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Abstract: The paper focuses on the mathematical modeling of a new double linear array detector.
The special feature of the detector is that image pairs can be generated at short intervals in one scan.
After registration and removal of dynamic cloud edges in each image, the image differentiation-
based change detection method in the temporal domain is proposed to combine with the structure
tensor edge suppression method in the spatial domain. Finally, experiments are conducted, and
our results are compared with theoretic analyses. It is found that a high signal-to-clutter ratio
(SCR) of camera input is required to obtain an acceptable detection rate and false alarm rate in real
scenes. Experimental results also show that the proposed cloud edge removal solution can be used to
successfully detect targets with a very low false alarm rate and an acceptable detection rate.

Keywords: small moving target detection; double linear array detector; cloud edge removal; structure
tensor

1. Introduction

Dim small target detection is a major problem in numerous fields, such as infrared
search and track (IRST) systems and external intrusion warnings [1–3]. Since the imag-
ing distance is long in these applications, the target usually occupies only one or a few
pixels [4–6], and there is insufficient texture and shape information for target detection [7–9].
Furthermore, the intensity value of the infrared target is very low due to reflection, refrac-
tion, the sensor’s aperture diffraction effects and geometric aberrations [10–13]. Therefore,
it is difficult to separate infrared small targets from complex backgrounds.

1.1. Related Works

Existing infrared target detection approaches can be divided into spatial, temporal,
and spatio-temporal detection methods. Most spatial detection methods use spatial fil-
tering techniques, and they are usually based on the assumption that the target has a
larger intensity value than the background. However, this assumption does not always
hold in real scenes [14–17]. The temporal detection methods usually use the temporal
profiles of each pixel in a sequence of infrared images to extract the small target of interest.
They have a good detection performance when a small target appears in slowly evolving
backgrounds [18–21]. However, these methods often consume more time than single-frame
detection methods. The spatio-temporal detection methods are complementary to the
singular spatial or temporal detection methods [22–24]. They use features in both spatial
(e.g., the gray difference feature) and temporal (e.g., the motion difference feature) domains
to completely separate targets from clutter.

Several optical systems have been proposed to detect small infrared small targets
over the past few decades [25–28]. They can be divided into two classes: scanning camera-
based optical systems and staring camera-based optical systems. Scanning cameras have
a relatively wide field of view and are suitable for early warning for large areas [29].
However, imaging in this way has a high time delay integration (TDI) in adjacent frames.
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Consequently, it is difficult to perform data association, and the time for target discovery is
long. On the other hand, the staring camera is usually used for target tracking as its imaging
size is usually small [30], which makes it not suitable for searching in early warning.

1.2. Contributions

In order to overcome these limitations of traditional optical systems, we propose to
use a double linear array detector to detect targets with cross-pixel moving. For a double
linear array detector, two images (an image pair) are generated when the detector scans
from the top to the bottom only once. Figure 1a shows an IR image pair acquired by a
double linear array detector with a slowly changing cloud clutter. It not only reserves the
wide field of view of traditional scanning systems but also reserves the short-time intervals
in adjacent frames of staring systems. A double linear array detector has the following
three advantages. First, it reserves the wide field of view of traditional scanning systems.
Second, its exposure time in each pixel is longer than traditional scanning systems. Third,
the interval between adjacent frames is shorter than traditional scanning systems, which
makes it easy to perform data association subsequently estimate the velocities and relative
positions of cross-pixel moving targets.

Our other task is to automatically detect targets with cross-pixel moving in image pairs
acquired by a double linear array detector. Considering the special spatial arrangement
and imaging modes of the detector (as analyzed in Section 2), the image pair is almost
observed from the same solar angle and atmospheric conditions, and the slow change
in cloud background can be almost negligible at a short interval. Therefore, the image
differentiation-based change detection method is suitable for the detection of targets after
image registration. Figure 1b shows the detection results after image differentiation. We
can see the positive gray-scale value and the negative gray-scale value of a candidate target
produced from an image pair in the filtered result, namely, positive and negative target
pairs in our paper. The mathematical model of image differentiation is:

Dxij = xij(t2)− xij(t1) (1)

where x(t1) represents the image acquired by the first linear array and x(t2) represents the
image acquired by the second linear array. i and j indicates the location of the pixel. Dxij
represents the residuals after image differentiation. If the grayscale value of the candidate
target in x(t1) is positive, the grayscale value of the candidate target in x(t2) is negative
after image differentiation. We call them positive and negative target pairs in this paper.

Target

Target

(a)

pos-target

neg-target

(b)

Figure 1. An example of image pair and positive and negative target pairs. (a) An image pair with
slowly changing cloud clutter. (b) Local detection results after image differentiation.

Since false alarms after image differentiation are mainly caused by cloud edges [31,32],
edge suppression has been found to be a useful spatial method complementary to our
temporal change detection method [33–35]. The structure tensor has been widely used
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for cloud edge suppression in recent years. Dai et al. [23,24,36,37] allocated the structure
tensor as an adaptive weighting parameter to suppress strong cloud edges. Liu et al. [38]
introduced the gradient direction diversity (GDD) method to suppress sharp cloud edges.
The GDD measure is also inspired by the structure tensor. Li et al. [39] used the local
steering kernel to encode the infrared image patch, as it can represent different intrinsic
structures in different image regions (e.g., the cloud edge region, the flat region, the textural
clutter region and the small target region). Thus, the structure tensor is used for cloud edge
removal in our paper.

The overview of our proposed method is as follows.

• The structure tensor is used to detect infrared small targets, which is used as an
adaptive weighting parameter to suppress strong cloud edges.

• Considering that using information of image sequences requires more prior informa-
tion and a large amount of data processing, the temporal image differentiation filter is
used to extract target pairs using movement information of the target.

• Adaptive thresholding-based constant false alarm (H-CFAR) is performed to obtain
candidate targets, and data association is performed to extract positive and negative
target pairs.

The rest of this paper is organized as follows. Section 2 analyzes the optical path
and mathematical model of the double linear array. Section 3 presents the target detection
model in detail. Section 4 tests the performance of our proposed method. The paper is
concluded in Section 5.

2. The Double Linear Array Detector

For a double linear array detector, the region of interest in the instantaneous field of
view (IFOV) can be measured twice in the same period of time once the detector scans
from the top to the bottom. The optical path of a double linear array detector is shown in
Figure 2. The device consists of a scanning mechanism, an optical system and a focal plane.
The scanning mechanism mainly includes a pendulum mirror and a driving shaft, as wel
as the focal plane constructed with two linear arrays arranged in parallel, as shown in the
right part of Figure 2. Incident light containing the radiation energy information of targets
and the background is first projected to the pendulum mirror; the driving shaft is then
used to rotate the pendulum mirror. After several reflections and refractions in the optical
system, the light finally converges to the focal plane to generate an image pair of the scene.

2. Optical system1. Scanning mechanism 3. Focal plane

d


d

l

…
 …

Figure 2. The optical path of a double linear array detector.

For a scanning system, the ground sample distance (GSD) determines the maximum
spatial resolution of a camera and the minimum detectable velocity of a target. In addition,
GSD mainly depends on the instantaneous field of view (IFOV) in practice. The IFOV is
the angular cone of visibility of the camera and determines the area on the Earth’s surface
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that can be seen from a given altitude at a particular moment [40]. The geometry of the
detecting system, including GSD, IFOV, camera height (H), pixel size (d), and the focus
of the optical system ( f ) is shown in Figure 3, and the relationship between them can be
expressed as:

GSD = 2H tan(
IFOV

2
) =

Hd
f

(2)

Considering that our detection method is based on two frames, and it has to use the
distance constraint to associate the positive and negative target pairs, the following data
association constraints are derived.

The target velocity in the image plane vpixel is used to predict the target velocity
v in real scenes. Since the dual linear array can only detect cross-pixel moving targets,
the detectable velocity in the focal plane is:

d
∆t

< vpixel <
l

∆t
(3)

where d is the pixel size, l is the width of the linear array, and ∆t is the time interval of
linear arrays.

Then, the range of the detectable target velocity in real scenes is:

GSD
∆t

< v <
l

∆t
· GSD

d
(4)

The left and right sides of Equation (4) are the minimum and maximum detectable
velocity of the target in real scenes, which are denoted by vmin and vmax, respectively.

From Equations (3) and (4), we can obtain the distance constraints as follows:

vmin · ∆t
GSD

< ∆D <
vmax · ∆t

GSD
(5)

where ∆D is the target moving distance in linear arrays.
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首先，分析弹道目标在图像中的尺寸大小。通常弹道导弹尾焰的宽度在十几
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卫星的空间分辨率示意图如图 2.3 所示。在某一瞬间，探测器的探测单元所对

应的视场角称为瞬时视场角（Instantaneous Field Of View, IFOV）。其在地面上对应

的尺寸大小称为地面分辨率单元（Ground Resolution Cell, GRC），即卫星的空间分

辨率，它可表示为： 

IFOV
GRC 2 tan( )

2

Hd
H

f
  （2.1） 

式中，H 为探测系统到目标的作用距离。 d 为像元尺寸， f 为光学系统的焦距。 

图2.3  空间分辨率示意图

由于弹道导弹在助推段内的飞行高度较低，远小于卫星距离地面的高度，可

以忽略导弹的飞行高度。卫星的空间分辨率与卫星距地面的高度以及卫星的视角

有关，卫星离地面越远，分辨率越低，卫星视角越倾斜，瞬时视场角不变，但观

测面积增大，分辨率降低。 

综合考察美国 SBIRS 和 DSP 红外预警卫星上红外探测器的参数[74]，下面给出

高低卫星的空间分辨率变化范围。对于高轨卫星，其焦距 f 为1m，像元尺寸 d 为

30μm，轨道高度H 的变化范围为36000km ~ 40000km，其星下点（卫星与地心连

H

Horizon line
GSD

IFOV

the earth

f

d

focal point

Figure 3. Geometry of the detecting system.

3. Target Detection Model

The proposed small target detection method for a double linear array detector is
shown in Figure 4. We first use the structure tensor method to suppress cloud edges.
Then, the temporal image differentiation filter is used to extract target pairs using motion
information of the target. After background suppression, adaptive thresholding-based
constant false alarm (H-CFAR) is performed to obtain candidate targets. Finally, data
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association is performed to extract positive and negative target pairs using the constraints
given in Equation (5).

Data association image differentiationImage pairs

Target

Adaptive thresholding

Target

—

Cloud edge removal

Figure 4. Overall flowchart for a double linear array detector.

The structure tensor is proposed based on the edge shock filter and variational func-
tionals [41–43]. It turns out to be very effective for the enhancement of corner structures
and presents different characteristics on homogeneous regions, edges, and texture regions
of an image [44,45]. Therefore, it is used in our infrared small target detection method for
cloud edge suppression in a single image.

The structure tensor is essentially a steering matrix [46,47]. It describes the local
structural information about the image, and it can be represented as:

Ci = ∑
xi∈Ωi

[
∂I2

∂xi1
∂I

∂x1
∂I

∂xi2
∂I

∂xi1
∂I

∂xi2
∂I2

∂xi2

]
(6)

where I represents the image and xi = (xi1, xi2) represents the two-dimensional coordinate
vector of the central pixel in a rectangular window Ωi.

The steering matrix captures the principal directions of local texture from the gradient
distribution in a small neighborhood (mostly 5× 5 [48]). Therefore, the structure tensor Ci
can be first calculated by GT

i Gi with:

Gi =

 Zx1(x1) Zx2(x1)
...

...
Zx1(xP) Zx2(xP)

 (7)

where Zx1(·) and Zx2(·) denote the first derivatives along the horizontal and vertical axes,
respectively, and P is the number of pixels in the local window Ωi. However, since it is
difficult to calculate the gradient distribution, the covariance matrix Ci can be estimated by
singular value decomposition [22,49] as:

Ci = γiUθi ΛiUT
θi

(8)

where γi is the scaling parameter. It is large in homogeneous regions but small in textured
regions. θi is the rotation parameter; it defines the dominant orientation angle, Uθi , as a
rotation matrix. Λi is the elongation matrix.

γi =

(
s1s2 + λ

′′

M

) 1
2

(9)
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Uθi =

[
cos θi sin θi
− sin θi cos θi

]
(10)

Λi =

[
σi 0
0 σ−1

i

]
(11)

σi =
s1 + λ

′

s2 + λ
′ (12)

where σi is the elongation parameter. λ
′
= 1; λ

′′
= 10−1. The structure tensor can be

calculated using Equations (9)–(12).
The eigenvalues of singular value decomposition is denoted as λ1 and λ2. They can

be used as two features to describe the local structural information [50]. The larger λ1 is
then λ2; the measurement region is more likely a cloud edge region. Therefore, the cloud
edge suppression measure can be defined as follows:

K = exp(−h · (λ1 − λ2)) (13)

Figure 5 shows the cloud edge suppression results on images with three different
shapes of clouds. It demonstrates that the proposed structure tensor-based measure
achieves good performance in cloud edge suppression.

(a) (b) (c)

Figure 5. Illustrations of cloud edge suppression based on structure tensor measures. (a) Ragged
cloud edge; (b) strong cloud edge; (c) fluffy cloud edge.

Temporal Differentiation of Image Pairs

Assuming that the noise in image pairs follows a Gaussian distribution N(0, σ2) and
the registration error is zero, then the residual after image differentiation follows a Gaussian
distribution N(0, 2σ2). Since the grayscale value of the residual image can be positive or
negative, we use a bilateral filter to extract candidate points, the positive threshold th_p
is used to extract positive candidate points, and the negative threshold th_n is used to
extract negative candidate points. If both the positive and negative grayscale values of the
target exceed the defined thresholds, the data association step is followed (according to
Equation (5)). Finally, the detection rate pd and false detection rate p f can be calculated by
Equations (14) and (15). 

pd = p+d · p
−
d

p+d = Q
(

th_p−(Tmax−µBG)√
2σBG

)
p−d = 1−Q

(
th_n−(µBG−Tmax)√

2σBG

) (14)

where p+d and p−d are the target detection rate with a positive gray value and the target
detection rate with a negative gray value, respectively. Tmax is the highest intensity value in
the target region, and µBG and σBG are the average and the standard deviation of intensity
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values in a residual image. Q(x) is a right-tailed distribution function, as defined in
Equation (16). 

p f = N · p+f · p
−
f

p+f = Q
(

th_p√
2σBG

)
p−f = 1−Q

(
th_n√
2σBG

) (15)

where p+f and p−f are the target false alarm rate with a positive gray value and the target
false alarm rate with a negative gray value, respectively. N is the number of pixels that are
possibly associated.

Q(x) =
∫ +∞

x

1√
2πσ2

BG

exp

{
− (ξ − µBG)

2

2σ2
BG

}
dξ (16)

To ensure that both positive and negative targets can be detected, the signal-to-clutter
ratio (SCR) is defined as:

SCR =
|Tmax − µBG|

σBG
(17)

Combining Equations (14)–(17), the relationship between the detection rate, false rate
and SCR can be expressed as:

Q−1
((

p f /N
) 1

2
)
−Q−1(p

1
2
d ) =

SCR√
2

(18)

The theoretic receiver operating characteristic (ROC) curves validated through Monto
Carlo simulations for the double linear array detector are analyzed as shown in Figure 6. It
can be seen that the detection probability becomes higher as the SNR increases. Specifically,
When the SNR is 6.1 and the false alarm rate is 1× 10−4, our double linear array detector
can achieve a detection rate of 97%; when the SNR is above 6.1 and the false alarm rate is
1× 10−5, our double linear array detector can achieve a detection rate of 93%.

pf

pd

SNR=6
SNR=6.1
SNR=7
SNR=8

Figure 6. The theoretic ROC curves for the double linear array detector.

4. Experimental Results and Discussions
4.1. Simulation Scenes

In this section, experiments are conducted to test the performance of our method.
Given an image, another image was generated with one pixel jittering in an arbitrary
direction to simulate the image pair produced by the double linear array detector. Then,
simulated targets were added into each image, the target position and motion direction
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were randomly determined, the intensity of the targets was determined according to a
specific SCR, and the target velocity was set to 2∼3 km/s. Next, the camera resolution was
set to 1 km× 1 km, and the interval of an image pair was set to 2 s. Finally, considering that
the target can move along the diagonal direction and the horizontal direction, the distance
constraint for a target pair after clutter suppression is set to 2∼7 pixels, as shown in Figure 7.

(a) (b) (c)

Figure 7. Schematic diagram of distance constraint for a target pair. (a) Horizontal direction, (b) Ver-
tical direction, (c) Diagonal direction.

4.2. Experiments on Simulation Scenes

Three experiments were conducted on scenes with different shapes of cloud (i.e.,
Figure 8a–d, ragged cloud scenes; Figure 8e–h, strong cloud scenes; Figure 8i–l, fluffy cloud
scenes), as shown in the first column of Figure 8. The second column in Figure 8 shows
the filtered results after image differentiation, and the third column shows the filtered
results after cloud edge suppression and image differentiation. It can be seen from the
third column of Figure 8 that false alarms in dynamic cloud edges have been significantly
reduced. Finally, accurate association results are obtained, as shown in the fourth column
of Figure 8.

4.3. ROC Curves Evaluation

The ROC curves obtained through Monto Carlo simulations were used to test our
proposed spatio-temporal method for a double linear array detector. An ROC curve
represents the probability of detection Pd as a function of the false alarm rate Pf . Pd and Pf
can be calculated as:

Pd =
nt

nc
(19)

Pf =
n f

n
(20)

where nt, nc, n f and n represent the number of detected true pixels, ground-truth target
pixels, false alarm pixels and the total number of image pixels, respectively.

As shown in Figure 9, at the cost of an increase in the false alarm rate, the detection
probability is increased under a certain SCR. When SCR is increased, the detection prob-
ability is increased under a certain false alarm rate. It can be observed that the detection
rate and the false alarm rate are a pair of contradictory variables. Furthermore, the theoreti-
cal ROC results are better than the results achieved by other two methods in real scenes.
That is because the residual after background suppression does not completely follow a
Gaussian distribution.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 8. An example of results achieved by the proposed small target detection methods on three
images. The red and blue boxes in each image represent the candidate points passing the positive
and negative thresholds (as mentioned in Section 3), respectively. (a–d) Ragged clouds; (e–h) strong
clouds; (i–l) fluffy clouds.

Table 1 shows the probability of detection in three experiments under different SCRs
and Pf . Table 2 shows the false alarm rates in three experiments under different SCRs
and Pd. We can see that with the cloud edge suppression method, the detection rate is
significantly improved, and the false alarm rate is largely reduced.

Table 1. Pd achieved by three methods under different SCRs and Pf .

Pf = 5 × 10−6 Pf = 10−5

SCR Temporal Spatial-Temporal Theory Temporal Spatial-Temporal Theory

6 11.39% 54.40% 88.98% 44.03% 63.93% 91.90%
7 65.53% 74.16% 99.02% 70.67% 81.06% 99.38%
8 84.93% 86.53% 99.97% 88.39% 92.74% 99.98%

‘Temporal’ stands for the temporal image differentiation method; ‘Spatial-temporal’ stands for the method
combining the spatial cloud edge suppression and the temporal image differentiation method.

Table 2. Pf achieved by three methods under different SCRs and Pd.

Pd = 85% Pd = 90%

SCR Temporal Spatial-Temporal Theory Temporal Spatial-Temporal Theory

6 3.30 × 10−4 2.32 × 10−4 3.00 × 10−5 8.82× 10−4 5.14 × 10−4 6.00× 10−6

7 4.34 × 10−5 2.10 × 10−5 2.00 × 10−7 6.88× 10−4 6.16 × 10−5 4.00× 10−8

8 4.97 × 10−6 4.28 × 10−6 8.00× 10−10 1.40× 10−5 8.08 × 10−6 5.00× 10−9

‘Temporal’ stands for the temporal image differentiation method; ‘Spatial-temporal’ stands for the method
combining the spatial cloud edge suppression and temporal image differentiation method.
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Figure 9. ROC curves achieved by three methods under different SCRs. (a) Performance achieved
by temporal image differentiation. (b) Performance achieved by spatial cloud edge suppression and
temporal image differentiation. (c) Performance achieved by theoretic analysis.

4.4. Evaluation of the Proposed Detection Framework

The data association results for positive and negative targets under different operating
conditions are shown in Figure 10. From Figure 10a–p, we can see that after image differ-
entiation and cloud edge suppression, the target pairs can be correctly associated, and no
false detection is found in the association results. From Figure 10q–t, we find that one target
can associate with two or more targets under a few conditions. To address this problem,
we have to extend the dual linear array to a multi-linear array in future, and the false
association can be removed by the direction of the target motion trajectory. Furthermore,
the input SCR of the camera can be improved to handle this problem.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Figure 10. Thedata association results with targets in different positions in various complex back-
grounds. (a–p) target pairs were associated correctly, (q–t) one target was associated with two or
more targets.

5. Conclusions

This paper has presented a complete framework for small infrared target detection
using a double linear array detector. First, a new double linear array detector was modeled
to generate image pairs at short intervals. Second, considering the limitations of singular
spatial or temporal detection methods, an image differentiation-based change detection
method in the temporal domain was proposed combined with the structure tensor edge
suppression method in the spatial domain. The experimental results showed that targets
can be extracted accurately with a very low false alarm rate and an acceptable detection rate.
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