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1. Introduction

In recent decades, classical survey techniques (i.e., field measurements and aerial
remote sensing) have evolved, and with the advent of new technologies—e.g., terrestrial
radar interferometry [1,2], digital time-lapse cameras [3], terrestrial and aerial laser scan-
ners [4,5] and platforms, e.g., UAV [6,7]—remote sensing systems have become popular
and widely used in geosciences. Contactless devices are not invasive and allow measuring
without accessing the investigated area. This is an excellent advantage as earth surface pro-
cesses often occur in remote areas and can be potentially dangerous or difficult to access [8].
Satellite and aerial remote sensing offer the possibility of surveying large areas, using hy-
perspectral optical [8,9], synthetic aperture radar (SAR) [10,11] and thermal infrared [12,13]
images and altimetric lasers [14]. The progressive rise in available public and private
satellite constellations has permitted individuals to reach very high-resolution images at
weekly to daily revisit time. On the other hand, ground-based surveys usually have higher
acquisition frequency and spatial resolution compared to satellite systems, and they are
able to observe the evolution of fast processes and their possible paroxysmal phase, e.g.,
volcanic eruptions [15,16], glacier instabilities [17], landslides [18,19], and floods [20,21].
For their characteristics, proximal sensing applications are often used in monitoring activi-
ties at a short revisit time, as they can provide real-time or near-real-time information [22].
Therefore, they can be of great support in early warning procedures and risk assessment
and management [23,24]. Combined with aerospace sensors, contactless terrestrial devices
are particularly suitable for data-fusion techniques, multi-scale approaches and supporting
numerical model analysis [25–28].

Satellite and terrestrial remote sensing are of paramount importance in specific tasks
of geologic hazard analysis. This Special Issue has collected ten papers concerned with
recent and upcoming advances in remote sensing applications in geologic hazard analysis.
In particular, this Special Issue includes studies about satellite and terrestrial contactless
devices for detecting, monitoring and analyzing geologic processes, as well as new data-
processing and warning techniques (Figure 1).
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Figure 1. Word cloud of the abstracts of the contributions of this Special Issue.

2. Contributions of the Special Issue

Satellite and terrestrial remote sensing allow for the analysis of different geological
processes and are of paramount importance in specific tasks of hazard analysis. In particular,
this Special Issue collects contributions that are concerned with (i) detecting and mapping
potential hazards, (ii) acquiring data for analysis of susceptibility and triggering factors,
(iii) monitoring the evolution of the process, and (iv) developing strategies of warning
and early warning. The considered geological processes are landslides, mining-induced
subsidence and land deformations, volcanoes, glacier flows and dune migration. The
adopted techniques are varied and include, but are not limited to, optical sensors, SAR,
GNSS and multi-sensor approaches (Figure 2). Usually, multi-sensor-based studies use
satellite optical images to detect the areas of interest and multitemporal SAR interferometry
(MTInSAR) to measure ground deformation in such areas.
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Figure 2. Distributions of the topics dealt with in this Special Issues, according to different schemes
of classification: (i) the investigated process, (ii) the scope of the study, (iii) the adopted technique
(TLS is terrestrial laser scanner, while CHIRPS is the Climate Hazards group Infrared Precipitation
with Stations dataset) and (iv) the platform adopted.
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In the following, we will describe the contributions present in this Special Issue. They
are organized according to: first, the investigated geologic process, and second, the scope
of the study (i.e., detection, monitoring, process analysis and warning).

3. Landslides

Landslides are the most-frequently investigated process in this Special Issue. Six
papers examine this phenomenon. However, the studies focus on different themes; some
are dedicated to landslide detection [29] and others to triggering factors and susceptibility
analysis [30–32], monitoring [33] and early warning procedures [34].

3.1. Detection and Mapping

Lindsay et al. [29] focused their work on landslide mapping. They used optical
(Sentinel-2) and SAR (Sentinel-1) satellite images from Google Earth Engine to map the
landslides triggered by a rainstorm in western Norway. To detect the landslides, they
manually analyzed the differential Normalized Difference Vegetation Index and the SAR
amplitude difference of VV and VH polarizations (from the Sentinel-2 and Sentinel-1,
respectively). Their results showed that, by using a stack of pre-event images to improve
the signal-to-noise ratio, the number of detected landslides increased from 14 (registered
by the Norwegian Landslides Inventory) to 120. Moreover, they found that optical images
performed better than SAR amplitude images with the aim of landslide detection.

3.2. Process Analysis and Susceptibility

Three works are dedicated to the analysis of triggering factors and susceptibility
to landslides and rock slopes. The surveys were conducted from ground, satellite or
combined approaches.

Lin et al. [30] studied the spatiotemporal evolution pattern and driving mechanisms
of landslides in the Bailong River Basin (China), where a strong earthquake occurred in
2008. They analyzed the period 2007–2020, mapping the occurred landslides using optical
images from various sources and measuring the landslide deformation using MTInSAR.
They identified three stages of landslide triggering: the earthquake (2008), the coupled
earthquake–rainfall (2008–2017), and the rainfall (2017–present) driving stages. In particu-
lar, they observed that the landslides in the limestone area were more responsive to the
earthquake, while the loess–phyllite-dominated sectors were mainly controlled by rainfall.

The study of Cullen et al. [31] was located in Colombia between 2016 and 2019. They
used an inventory of 346 rainfall-induced landslide events and the Climate Hazards group
Infrared Precipitation with Stations (CHIRPS) dataset, which combines satellite-based
rainfall data and ground-based gauge measurements to produce global rainfall data at a
0.05◦ × 0.05◦ resolution. They formulated new dynamic variables based on the rainfall
occurrence and amount during dry and wet periods, and determined an original landslide
triggering factor (LTF). Comparing their LTF with canonical event–duration threshold, they
found that LTF performed better in 81% of cases.

Farmakis et al. [32] analyzed point clouds (PCs) of rock slopes acquired by a terrestrial
laser scanner (TLS) in British Columbia (Canada). They partitioned the PCs into voxels
based on local dimensionality, orientation, and topology and built an automatic decision
tree that utilized geometrical, topological, and contextual information and enabled the
classification of a multi-hazard railway rock slope into classes involved in landslide risk
management. Their results demonstrated precision similar to more complex machine
learning algorithms and manual knowledge-based analysis.

3.3. Monitoring Activities

Bovenga et al. [33] applied MTInSAR to Sentinel-1 and COSMO-SkyMed to measure
the velocity time series of two landslides that occurred in 2013 and 2019 in southern Italy,
which caused damages to buildings and roads. Their results evidenced the presence of non-
linear displacements in correspondence of some key infrastructures. They concluded that
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the analysis of accelerations and decelerations of persistent scatter objects corresponding to
structures affected by recent stabilization measures helps to shed new light in relation to
known events that occurred in the area of interest.

3.4. Warning Procedures

Wu et al. [34] developed a threshold-based early warning procedure for the Gapa
Landslide (Southwest China), which was reactivated by the impoundment of a large
water reservoir. They observed that the landslide deformation was strongly related to
the fluctuations in reservoir water levels; thus, a crucial water level was also defined to
reduce false warnings from the velocity threshold alone. The current monitoring system
is composed of six permanent GNSS receivers and one water level station. A warning
procedure can be activated in case of a velocity exceeding 4 mm day−1 and a water level
higher than 1820 a.s.l. (i.e., reservoir depth > 70 m).

4. Mines

Zhang et al. [35] treated the measurement of ground deformation caused by mining
activities in the Fengfeng area (Eastern China) in 2015 and 2016. They adopted MTInSAR
applied to multiple satellite SAR images, i.e., TerraSAR-X, Sentinel-1, Radarsat-2, and
PALSAR-2, thus increasing the data adopted to build the time series. They focused their
study on vegetated areas, where MTInSAR observations are usually critical. They measured
subsidence of almost 800 mm year−1, and registered a root mean squared deviation of
83 mm year−1 compared to terrestrial observations.

Solari et al. [36] applied MTInSAR in a mining area in southern Italy to measure the
deformation time series caused by subsidence in the period 2016–2018. They found areas
with deformation rates up to 250 mm year−1. Moreover, they manually mapped more than
100 sinkholes that occurred in the area between 1956 and 2018 using nine orthoimages
acquired across this period, and they analyzed the deformation in correspondence of
the sinkholes. In their work, quite homogeneous subsidence rates (10–20 mm year−1)
were measured, except for the more recent sinkholes, where the velocities were more
heterogeneous and higher (up to 80 mm year−1).

5. Volcanoes

The work of Rosch and Plank [37] concerned the mapping of lava and ash deposits
using PlanetScope optical images. This study introduced an object-oriented classification
for mapping lava flows in vegetated and unvegetated areas during several eruptive phases
of three Indonesian volcanoes. A change detection investigation was combined with the
analysis of variations in texture and brightness, with hydrological runoff modelling and
with analysis of thermal anomalies derived from Sentinel-2 or Landsat-8. The results
showed good agreement with the reports of the Global Volcanism Program and showed the
benefits of PlanetScope images for volcano daily monitoring and eruption risk assessment.

6. Glaciers and Sand Dunes

Dematteis and Giordan [38] conducted a methodological study that compared the
performances of fifteen digital image correlation functions and proposed a new similarity
index (DOT). They analyzed the outcomes considering four template sizes and thirteen
types and levels of noise applied on a shaded relief of a digital elevation. They conducted
the same comparison on optical images of a glacier (acquired by a terrestrial camera) and
the dunes of the Bodélé Depression (Chad) (acquired by Sentinel-2). Overall, they observed
that using orientation images provided the best performances in the presence of shadows
or snow patches, adopting either frequency-based or DOT correlations.

7. Conclusions

This Special Issue consists of ten papers that used remote sensing (either from ground
or aerospace) to analyze geologic hazards. The applied techniques are varied and include
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GNSS, TLS, SAR, optical images and rainfall datasets. On several occasions, multi-sensor
approaches were adopted. The scopes are different as well, and they can be summarized in
four classes: (i) detection, (ii) susceptibility and triggering factors analysis, (iii) monitoring,
and (iv) early warning. Considering all the contributions, this Special Issue demonstrates
the high benefit of using remote sensing to analyze geologic hazards and represents a
valuable advance of the research in this field.
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