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Abstract: The application of remote sensing observations in estimating ocean sub-surface tempera-
tures has been widely adopted. Machine learning-based methods in particular are gaining more and
more interest. While there is promising relevant progress, most temperature profile reconstruction
models are still built upon the gridded Argo data regardless of the impacts of mesoscale oceanic
processes. As a follow-on to the previous study that demonstrates the influence of ocean fronts
is negligible, we focus on the improvement of temperature profile reconstruction by introducing
the sea surface temperature (SST) gradient into the neural network model. The model sensitivity
assessments reveal that the normalization of the input variables achieves a higher estimation accuracy
than the original scale. Five experiments are then designed to examine the model performances with
or without the SST gradient input. Our results confirm that, for a given model configuration, the one
with the input of the SST gradient has the lowest reconstruction bias in comparison to the in situ
Argo measurements. Such improvement is particularly pronounced below 200 m depth. We also
found that the non-linear activation functions and deeper network structures facilitate the perfor-
mance of reconstruction models. Results of this work open new insights and challenges to refine the
mapping of upper ocean temperature structures. While more relevant machine learning methods are
worth further exploitation, how to better characterize the mesoscale oceanic processes from surface
observations and bring them into the reconstruction models is the key and needs much attention.

Keywords: vertical temperature reconstruction; machine learning; neural network; the impact of
ocean fronts

1. Introduction

Knowledge of the upper ocean thermal structure is significant for interpreting various
oceanographic processes such as mesoscale eddies, internal waves and oceanic fronts,
among others [1–4]. It is undoubtable that in situ measurements are the most straight-
forward and accurate way to obtain the vertical temperature profiles. The launch of the
Argo program at the beginning of this century greatly increased the number of temperature
profiles, with around 4000 operational floats across the global ocean [5]. They are still
sparsely distributed in the ocean basin and have limited spatial coverage. By comparison,
spaceborne remote sensing is able to continuously collect observations of multiple sea
surface variables, including sea surface level anomaly (SLA), sea surface temperature (SST),
sea surface salinity (SSS) and wind, waves and currents, etc. [6–8]. These variables can
detail characteristics of the surface features that are found to be associated with the sub-
surface thermal structure [9,10]. This drives the research progress into the reconstruction of
temperature and/or salinity profiles from the surface observational data.

Numerous studies have been devoted to reconstructing the sub-surface temperature
structure by combining satellite observations and in situ data. In general, the current ap-
proaches can be divided into two groups: physical and data-driven statistical. The physical
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methods mainly involve data assimilation of numerical models [11] and dynamical theory
models [12–14]. A data assimilation system obtains the a posteriori temperature profiles
based on the given a priori information and the ocean state represented by the numerical
model [15]. Though the ocean state constantly follows the governing physics in this way,
uncertainties concerning the model and observations tend to add up and cause unexpected
biases [16]. In addition, the parameterization in numerical models needs further improve-
ments, particularly for the mesoscale and sub-mesoscale processes. Such methods thus
can only work effectively and accurately under certain conditions or under some assump-
tions [17–20]. The dynamic models are mostly based on the surface quasi-geostrophic (SQG)
theory to reconstruct the ocean interior structure. This theory resolves the upper ocean
density field with constraints by surface variables, based on which the vertical temperature
profiles can be inferred. By using only the sea surface height, the effective SQG is widely
introduced to estimate the vertical profiles [21]. The interior plus SQG model was later
proposed to extend such application scope and demonstrated good performance [12,13].

The data-driven statistical approach is based on the empirical relationships between
the surface variables and the vertical profiles. Regression models are usually employed
to obtain their relationship, including linear regression [10,17,22], empirical orthogonal
function [23,24] and geographically weighted regression model [25]. With the advance-
ment of machine learning techniques, many end-to-end models have been exploited to
reconstruct the three-dimensional sub-surface thermal structure. For example, an artificial
neural network model has been trained with inputs of SST and SSHA plus the in situ
temperature profiles to map the vertical temperature profiles in the Indian Ocean [26].
The results are of high accuracy in that 50% of the data points have errors smaller than
±0.5 ◦C. A self-organizing map neural network model and a support vector machine
based model have also been developed to estimate the upper ocean temperature anomalies
and then derive the vertical temperature structure in the North Atlantic and the Indian
Ocean [27,28]. Validation relative to the Argo observations shows reasonable accuracy
within the depth of 500 m. As a matter of fact, a lot of efforts have been dedicated to
enhancing the reconstruction accuracy using the random forest method, extreme gradient
boosting and light gradient boosting machine, etc. [29–33]. Recently, the deep learning
models built with the convolutional neural networks [34], the long short-term memory
(LSTM) neural network [35] as well as the convolutional LSTM model [36] have become
popular for reconstructing the three-dimensional temperature structure.

Although the above methods have caused progress concerning the estimation of the
upper ocean temperatures, the impact of various physical processes on the reconstruction
performance has not been widely accounted for. An attempt in such a direction has been
reported using a pre-clustering neural network and taking the surface wind observation
as additional input to diagnose the dynamic difference [37]. Ocean fronts are the regions
where the properties of seawater (temperature, salinity, nutrients, etc.) change rapidly in
the interior. This mesoscale phenomenon has a major impact on the physical, chemical and
biological environment in the ocean [38–40]. Convergent downwelling is usually present at
the location of ocean fronts and is accompanied by strong internal vertical mixing, which is
significant to the regional marine biodiversity and biochemical processes. Correspondingly,
the three-dimensional temperature structure of the ocean front region is usually different
from the surroundings. It is thus necessary to induce the surface variable variations
associated with ocean fronts into the reconstruction model, which are expected to increase
the estimation accuracy. Such an aspect has been evidenced in [41] using the polynomial
regression approaches over the North Pacific Ocean. The mapping bias is found much
larger in the regions with higher SST gradient, representative of the ocean front intensity.
A quasi-linear relation is also observed between the reconstruction bias/standard deviation
and the SST gradient, which demonstrates the necessity of including the impact of ocean
fronts in the models.

In this study, we focus on incorporating the ocean front features into the reconstruction
model to improve the mapping accuracy. The satellite measured SST and SLA, in com-
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bination with the Argo temperature profiles collected during 1999–2018, are employed.
The dataset is divided into training and validation subsets to build the reconstruction
models, with and without the input of the SST gradient. The organization of this paper
is as follows. In Section 2, we present the data and pre-processing applied in this work.
Section 3 details the establishment of our reconstruction models and experimental de-
sign. In Section 4, we show the results in comparison with Argo profile measurements. A
discussion and the conclusion are presented in Section 5.

2. Data and Pre-Processing
2.1. Sea Surface Variables

As previously demonstrated, the SST and SLA are two common surface variables
for the inputs of the reconstruction models. SST links directly to the ocean sub-surface
temperatures while SLA is associated with the sea surface dynamic changes induced by
the upper ocean thermal structure. Our recent experiments confirm that input of both SST
and SLA achieves better accuracy in the vertical temperature estimation than feeding only
SST to the developed models [41]. In addition, given the non-negligible impacts of ocean
fronts on the vertical temperature profile estimation, the SST gradient is promising taken
as an input into the reconstruction models along with SST and SLA.

The reanalyzed SST and SLA products from the Copernicus Marine Environmen-
tal Monitoring Service (CMEMS) are employed in this study. Both are available on
a daily basis and the spatial resolution is 0.05◦ × 0.05◦ and 0.25◦ × 0.25◦ for SST and
SLA, respectively. The reanalysis products are selected because of their operational in-
corporation of satellite observations and in situ measurements, as well as their strict
quality control and monitoring. Despite the satellite observations being available at
a higher spatial resolution, spatial gaps between tracks are usually large, for instance,
several hundred km between two consecutive altimeter tracks [42]. This renders them
not suitable for consistent collocation in time and space with Argo temperature profiles.
The SST and SLA data within 1999–2018 are utilized in the following experiments and
analysis. Their product identifiers are SST_GLO_SST_L4_REP_OBSERVATIONS_010_011
and SEALEVEL_GLO_PHY_L4_REP_OBSERVATIONS _008_047 within the framework of
CMEMS. This 20-year dataset is sufficient to establish the model training and validation
dedicated to reconstruction of the vertical temperature profiles.

Following the approach in [41], we quantify the intensity of ocean fronts through the
SST gradient. The SST gradient has been found highly related to the estimation performance
of the vertical temperature profiles. The reconstruction biases have been demonstrated
to increase linearly with respect to the collocated SST gradient, implying the necessity
of including this variable in the mapping function [41]. As such, similarly in this study,
the typical Sobel operator is employed to estimate the SST gradient with its two components
along the horizontal (longitudinal) and vertical (latitudinal) axis, given as follows:

Dx =
1

∆x

−1 0 1
−2 0 2
−1 0 1

 · SST (1)

Dy =
1

∆y

−1 −2 −1
0 0 0
1 2 1

 · SST (2)

where ∆x and ∆y denote the spatial distance between adjacent pixels along the longi-
tude and latitude, respectively. The SST gradient at a given pixel is then calculated by

|G| =
√

D2
x + D2

y.
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2.2. Argo Profiles

At present, the largest publicly available database of upper ocean temperature profiles
is collected and organized by the international and national Argo programs. An Argo float
usually decreases down to below the depth of 1000 m and drifts there for about 9 days,
then rises up to the surface while collecting the profile of temperature and salinity. This
operation mode results in the fact that the Argo data are both spatially and temporally
sparse. The Argo data we use in this work are its original measurements, downloaded
from https://argo.ucsd.edu (accessed on 15 August 2022).

We focus on the Northwest Pacific Ocean, as shown in Figure 1, where ocean fronts
are persistent throughout the year along the Kuroshio and over the western subarctic
area. Specifically, the region of interest extends in the range of [20◦N, 50◦N] and [120◦E,
160◦E]. Over this area in 1999–2018, there were 121,564 Argo temperature profiles in total
being collected with the nearest SST and SLA in time and space. All Argo profiles are
pre-processed to remove those with more than five outliers and shallower than 500 m. Note
all the Argo measurements over the Sea of Japan are filtered out as the water properties
and dynamics are quite different from the open oceans. Each Argo temperature profile
is then interpolated to regular depths every 10 m in the range of [0 m, 500 m]. These
processes finally end up with 94,065 profiles for training and independent testing of the
reconstruction models.

Figure 1. The data density of Argo profiles in 1999–2018 at a spatial bin of 0.5◦ in both latitude
and longitude divided for (a) training and (b) independent testing. (c) The monthly data count for
training and testing.

These Argo profiles are randomly divided into two parts: 90% (84,658 profiles) are fed
into the model training and 10% (9407 profiles) are used for model independent testing.
Figure 1 illustrates the spatial data density for the two parts at a bin of 0.5◦ along both
latitude and longitude. It is quite clear that the number of training profiles is not uniformly
distributed; more than 150 profiles within one grid are accumulated off the Hokkaido
islands of Japan, while one grid has approximately 20 profiles in the bottom right corner of
the study region. This can be substantially attributed to the fact that Argo movements are

https://argo.ucsd.edu
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mostly controlled by ocean circulations. The Argo measurements are frequent over the area
with strong ocean fronts. The uneven spatial distribution of Argo measurements in this
area is expected to facilitate our model’s development. In addition, the random dividing
process brings no further data population issue as a similar Argo data distribution pattern
is observed in Figure 1b for the validation part. Both training and validation datasets are
uniform across the months, as presented in Figure 1c. There are roughly 7000 profiles per
month for the training and 800 profiles for validation.

3. Reconstruction Model
3.1. Model Structure

Reconstruction of the vertical temperature profiles from the sea surface variables is
basically a value-to-value mapping question. Regardless of the complex physics involved,
the ocean water temperature at a certain depth is statically related, on the first order, to both
SST and SLA. Our earlier exploitation verified that the relationship between SST and the
ocean water temperature is nearly linear close to the sea surface and yet becomes non-linear
as the depth increases. Therefore, reconstruction models are commonly developed based
on the polynomial regressions, or more popular and efficient neural networks. In this study,
we create our reconstruction models based on the fully connected neural networks.

A neural network is generally composed of one input and one output layer with
several hidden layers in between. The neuron unit numbers of input and output layers are
determined by the input and output variables. The hidden layers that contain an experi-
mental number of units are key components to connect the dependent and independent
variables. For a fully connected neural network, each layer unit is linked to all units of
the neighbour layers through the so-called activation functions. The activation function
defines how the variables are transformed within the neural network, where weights of
the function are self-learning during the training procedure. There are many conceptual
schematics available for the structure of neural network [43,44] and hence we would not
repeat it in this paper. Yet, as a few experiments are conducted, we will detail the number
of layers and units as well as the activation functions for each of our models.

In our case, the model inputs are SST, SLA and other variables plus with and without
|G| to examine whether the reconstruction of vertical temperature profiles can be improved.
The model outputs are ocean water temperatures at regular depths, the same as processed
Argo profile, i.e., every 10 m from 0 to 500 m. It is worth noting that, unlike the depthwise
traditional regression methods, we establish our neural network reconstruction model to
output the whole vertical temperature profile. For both training and model testing, we
calculate two metrics to assess the model performance. They are root mean square error
(RMSE) and mean absolute error (MAE), defined as

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)2 (3)

MAE =
1
n

n

∑
i=1
|ŷi − yi| (4)

where yi is the observed temperature profile and ŷi is the predicted profile.

3.2. Data Normalization

The inputs of SST, SLA and other variables have different measurement scales, which
might result in a weighted contribution to the trainable weights of reconstruction models.
To handle this, a max-min normalization procedure is usually employed to scale the input
variables within the range of [0, 1]. Such a process has been proven not only to improve
the computational efficiency but also to help lower the prediction deviations. In addition,
the deviation between the ocean water temperature and the sea surface temperature differs
with depth as shown in Figure 2. For the sake of convenience of comparison, here we
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only present the distributions of temperature difference between sea surface and depth
of 100 m, 200 m and 400 m, respectively. While the water temperature at 100 m depth is
almost equivalent to SST, a certain number of data points are lower than SST by about
9 ◦C (blue curve). At a depth of 200 m, the temperature difference is consistently prevalent
between 0 ◦C and 12 ◦C (orange curve). With depth decreasing to 400 m, the temperature
difference enlarges and largely ranges from 4 ◦C to 16 ◦C (green curve). Given the same SST,
the water temperature overall decreases with depth and thus might gain biased weights at
the deeper levels during the model training process. Though the neural network is able to
constrain the different extents of input variables, it will take longer training times to reach
the steady state.

Figure 2. Probability density function (PDF) of temperature difference between the sea surface and at
depth of 100 m, 200 m and 400 m, respectively.

To further assess the possible impact of normalization on the reconstruction model
training, the following sensitivity experiment is carried out. The temperatures at the original
scale and the normalized scale are designed as different model inputs for comparison.
To exclude the influence of the model optimizer, ‘Sgd’ stands for stochastic gradient descent
and ‘Adam’ for adaptive moment estimation that computes the data gradient to update the
model parameter but this is tested in different ways. Note that the optimizer is an algorithm
to change the model training attributes in order to reduce the model loss and speed up the
training process (see [44] for details). These results in four models as listed in Table 1. All
models are designed as four layers with two of them as hidden layers containing 12 and
6 units, respectively. The input layer takes the SST field and the output layer corresponding
to the ocean water temperature at 150 m. As annotated in Table 1, we used a combination
of ‘ReLU’ and ‘Linear’ as the activation function for all four models. Only the data within
the range of 145◦E–150◦E and 35◦N–40◦N are used for training and testing of the models
for computational efficiency. Such experiments are sufficient to determine whether the
normalization is necessary or not.

Table 1. Model parameters of the sensitivity analysis.

Model Normalization Layers Activation Function Optimizer

Model 1 Not 1-12-6-1 R-R-L 1 Sgd
Model 2 Not 1-12-6-1 R-R-L Adam
Model 3 MinMaxscaler() 1-12-6-1 R-R-L Sgd
Model 4 MinMaxScaler() 1-12-6-1 R-R-L Adam

1 R is ’ReLU’ and L is ‘Linear’.

Figure 3a,b demonstrate the temperature profiles in their original scale and normalized
scale to [0, 1] using the min-max scaling algorithm. It can be seen that the normalized
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scale accounts well for the max-min contrast at each depth. For instance, the absolute
temperature difference is comparable at the surface and 480 m for the two shown profiles,
while their normalized scales deviate by 0.13. By inputting the original temperatures to
model 1/2 and the normalized temperatures to model 3/4, the RMSE and MAE at each
training epoch are given in the bottom panel of Figure 3. Overall, the trend of RMSE is
quite similar to that of MAE. As we show values for every epoch, all four models exhibit
comparable fluctuations. Both RMSE and MAE show that model 1 has the worst model
performance, while models 2–4 reach to closing and relatively smaller values after the
epoch of about 100. Yet, it is clear that the decreasing trend of both RMSE and MAE is
the most rapid for model 4. Its turning point is at an epoch of 10, much shorter than 30
for model 2 and 70 for model 3. Thus, we can conclude that the normalization procedure
and Adam optimizer would lead to a higher computational efficiency for training of the
reconstruction models. Without particular statement, this configuration will be employed
throughout the rest of this paper.

Figure 3. (Top) Two examples of vertical temperature profiles depicted by the blue and orange lines
at (a) original scale and (b) normalized scale. Dashed and dotted lines in (a) represent the profile
of maximum and minimum temperature, respectively. (Bottom) (c) RMSE and (d) MAE of training
models relative to the epoch with the input of profiles at (a) original scale and (b) normalized scale.

3.3. Experiment Setup

The complete procedures of data processing and model training are illustrated as
the flowchart in Figure 4. Six variables, including surface parameters (SST, SLA and SST
gradient |G|), month and location (latitude and longitude) are taken as model inputs.
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In particular, |G| is flexible in the experiments to quantify its improvements concerning the
reconstruction of vertical temperatures. Each variable is individually normalized using the
min-max scaling algorithm within [0, 1] to balance their weights in the training process.
The input vertical temperature profiles are also normalized using the same algorithm at
each water depth. The entire dataset is then randomly divided into two parts: 90% for
the training and 10% for the independent testing. The training part is further grouped
as model training (80%) and internal model validation (20%). Note that the internal
model validation could be considered as a model self-evaluation and update process by
consistently reducing the RMSE and/or MAE. The testing data is then used for external
model validation by predicting temperature profiles based on the input variables and the
trained deep learning models. It is worth remembering here that the output of the training
model is on the normalized scale and an inversion is needed to recover the prediction
profiles for comparison with the Argo measurements. In addition to accuracy metrics
of MAE and RMSE, ∆T between reconstructed temperature and the corresponding Argo
measurement at a given depth is also calculated in the subsequent analyses.

Figure 4. Flowchart of the data processing and reconstruction model training.

Table 2 lists the model details for our experiments examining whether including |G|
would improve the accuracy of the upper ocean temperature estimations or not. Moreover,
to look for the most optimal model configuration with high accuracy, different model
structures and activation functions are compared. The model learning rate is set as 0.0001,
the batch size as 64 and the loss function as MAE after performing a couple of tests (not
shown). For all the listed five models, SST, SLA, Month, Lon and Lat are taken as inputs
along with with and without the SST gradient |G|. The output layer corresponds to the
temperature profiles from the sea surface down to 500 m at a vertical resolution of 10 m,
leading to 51 depths. Two representative model structures in particular are compared in
this paper with two combinations of activation functions. As a matter of fact, we conducted
hundreds of such similar model trainings and testings. Yet it is not necessary to document
all these models as the selected one could fully represent our principal findings. In detail,
the seven-layer model is designed to have neurons of 5/6, 8, 16, 32, 64, 128, 51 and the
eight-layer model to have neurons of 5/6, 8, 16, 32, 64, 128, 512, 51. The linear and non-
linear ReLU activation functions are mainly compared. First of all, the form of using ReLU
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activation for all layers shows the lowest accuracy (not shown). For the regression problem,
concerning a connection of the last two layers, it is suggested to use linear functions.
As such, we propose two combinations of activation functions: linear activation function
for all layers and ReLU activation function (ReLU) for the hidden layer and linear for the
output layer.

Table 2. Reconstruction model details for experiments on improving the performance of upper ocean
temperature estimations.

Model Input Structure Activation Function

Model 5 SST, SLA, Month, Lon, Lat 5× 8× 16× 32 × 64 × 128 × 51 L-L-L-L-L-L
Model 6 SST, SLA, Month, |G|, Lon, Lat 6× 8× 16× 32 × 64 × 128 × 51 L-L-L-L-L-L
Model 7 SST, SLA, Month, |G|, Lon, Lat 6× 8× 16× 32 × 64 × 128 × 51 R-R-R-R-R-L
Model 8 SST, SLA, Month, |G|, Lon, Lat 6× 8× 16× 32 × 64 × 128 × 512 × 51 R-R-R-R-R-R-L 1

Model 9 SST, SLA, Month, Lon, Lat 5× 8× 16× 32 × 64 × 128 × 512 × 51 R-R-R-R-R-R-L
1 R is ‘ReLU’ and L is ‘Linear’.

4. Results

The five models 5–9 as listed in Table 2 are created and trained using the training
dataset. Their RMSE and MAE calculated from the validation part at each training epoch
are given in Figure 5. Note we only show the first 50 epochs by learning the fact in Figure 3
that these models can rapidly obtain a consistently low RMSE/MAE. While not shown,
we would like to remind the reader that over-fitting appears with the training epoch.
In general, it is clear that Model 5/6 with linear activation functions underperforms in
comparison with the other three models that use ReLU activation function in the hidden
layers. For the same model configuration, model 6 has relatively lower RMSE and MAE
than model 5 since it takes the SST gradient |G| as input as well. At the 50th epoch, model
5 has RMSE of 0.0950 ◦C and MAE of 0.0726 ◦C, while the values for model 6 are 0.0919 ◦C
and 0.0699 ◦C, respectively. This evidences the effect of |G| in improving the reconstruction
model performance.

Figure 5. (a) RMSE and (b) MAE at each epoch for the five reconstruction models during training.

In comparison, model 7 differs from model 6 by using ReLU as activation functions for
the hidden layers. Yet the enhancement of the model performance is significant. The RMSE
and MAE of model 7 are much lower than that of model 5/6. For instance, RMSE and MAE
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of model 7 reach 0.0373 ◦C and 0.0242 ◦C at the 50th epoch, respectively, which is almost
an order of magnitude smaller than model 5/6. The improved reconstruction performance
from model 5 to model 6 and then model 7 is further demonstrated in Figure 6, where the
reconstructed and Argo observed temperature at two depths of (a–e) 50 m and (f–g) 250 m
are scattered. The data density is counted at the bin of 0.5 ◦C for both axes. At a depth
of 50 m in the top panel, the data points distribute around the one-to-one line for all the
three models. However, it is clear that the deviation of these data points from the diagonal
line is larger for model 5/6 than model 7, particularly when the temperature is lower than
20 ◦C. Such features are more obvious at the depth of 250 m shown in the bottom panel of
Figure 6. While the data points are clustered around a one-to-one line too, they look much
tenser for model 7 than model 5/6. Another interesting aspect worth mentioning is that
most of the temperature observations fall within the range of [15 ◦C, 30 ◦C] at 50 m, while
at 250 m, the temperature is either over the high or the low temperature end. This implies a
great variability of deeper temperatures, possibly due to the appearance of mesoscale ocean
dynamics that modify the thermocline structure. This analysis reveals that including |G|
and a non-linear activation function in the neural network advances the model performance
in reconstructing the vertical temperatures.

Figure 6. Q-Q plot of reconstructed temperature relative to Argo-measured temperature at two depths
of (top) 50 m and (bottom) 250 m for (a,d) model 5, (b,e) model 6 and (c,f) model 7, respectively.
Color represents the data density at a temperature bin of 0.5 ◦C for both the x- and the y-axis.

Furthermore, the overall mean values of ∆T, RMSE and MAE at depths of 50 m and
250 m calculated between the Argo-measured and model-predicted temperatures for the
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five models are given in Table 3, together with the correlation coefficient and normalized
RMSE (also called scatter index, SI). The SI is defined as

SI = ∑n
i=1(ŷi − yi)

2

∑n
i=1(yi)2 (5)

For all parameters, model 5/6 is clearly larger than that of model 7/8/9 due to the
linear activation function. While the ∆T of −0.0077 ◦C for model 7 at 50 m depth is the
closest to 0 ◦C, model 8 attains the lowest RMSE and MAE. At a depth of 250 m, model
8 performs better than other models according to all the five accuracy metrics. These
indicate that model 8 has the best performance among our experimental models. This
model is designed with one more layer than model 7, leading to a relative improvement
of reconstruction in ∆T of roughly 75% at a depth of 250 m. It is worth mentioning that
we have trained models of more than eight layers and the accuracy does not dramatically
increase. The model structure of eight layers is utilized in the following analysis for the
sake of the computation time balance.

Table 3. The accuracy metrics calculated between the Argo-measured and model-predicted tempera-
tures at depths of 50 m and 250 m for the five models listed in Table 2. The best performance metrics
are highlighted by the underlined values.

Depth 50 m 250 m

Model ∆T [◦C] RMSE [◦C] MAE [◦C] R2 SI [%] ∆T [◦C] RMSE [◦C] MAE [◦C] R2 SI [%]

M5 −0.345 2.271 1.617 0.879 1.2 0.053 2.677 2.167 0.754 3.1
M6 −0.222 2.232 1.600 0.883 1.2 0.069 2.565 2.055 0.774 2.9
M7 0.008 1.525 1.091 0.945 0.5 0.027 1.048 0.669 0.962 0.5
M8 −0.045 1.337 0.892 0.958 0.4 0.015 0.993 0.623 0.966 0.4
M9 −0.059 1.344 0.920 0.957 0.4 −0.054 1.006 0.626 0.965 0.4

After removing |G| from the inputs, the ∆T, RMSE and MAE of model 9 increase
by 0.014 ◦C, 0.007 ◦C and 0.028 ◦C relative to model 8 at 50 m depth. A similar trend
is observed for 250 m depth. The performance difference between these two models is
further compared at each depth for the ∆T, RMSE and MAE in Figure 7. The result of
model 7 is also included as a reference and shows clearly larger MAE and RMSE as well as
variations in ∆T. The metrics of RMSE and MAE between model 8 and model 9 are very
close as shown in Figure 5. As an alternative, we look into the ∆T (reconstructed Argo) as in
Figure 7a, which illustrates noticeable distinctions. At depths between 0 and 100 m, the ∆T
curve of model 8 is comparable to that of model 9. Both decrease from 0.1 ◦C at sea surface
to about −0.08 ◦C at 30 m and then increase to 0 ◦C at 100 m. Yet, at increasing depths,
model 9 ∆T becomes positive and gradually decreases around−0.1 ◦C below 300 m. This is
in contrast to model 8 ∆T which stays at around 0 ◦C below 100 m. A detailed comparison
between model 8 and model 9 for the ∆T between the Argo-measured and model-predicted
temperatures is given in Figure 8 for the depths of 50 m, 250 m and 400 m, respectively.
At 50 m depth, the ∆T distribution of model 8 is nearly the same as model 9 with both
mean values of around −0.05 ◦C. The negative biases are expected given the curves in
Figure 7a. With increasing depth, model 9 ∆T tends to be more negative while model 8 ∆T
stays around 0 ◦C. All the above results and analyses prove that it is necessary to include
the SST gradient |G| on account of the ocean front impact to the reconstruction of vertical
temperature profiles.
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Figure 7. The averaged (a) ∆T, (c) RMSE and (b) MAE between the Argo-measured and model-
predicted temperatures at all depths for model 7/8/9.

Figure 8. Distributions of ∆T between the Argo-measured and model-predicted temperatures at
three depths of (a) 50 m, (b) 250 m and (c) 400 m for model 8/9, respectively. The temperature bin is
0.05 ◦C and the mean ∆T is annotated in each subplot.
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5. Discussion and Conclusions

The experiments conducted in this study prove that the accuracy of reconstruction of
vertical temperature profiles from sea surface variables can be well refined by adding the
SST gradient |G| as input. To a certain extent, |G| quantifies the intensity of ocean fronts
and thus accounts for their impact on the upper ocean temperature structures [41]. Yet, we
must acknowledge that |G| is not the only parameter to characterize the ocean fronts [45].
A full description of ocean fronts with multiple features is likely to advance the mapping
skill from sea surface observations to depthwise temperatures. In addition, the mesoscale
ocean processes that bring about different sea surface traces are more than ocean fronts [1,4].
Analysis of these phenomena, such as ocean eddies, internal waves, upwellings, etc., in
vertical profile mapping needs additional efforts.

In this study, the necessity of taking ocean dynamics into account to link the sea surface
fields with sub-surface structures is evidenced. By including |G|, the improvement of tem-
perature estimation at 250 m depth is about 10% compared to the values obtained using the
regression method in [41]. Such progress is expected to be further refined with more ocean
processes included in the reconstruction models in the future. However, more importantly,
this technique leads to a practical way of introducing the physics of oceanic phenomena
into data-driven statistical methods. As a matter of fact, the combination of data-driven
and physic-driven methods has seen great advantages [14]. The consistent mining into the
data to extract more geophysical mechanisms is becoming increasingly significant.

In our case, to establish connections between the surface variables and temperatures
profiles, we conducted many experiments and detailed several representative models in
this paper. When using the linear activation functions throughout all the layers, the neural
network is equal to high-order polynomial regressions, which show obviously coarser
performance compared to the non-linear models (see Figure 5 and Table 3). A deeper
network would facilitate the model performance as well, which sacrifices the efficiency with
the increasing number of layers. The neural network structure depends on the complexity of
problems and the size of the training dataset. For the reconstruction of vertical temperature
profiles in this study, an eight-layer model is sufficient to attain solid model performance.
Machine learning methods develop quickly and considerable possibilities in improving
the reconstruction of vertical temperature profiles are therefore foreseen in the near future.
The motivation of this work is to exploit new thoughts and more machine learning methods
such as the convolutional neural network shall be further employed.

As a follow-on to our previous study which demonstrates the dependence of recon-
struction model performance on the associated |G|, the accuracy of vertical temperature
reconstruction models using SST, SLA, |G|, Month, LON and LAT as inputs is higher than
that of models without |G|. The obtained improvements are more pronounced under the
depth of 200 m. Figure 9 presents an example of the three-dimensional reconstructed
temperature on 1 January 2010 over the area of interest predicted by model 8 of the best per-
formance. On a daily basis, SST exhibits highly dynamic variability with rich sub-mesoscale
and mesoscale processes. It has to be admitted that the front impact can not be fully re-
solved by only taking the SST gradient as a single additional input. As shown, the vertical
temperature structure is a field of wide extent and subject to the impact of surrounding
neighbors. Further explorations considering the environmental conditions are one way to
improve the reconstruction accuracy. Now the complicated and deep convolutional neural
network (CNN) is ready to use by extracting the temporal and spatial features of input
parameters for higher mapping performance.
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Figure 9. Three-dimensional representation of the reconstructed temperature using model 8 with
input of daily SST and SLA on 1 January 2010.
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