boundaries did not cover multiple classes.
This was performed manually in QGIS using high resolution aerial photos and commercial
optical satellite imagery from 2019. The LCDB derives sedimentary classes by grain size.
These were separated into bare rock, dark sand, gravel, light sand and supratidal sand.
Intertidal was included in the training data to ensure that any intertidal pixels that had not
been identified as water by the hierarchal rules were correctly classified. This provided a
national training dataset, specific to the New Zealand coast, that was visually checked and
included an estimation of the relative proportion of each class within the coastal zone to be
identified by the machine learning classification.



Remote Sens. 2022, 14, 4827 11 of 23

2.5. Machine Learning Classification

Random forests was selected for the ability to provide accurate results working with
high dimensional, multi-collinear data [69] which was important given the physical charac-
teristics of the sedimentary coastal classes are similar. Area-proportional training obtains
better results for classification trees compared with random sampling [70]. The national
training dataset was masked by the area of remaining pixels to be classified and random
proportional samples were selected that accounted for approximately 10% of the total
pixels to be classified. The number of training samples per class were proportional to its
coverage within the training dataset and was always greater than 2000 samples per class
(Table 3). A total of 123,442 training samples were used to train the classifier. The number
of estimators for the classifier (50) was identified using parameter grid search analysis.
To assess the combination of SAR and optical data, two outputs were generated where one
was trained using both S1 and S2 composite imagery and one trained just using S2 data.

Table 3. Training samples were proportional to the area of each class in the national scale training
dataset as using area-proportional training has led to better results for classification trees [70].

Class Training Samples Proportion (%)

Bare rock 2347 1.9
Dark sand 3437 2.78

Gravel 12,241 9.92
Intertidal 48,546 39.33

Light sand 51,573 41.78
Supratidal sand 5298 4.29

2.6. Validation
2.6.1. Accuracy Assessment

The classification was validated using a point-based accuracy assessment generated
from stratified random sampling using the classification . For each of the nine classes 2000
points was distributed at the national level for a total of 18,000 points. These were visually
assessed against very high spatial resolution (less than 1 m) aerial photos and commercial
satellite data acquired in 2019. Where such data was not available, high resolution (5 m)
Planet satellite data was used from the Quarterly global mosaic for the first quarter of 2019
to correspond with the least cloudy conditions. Each point was buffered by 20 m to account
for the classification resolution, to avoid bias, when manually assessing points against high
resolution aerial photos and satellite data.

Points were ground-truthed using a custom QGIS plugin [27]. Accuracy scores were
reported regionally and nationally. A confusion matrix was used to assess producers and
users accuracy metrics. Quantity and allocation disagreement [71] was also calculated
allowing for overall accuracy to be reported where the reference points were normalised
by the area of each class detected and the number of samples per class, referred to as
proportion correct. F-scores were also calculated for each class using producers and users
accuracy as these metrics are representative of recall and precision [72]. F-scores were used
to evaluate the accuracy of individual classes. The accuracy results from the combination
of S1 and S2 data and just S2 were compared to evaluate the contribution of the SAR data
to the accuracy of the classification.

2.6.2. Impact of Observation Frequency

When a greater the number of image acquisitions were used to derive composite
imagery it has been shown to reduce errors in shoreline position [19]. The impact of the
number of S2 images used to derive the multispectral composite image on classification
accuracy was assessed. The number of image acquisitions (referred to as observations
per pixel) used to develop the multispectral composite at each reference point in the
accuracy assessment was calculated to assess whether there was relationship between
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correctly classified pixels and frequency of observations. Both surface reflectance and
top-of-atmosphere collections were compared due to variation in the number of images in
those collections. For each reference point, association between the number of observations
at that given pixel and whether it had been correctly classified was assessed using point
biserial correlation coefficient, a statistical tool to assess the relationship between categorical
and continuous variables [73].

2.6.3. Comparison with Luijendijk et al. (2018) Classification

To assess the ability of the workflow to handle complex heterogeneous coastal environ-
ments at large scales the final output was compared against the sandy beaches classification
developed by [24]. Luijendijk et al. [24] identified the world’s coasts as sandy or non-sandy
by applying supervised machine learning classifier to S2 images with training data acquired
from 100 km of Dutch coastline. The classification output was 97% accurate when validated
against 100 km of beaches in the Netherlands and 96% accurate when checked against
50 international sites [24].

Points were generated around the New Zealand Coast at 50 km intervals. For each
point, corresponding shoreline transects from [24] were identified. A further four transects,
two either side of the initial transect, at 500 m intervals were identified providing five tran-
sects at 106 locations around the entire New Zealand coast (Figure 6). Both classifications
were assessed against the high-resolution data and identified as either sand or non-sand
using the same metrics as the point-based accuracy assessment.

Figure 6. Example from one of the 106 locations at Kaikoura where comparisons were made between:
(a) Transects adapted from [24], which were assigned sandy or non-sandy by the supervised classifi-
cation used in that study. (b) The corresponding set of points generated at each location to validate
the classification.
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3. Results
3.1. 2019 SAR and Multispectral Classification

A total of nine coastal landcover classes were classified for the whole of the New
Zealand coastline, these included: water, intertidal areas, vegetation, artificial surfaces,
light sand, dark sand, gravel, bare rock, and supratidal sand. Visual assessment indicated
that the workflow identified coastal landcover types well (Figure 7).

Figure 7. Classification outputs for (a) Piha (b) Tairua (c) Gisborne (d) Kaikoura compared against
aerial photos from the same time instance (2019) indicating that the workflow is successful at detecting
sedimentary landcover types at the New Zealand coast, but white-water associated with breaking
waves on wave-dominated coast are incorrectly classified as intertidal.
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Overall accuracies for the regional classifications varied from 76% (Southland) and
94% (Auckland). Overall accuracy was 86.38% with 99% probability the true value was
between 85.38% and 87.08% based on the Wilson score interval [74] and the z-score was
significant at p < 0.01. A summary of the accuracy metrics are presented in Table 4.

Table 4. Summary of regional and national accuracy metrics.

Region Proportion
Correct

Allocation
Disagreement

Quantity
Disagreement

Overall
Accuracy

Auckland 0.971 0.021 0.008 0.935
Bay of Plenty 0.967 0.009 0.024 0.888
Canterbury 0.962 0.005 0.033 0.846

Gisborne 0.969 0.004 0.027 0.855
Hawkes Bays 0.958 0.001 0.041 0.828

Manawatu 0.828 0.016 0.157 0.84
Marlborough 0.987 0 0.012 0.911

Nelson 0.991 0.004 0.006 0.911
Northland 0.975 0.018 0.007 0.869

Otago 0.945 0 0.054 0.881
Southland 0.848 0.005 0.147 0.765
Taranaki 0.869 0 0.131 0.876
Tasman 0.983 0.004 0.013 0.895
Waikato 0.972 0.013 0.015 0.91

Wellington 0.841 0.001 0.158 0.822
West Coast 0.879 0.002 0.119 0.833

National 0.936 0.012 0.053 0.864

In all regions (excluding Northland and Auckland), allocation disagreement was less
than quantity disagreement, including nationally (0.0012 and 0.053, respectively). Higher
quantity disagreement indicates extensive differences between classified and ground-truth
reference points for each class and higher allocation disagreement implies there are differ-
ences in the spatial allocation of classes [75]. In this case, greater quantity disagreement
suggests the area classified for some classes contains the majority of the disagreement.
The overall proportion correct was high (93.6%) indicating the that workflow is effective at
separating coastal specific classes for the New Zealand coast.

The highest omission errors were associated with the water class (0.0523) (Table 5).
This was due to the misclassification of water as intertidal, particularly evident in the
Southland region and along coastlines that are characterised by energetic wave conditions,
which was evident at Piha and Gisborne (Figure 7).

Table 5. National producer and user accuracy for each class and commission/omission after normal-
ising the confusion matrix by the area of each class.

Class F1-Score
User

Accuracy
(%)

Producer
Accuracy

(%)
Commission Omission Area

(Hectares)

Artificial surfaces 0.92 99.5 85.44 0.0004 0.0012 50,710,640
Bare rock 0.9 93.75 86.61 0 0.0011 471,904
Dark sand 0.85 93.7 94.46 0 0.001 191,296
Gravel 0.83 74.35 93.29 0.0012 0.0006 3,401,184
Intertidal 0.69 54.44 95.11 0.0537 0.0028 84,433,392
Light sand 0.85 75.95 95.59 0.0033 0.002 9,885,152
Supratidal sand 0.94 86.5 84.27 0 0.0016 436,336
Vegetation 0.94 99.95 88.18 0.0001 0.0018 89,672,432
Water 0.81 99.15 69.06 0.0057 0.0523 474,867,472

The misclassification of water as intertidal corresponded with the highest commission
errors evident for the intertidal class (0.0537) which was the worst performing class. How-
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ever, intertidal zones were still well identified in estuaries which was highlighted at Nelson
and Motueka (Figure 8).

Figure 8. Comparison of (a) High-resolution aerial photo of Motueka Island near Nelson (2019).
(b) Classification output for the same region. Intertidal areas were well identified in estuaries.

The corresponding quantity disagreement indicates that the poor identification of the
intertidal class contains the majority of disagreement within the classification. Sedimentary
classes (light and dark sand and gravel) were well resolved with F-scores exceeding 0.82.
Gravel had the lowest score (F-score = 0.82) which related to commission errors (0.0012)
associated with misclassification of all other terrestrial classes. Light sand performed better
(F-score = 0.85) but commission errors were also evident due to confusion amongst all other
terrestrial classes. Omission errors for this class (0.0028) was associated predominantly
with other sedimentary types. Dark sand performed best (F-score = 0.94).

Artificial surfaces had high accuracy (F-score = 0.92) indicating that by using a mask
confusion between developed areas and sedimentary classes was reduced. High accuracy
of the vegetation class (F-score = 0.94) also illustrates that the hierarchal rules were robust.
Omission errors occurred for both classes where pixels were either excluded from the mask
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or omitted by the rules and passed to the machine learning workflow. In both cases most
misclassified pixels were associated with light sand and gravel. The classification identified
supratidal sand well (F-score = 0.85). Omission was greater than commission errors and
related to the misclassification of sedimentary classes, predominantly gravel and light sand.
Commission was associated with all other classes (excluding water), and occurred most
often for bare rock.

The bare rock class also performed well (F1-score = 0.90). Omission was related to
confusion with sedimentary and supratidal sand. Commission errors were present for all
other classes (excluding water), with the majority of misclassification as artificial surfaces
that were omitted from the mask.

3.2. SAR Contribution

An iteration of the classification was performed using the S2 data alone. Overall
accuracy was 71.20 ± 0.87%, based on the same set of reference data (Table 6). Incorporating
SAR data led to increases in overall accuracy of 14.4% and 3.7% in proportion correct.
Comparisons of F1-scores showed improvement in detection of all classes that were not
classified by the hierarchal rules (bare rock, dark sand, gravel, light sand, and supratidal
sand) (Figure 9).

Table 6. Comparison of national accuracy metrics where combination of Sentinel-1 and Sentinel-2
data were used in the classification workflow and only Sentinel-2 data was used.

Data Proportion
Correct

Allocation
Disagreement

Quantity
Disagreement

Overall
Accuracy

Sentinel-1 and 2 0.936 0.012 0.053 0.864
Sentinel-2 0.899 0.018 0.083 0.721

The greatest differences were for the bare rock class (∼50%) where confusion between
all other classes was improved, particularly the intertidal class. Where only optical data was
used, ∼60% of reference points identified as bare rock were classified intertidal. Including
SAR data improved the detection dark sand and gravel by ∼16%.

Figure 9. F1-scores where Sentinel-2 and combination of Sentinel-1 and 2 data was used in the
workflow. Accuracy of all sedimentary classes increased where SAR data was also used in the
classification workflow.
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Improvements for the light sand class were the smallest (∼10%). Classification of the
supratidal sand class was also improved by ∼14%, by enhancing separation between other
sedimentary classes and the intertidal class. Without SAR data, intertidal pixels missed
by the hierarchal rules were poorly resolved and misclassified as terrestrial classes. In all
cases, the use of SAR reduced misclassification of the intertidal class. This indicates the
importance of SAR data in accurate detection of heterogeneous coastal land cover types and
suggests that combining multispectral and SAR satellite earth observation data achieves
accuracies required for robust pixel-based change detection at the coast.

3.3. Frequency of Observations

Variation in the number of clear observations used to derive the multispectral com-
posite was high. The maximum number of observations for both collections exceeded
200 where there is overlap of S2 tiles. The minimum number of observations was in South-
land where cloud cover was high and the number of available images throughout the year
was also low, mean observations for top-of-atmosphere was 45 and surface reflectance
was 36.

The correlation coefficient, rpb for observation frequency against top-of-atmosphere
and surface reflectance collections was 0.106 (p = 3.89) and 0.102 (p = 3.64), respectively.
Slight positive correlation suggest that an increased number of clear observations per
pixel led to greater accuracy of the classification, but this was not statistically significant
across all classes (Figure 10). For the worst performing class (intertidal), rpb was calcu-
lated to see if there was a statistically significant association between misclassified pixels
and the frequency of observations. For top-of-atmosphere and surface reflectance, rpb
was 0.937 (p = 0.001) and 0.892 (p = 0.002), respectively, indicating a statistically signifi-
cant relationship where correctly classified pixels are associated with a greater number
of observations.

It is clear that the range of observations across the New Zealand land mass is large,
owing to acquisition parameters, tile overlap, and cloud cover. Errors in the worst perform-
ing class present strong correlation with the number of clear observations used to derive
the composite pixel values; however, overall association between correctly classified pixels
across all classes is small.

Figure 10. Box plots showing the distribution of clear observations for correctly and incorrectly
classified pixels from the top-of-atmosphere and surface reflectance collections. Outliers were
excluded as areas with high numbers of observations associated with tile overlap represent a small
proportion of the overall area classified.

4. Discussion

This study presents a new methodology for coastal landcover classification using a
combination of public multispectral and SAR satellite data, enabling the first national-scale
pixel-based coastal specific landcover classification for the open coast of New Zealand.
This has been validated to provide an empirical assessment of accuracy that is significant
at p < 0.01 and results indicate that coastal land cover types have been mapped with
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accuracies exceeding 90%. The methodology is automated and scalable, combining a novel
approach of hierarchal rules to separate spectrally distinct classes and machine learning to
classify heterogeneous land cover types. This was implemented in two steps, first lever-
aging GEE to derive composite imagery, and then using local computing resources with
8-cores and 16 GB of RAM to perform the classification. This means it can be deployed via
a standard computer with good internet and does not require access to high-performance-
computing resources. Empirical validation of the classification output indicates that the
workflow is robust, detecting sedimentary landcover types by dominant lithologies includ-
ing other classes that are important in the role of evolution at the coast (e.g., intertidal areas,
supratidal sand, and vegetation) (Figure 7).

4.1. Comparison with Other Analyses of Sandy Coast in New Zealand

A total of 530 points were visually assessed to determine whether they were sand or
non-sand in the high-resolution reference data, the classification output and corresponding
transects derived from the approach developed by [24]. The workflow presented in this
study was 91 ± 3% at 99% probability. In comparison 62 ± 5% of the transects derived
by [24] were correctly identified as sandy. This improvement in accuracy highlights the
robustness of the workflow, stressing the need for comprehensive local training data. It is
important that classification workflows must be developed with appropriate training data
that is representative of the environment under investigation. This also further highlights
the benefit of a combination of SAR and multispectral data for physically heterogeneous
environments and suggests it could be appropriate for other varied coastal settings around
the world.

To date, the use of per-pixel remote sensing techniques at the coast have focused
on separating land and water [15], improving estimates of the IW shoreline position [13],
and detecting the seaward vegetation edge to extract beach width [33]. These approaches
provide objective repeatable methods for assessing trends in shoreline position, but sources
of uncertainty mean there is substantial noise contained in the position of the IW boundary.
Extracting meaningful information in the context of long-term coastal change can be
challenging. Short-term processes driving instantaneous IW shoreline response initiate
long-term change over prolonged timescales [76], but medium/long term changes may
not be governed by these individual processes [11]. Increasing sediment availability,
for instance, can cause a system to switch from erosive to accretive. Assessing long-term
variations through the analysis of change rates in the IW position will not capture all
functions of coastal change and is subject to environmental uncertainty.

Pixel-based techniques provide the opportunity to assess change across the entire
coastal zone rather than condensing information to focus on single shoreline proxies.
Accurate identification of land cover types is an initial step in per-pixel change detection,
working toward assessing change across the coastal zone rather than just the change
in the position of the shoreline to reduce environmental uncertainty in change analysis.
Sediment supply, is a fundamental driver of coastal change and evolution at long time
instances [77] and this method presents the opportunity to assess changes in sediment
supply. For example, decreases in supratidal sand could be a leading indicator that sediment
delivery is diminishing for a given beach. Detection and further separation of the vegetation
class could also provide a high level overview of vegetation at the coast to better understand
how this landcover is changing and the implications this has in the context of coastal
evolution. This workflow presents the opportunity to investigate changes by sediment type
around the New Zealand coast including other coastal specific classes.

4.2. Impact of Observation Frequency

Correlation between correctly identified pixels and observation frequency was ev-
ident for all landcover types but was statistically insignificant across all classes. Image
compositing techniques have been used to alleviate errors associated with cloud cover and
wave run-up when extracting shorelines from earth observation data [19,24]. This has been
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found to reduce temporal resolution and deemed inappropriate for shoreline detection in
meso/macro-tidal environments [13] but, it was found that offset errors in satellite derived
shorelines decreased when the number of days included in a composite image window
increased, suggesting that the technique was suitable for assessing inter-annual trends [19].
Association between correctly classified pixels and the frequency of observations support
this and indicate composite images are appropriate for assessing long-term inter-annual
coastal change via pixel-based remote sensing techniques. Compositing was an important
part of this approach, combining S1 and S2 data to classify a region at a single time instance
could be challenging due to differences in the time of acquisition. Assessing change at
shorter timescales (e.g., episodic/event) may therefore be limited. Further work is required
to investigate the suitability of pixel-based compositing techniques for coastal change
occurring at intra-annual time scales and shorter.

4.3. The Importance of SAR for Coastal Landcover Classification

This is among one of the first studies that combines multispectral and SAR satellite data
for specific coastal landcover mapping at national scale. The accuracy of the classification
was greater for all classes when a combination of SAR and optical data were used, increasing
overall accuracy by ∼ 15% and improving detection of all sedimentary classes (Figure 9).
Improvements in the detection of sedimentary classes was 10–50% and all classes were
better identified. Most strikingly, ∼ 60% more reference points identified as bare rock
were correctly classified when SAR and multispectral data were used in the classification
workflow. The noteworthy improvement in detection of rock surfaces could find useful
application in global efforts to map the distribution of cliffed coastlines [78] and anticipate
their vulnerability to climate change, for example, [79]. This is likely due to the spectral
similarities of sedimentary land cover at the New Zealand coast. SAR was incorporated to
provide information about the physical properties of classes under investigation. It is clear
that SAR data is instrumental in developing accurate coastal landcover products where
environments are physically complex. These results indicate that using a combination of
optical and SAR data provides significant improvements to a coastal specific landcover
classification. Such a workflow ensures accuracies high enough for robust high-level change
analyses along the New Zealand coastline at inter-annual timescales utilising per-pixel
techniques to provide insights beyond mapping a single shoreline proxy using remote
sensing satellite data.

Map-to-image change detection techniques have been demonstrated to be suitable for
monitoring change in mangrove extent at global scales, offering advantages over image-to-
image and map-to-map techniques and the ability to use earth observation data collected
from a range of sensors including multispectral and SAR data [27,80]. This means a greater
volume of data can be used to assess change over longer time instances by incorporating
multispectral data from the Landsat archive without the requirement for SAR where it is
not available. These are yet to be applied in assessments of coastal change using earth
observation data and should be investigated. Information gained from such an approach
can be used to inform coastal management practises, rather than decision making occurring
based solely on IW shoreline change analysis.

5. Conclusions

A coastal landcover cover classification was developed for the New Zealand coastline,
mapping coastal regions by dominant sediment types using a combination of public
multispectral and synthetic-aperture-radar data. Overall accuracies exceeded 90% when
validation data was normalised by class area. The classification workflow was developed
using open-source software and code, allowing it to be applied elsewhere. Compared
with previous approaches, accuracy was 30% greater overall, highlighting the importance
of accounting for the complexity of coastal environments. Accuracy was enhanced for
coastal specific sedimentary classes (10–50%) by incorporating a combination of SAR and
multispectral earth observation sensor types, achieving robust results. This approach can
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be developed further with change-detection analysis offering insights to long-term land
cover change at the coast in New Zealand and elsewhere, to provide decision-makers and
coastal scientists with information to better prepare for future change at the coast.
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