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Abstract: Biomass is important in monitoring global carbon storage and the carbon cycle, which
quickly and accurately estimates forest biomass. Precision forestry and forest modeling place high
requirements on obtaining the individual parameters of various tree species in complex stands, and
studies have included both the overall stand and individual trees. Most of the existing literature
focuses on calculating the individual tree species’ biomass in a single stand, and there is little research
on calculating the individual tree biomass in complex stands. This paper calculates the individual tree
biomass of various tree species in complex stands by combining multispectral and light detection and
ranging (LIDAR) data. The main research steps are as follows. First, tree species are classified through
multispectral data combined with field investigations. Second, multispectral classification data are
combined with LIDAR point cloud data to classify point cloud tree species. Finally, the divided
point cloud tree species are used to compare the diameter at breast height (DBH) and height of each
tree species to calculate the individual tree biomass and classify the overall stand and individual
measurements. The results show that under suitable conditions, it is feasible to identify tree species
through multispectral classification and calculate the individual tree biomass of each species in
conjunction with point-cloud data. The overall accuracy of identifying tree species in multispectral
classification is 52%. Comparing the DBH of the classified tree species after terrestrial laser scanning
(TLS) and unmanned aerial vehicle laser scanning (UAV-LS) to give UAV-LS+TLS, the concordance
correlation coefficient (CCC) is 0.87 and the root-mean-square error (RMSE) is 10.45. The CCC and
RMSE are 0.92 and 1.41 compared with the tree height after UAV-LS and UAV-LS+TLS.

Keywords: tree species identification; DBH; tree height; biomass calculation

1. Introduction

Increased carbon dioxide emissions have led to a gradual warming of the global climate
and a sharp deterioration of the ecological environment. Photosynthesis in terrestrial
ecosystems can effectively relieve carbon dioxide emissions [1,2]. As the largest carbon
storage pool on land, forests effectively control carbon dioxide emissions, regulate the global
carbon cycle, and slow down climate warming. As an important indicator of vegetation life
activities, forest biomass is important in monitoring global carbon storage and the carbon
cycle to evaluate terrestrial ecosystems. Therefore, rapid and accurate estimations of forest
biomass are significant for forest ecological management systems and climate decision
support [3,4].
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Previous researchers have mainly obtained the DBH and tree height through field
investigations. The DBH is easily obtained, but the tree height is not only difficult to obtain
but is also vulnerable to various errors (plant factors, topographic factors, human errors,
instrument errors, etc.). Thus, inventorying forest resources is time-consuming, laborious,
and subjective [5–8].

The development of optical remote sensing technologies has brought convenience
to the inventory of forest resources and has advantages in monitoring the dynamics of
forest biomass. Researchers have widely applied multispectral or hyperspectral imaging to
classify forest tree species, identify biological species based on the spectral information and
reflectance of plants, and establish a statistical relationship model between the vegetation
index and biomass at different growth stages through the normalized vegetation index
(NDVI) to calculate forest biomass. As images can only provide 2D data, they cannot
provide the vertical structure information of trees; thus, research is more focused on
the stand level with the average value or sum of stands obtained [9–11]. Precision in
forestry, forestry management planning, and forestry growth modeling plays increasingly
important roles in forestry applications, so more attention has been given to the acquisition
of individual tree parameters (tree height and DBH) of various tree species in stands.
Research starts from the overall stand to the study of individual trees. The acquisition
of individual tree parameters (tree height and DBH) through automatic individual tree
detection (ITD) is also becoming increasingly important in forestry applications [12].

With improvements in dense image-matching methods and computer capabilities,
digital aerial photography (DAP) measurements can generate point cloud data through the
structure-from-motion (SFM) algorithm, which contains a significant amount of tree-top
information. The digital terrain model (DTM) data can be subtracted from the digital
surface model (DSM) data to calculate the canopy height model (CHM), and individual
trees can be segmented to obtain the individual tree parameters [13–16]. However, accurate
ground information cannot be provided in complex stands, and the resulting forest structure
information has a high uncertainty [17,18].

With the miniaturization and low cost of the Global Navigation Satellite System (GNSS)
and inertial navigation systems, unmanned aerial vehicles (UAVs) are becoming more pop-
ular in forestry research because of their flexible route planning, low cost, reliability and
convenience, and ability to quickly provide high-resolution data [19–23]. Unmanned aerial
vehicles carrying multispectral sensors can classify the spectral characteristics of diverse
forest areas in forestry, obtain the spatial distribution of tree species, and classify statistics
of areas of tree species. By multi-spectral imaging and automatic model extraction, we can
extract the target of diseased trees, assess the growth status of trees through the spectral
reflection characteristics of trees, quantitatively analyze the indicators of forests, and enrich
the results of forestry monitoring [24,25]. Researchers have introduced laser scanning (LS)
equipment (such as terrestrial laser scanning (TLS) and unmanned aerial vehicle laser
scanning (UAV-LS)) into ground and air platforms. LIDAR remote sensing has great advan-
tages when calculating forest biomass because of its high resolution and rapid acquisition
of forest vertical structural parameters [26–28]. With its high penetration, UAV-LS can
efficiently obtain scale data above the stand, such as the crown area and height information
of individual trees. However, in locations with complex stand structures, especially in
areas with many twigs, dense stands, and young seedlings, the model under the crown
has high uncertainty [29–31]. Compared with UAV-LS, TLS relies on its high scanning
accuracy and scanning density to obtain accurate DBH of individual trees. However, it
is not easy to obtain the crown area above the trees when collecting data. researchers
combined UAV-LS and TLS data to carry out the retrieval of forest parameters such as
the tree crown height model, generated from a normalized point cloud [32], seed point
individual tree segmentation [33], and QSM modeling [31]. The combination of UAV-LS
and TLS can greatly improve the extraction of individual tree parameters and provide
reasonable prediction errors for volume calculations [34,35].
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Most of the existing literature focuses on calculating the individual tree biomass of
species in a single stand, and there is less research on this topic for complex stands. When
acquiring individual tree parameters in complex stands, optical remote sensing can divide
the stands but lacks three-dimensional (3D) data for individual trees. LIDAR can provide
3D data of individual trees but it cannot identify tree species [36–38]. Combining the
data of multispectral forest division with LIDAR point cloud data allows identifying each
tree species in a forest to obtain the parameters of individual tree biomass. Given these
shortcomings, this study combines multispectral, UAV-LS, TLS, and other multi-source
remote sensing data through the spectral identification of tree species: UAV-LS to obtain
tree height and TLS to obtain DBH.

A practical UAV-LS+TLS+ multispectral method is proposed to estimate forest biomass.
This method is applied to the Huyu campus of Taiyuan University of Technology. The tree
species in the research area are classified by multispectral and field investigations, and the
classified data are combined with LIDAR data to classify the tree species of the point-cloud
data. The biomass of the classified point cloud tree species is then calculated. This study
helps estimate forest biomass in a more convenient, efficient, and low-cost way compared
to conventional approaches.

2. Materials and Methods
2.1. Study Site

A park in the Huyu campus of Taiyuan University of Technology was selected as the
research area, which is located in the middle of Shanxi Province and the northern part
of Jinzhong Basin. The geographical coordinates are 37◦51′10” to 37◦51′12” North and
112◦31′8” to 112◦31′12” East. The highest altitude in the study area is 799 m and the lowest
altitude is 786 m; the average is 792 m. The area of the observed site is 0.007 km2, and
115 trees were surveyed. The main tree species in the area are poplar, willow, lacebark pine,
cypress, and clove tree. The location of the study area is illustrated in Figure 1.
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2.2. Field Data Collection
2.2.1. Manual Data Collection

The species were investigated at the chosen location in April 2022. In April, trees in the
study area had just sprouted and the collection of tree characteristic data at this time had
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little impact, which is beneficial for later vegetation identification and vegetation biomass
modeling calculations. Consequently, we collected our data in April. The morphological
characteristics of each species were considered, the position coordinates of the trees were
measured with the GNSS instrument, and the diameter at the breast height of each tree was
measured with a leather ruler. The GNSS equipment used is Hi-Target RTK, whose plane
accuracy is ±0.25 m + 1 ppm and elevation accuracy is ±0.50 m + 1 ppm. Table 1 describes
the tree species and morphological characteristics.

Table 1. Tree species and morphological characteristics from the study area.

Tree Species Trees Morphological Characteristics

Willow 17 Switch branches are slender, soft, and drooping; bark tissue is thick and longitudinally
split; and the center of the old trunk is rotten and hollow.

Poplar 12 Bark grayish brown, fissured at the lower part; and sprouts thin, round, smooth, or
slightly tomentose.

Clove tree 42 The trunk is forked; the crown is conical; and the bark is smooth, yellowish brown.

Lacebark pine 15 There is a large trunk; the branches are slender, obliquely spread, tower-shaped or
umbrella-shaped crown; and winter buds are reddish-brown, oval, without resin.

Cypress 29 The bark is dark gray, and young trees often have branches that extend diagonally to form
a spire-shaped canopy.

2.2.2. LIDAR Remote Sensing Data

(1) Terrestrial Laser Scanning (TLS) Data

In April 2022, the data were gathered using Leica total station scanner MS50, with a
ranging accuracy of 0.6 mm. MS50 is a total station scanner that integrates 3D laser scanning
technology, high-precision measurement technology, digital imaging technology, and GNSS
technology [39]. The scanning speed is 1000 points/s within 300 m. MS50 is a total
station scanner that integrates 3D laser scanning technology, high-precision measurement
technology, digital imaging technology, and GNSS technology. A total of 21 stations were
set up, and in order to ensure the same resolution of scanning results between different
stations, the same point cloud density parameters were set before each station started
scanning. When the scanning horizontal distance was set to 15 m, the obtained scanning
point had a horizontal distance of 10 cm and a vertical distance of 10 cm. The scanning
speed was 1000 points per second, the estimated number of points was about 40 thousand,
and the scanning took 25 min. The parameters of MS50 are shown in Table 2.

Table 2. MS50 parameters.

MS50

Range
Prism (GPR1,GPH1P) 1.5 to 3500 m
No prism/any surface 1.5 m to >1000 m

Reflector (60 mm × 60 mm) 250 m

Accuracy/
Measurement

single time (prism) 0.6 mm + 1 ppm/
typically 2.4

Single (any surface) 2 mm + 2 ppm/typically 3 s
Spot size At 50m 8 mm × 20 mm

Measurement technology System analysis technology based on phase principle Coaxial, red visible light

(2) Unmanned aerial vehicle laser scanning (UAV-LS) data

The UAV-LS data were collected using the FEIMA robotics D-LIDAR in April 2022.
The flight height of the aircraft was 128 m and the flight speed was 13.5 m/s. The average
point density was 286/m2, and up to three echoes were obtained with an echo intensity of
8 bits. The laser pulse wavelength and frequency were 905 nm and 240 kHz. The collected
data were processed by the UAV Manager software, including the GNSS and inertial
measurement unit (IMU), and the accuracy after processing was such that the position
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accuracy and the attitude accuracy were not more than 0.02 m and 3◦, respectively. Table 3
provides the parameters of LIDAR data acquisition.

Table 3. Parameters of LIDAR data acquisition.

FEIMA D-LIDAR 2000 Module

Laser Type RIEGL mini VUX-1UAV Channels 1

Dot Frequency 100 kpts/s Measurement Range 250 m
Range Accuracy ±1 cm Echo Number 5 (Max.)
Scanning Speed 10~100 Hz Echo Intensity 16 bit

Wavelength 905 nm (Class 1) Laser Divergence Angle 1.6 × 0.5 mrad
Horizontal Field of View 360◦ Resolution-horizontal 0.05~0.5◦

2.2.3. Optical Remote Sensing Data

(1) Orthophoto Data

During the collection in April 2022, the weather was sunny and the sky was cloudless.
We collected the aerial images using the D-CAM2000 mounted on the FEIMA robotics UAV.
The side heading overlap is 80%, the overlap is 60%, and the ground sampling distance
(GSD) is 2.0 cm. The flight height of the aircraft was 100 m, and the flight speed was
13.5 m/s. The data were processed using the UAV Manager software, and the accuracy
after processing was 2 cm. Table 4 presents the parameters of orthophoto data acquisition.

Table 4. Parameters of orthophoto data acquisition.

FEIMA robotics D-CAM2000 Aerial Survey Module

Camera Type SONY ILCE-6000 (α6000) Sensor Size 23.5 × 15.6 mm
Effective Size (6000 × 4000) 2400 million Lens 20 mm fixed focus

Gimbal 2-axis

(2) Multispectral Data

In April 2022, the multispectral data of the UAV were obtained using the FEIMA
robotics UAV D-MSPC2000. The spectral bands were blue (450 nm), green (555 nm), red
(660 nm), infrared 1 (720 nm), infrared 2 (750 nm), and near-infrared (840 nm). The side
heading overlap was 75%, the overlap was 75%, and the GSD was 7.2 cm. The flight height
of the aircraft was 100 m, and the flight speed was 12.4 m/s. The collected data were
processed using the Pix4D software from Switzerland and the UAV Manager software from
the FEIMA company, and the accuracy after processing was 7.8 cm. The parameters of
multi-spectral data acquisition are displayed in Table 5.

Table 5. Parameters of multi-spectral data acquisition.

FEIMA Robotics D-MSPC2000 Multi-Spectral Module

Sensor parameters CMOS: 1/3” global shutter Effective pixels 1.2 million
Resolution 1280 × 960 Sensor size 4.8 mm × 3.6 mm

Focal length 5.2 mm Field of view HFOV: 49.6◦, VFOV: 38◦

Aperture F/2.2 Quantization bits 12 bit
Shooting speed 1 time/s Ground resolution GSD: 8.65 cm/pix, AGL: 120 m

The data acquisition is shown in Figure 2.
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2.3. Research Methods

We first used multispectral and field surveys to classify tree species, combine the
classified data with LIDAR data to divide the tree species into point clouds, use the divided
data to compare the DBH and tree height, and finally calculate the individual tree biomass.
The specific flow of individual tree biomass calculation is shown in Figure 3.

2.3.1. Tree Species Classification in the Study Area

With the increasing maturity of spectral sensing technology, image processing, and
analysis software, UAVs carrying multispectral technology have made great progress in
forestry applications. The spectral reflectance of plants can be collected from multispectral
data, and the tree species in the study area can be distinguished from the spectral reflectance.
This study combines orthophoto data and multispectral image data to classify tree species
in the study area.

(1) A multinomial distribution algorithm introduced by Mosimani and James is
adopted [40]:

n = max
i∈1,2,··· ,k

((B× Pi × (1− Pi))/bi
2) (1)

where n is the total number of samples; Pi is the percentage of the tree category in the
total tree species; B is the confidence of ∆ = 1− α/k (k is the number of classification
categories, and α is the expected significance level) with a chi-square test value having
a degree of freedom of 1; and bi is the expected classification error ratio percentage of
the class. The minimum reasonable number of samples is then calculated.

(2) Gong and Howarth studied different sampling strategies and believed that the highest
classification accuracy can be obtained by collecting a pixel sample every N pixels [41].
Here, simple random sampling with an unbiased estimation of the population param-
eters is used.

(3) The spectral angle classification (SAM) algorithm is used to compare and classify the
unknown spectral lines with the sample spectrum in N-dimensional space [42]. By
comparing the angle between the reference spectrum vector and each pixel vector, it is
found that a greater angle causes the pixels to be more similar to the reference spectrum.

(4) According to the field investigation of tree species, the tree spectra are extracted from
the image pure pixels to establish the spectrum library, which is used to sort the tree
species in the study area, as represented in Figure 4.
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2.3.2. Individual Tree Biomass Calculation
LIDAR Point Cloud Data Tree Species Classification

(1) Fusion of UAV-LS and TLS Data

The collected UAV-LS is readily affected by the canopy and lacks information below
it. The collected TLS is also readily affected by the canopy and lacks information above
it. Both the UAV point cloud data and the point cloud data of the total station scanner
were collected utilizing the CGCS2000 coordinate system provided by the Qianxun CORS
network, and they have the same geographical reference and the same coordinate system,
which can be directly fused in the software. The fusion of UAV-LS acquisition point cloud
data and TLS collection point cloud data has greatly improved the accuracy of extraction of
individual wood parameters and provided reasonable prediction error for volume [43,44].
Thus, the UAV-LS and TLS point clouds were integrated, as shown in Figure 5.
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Figure 4. (a) Field survey map, (b) spectral library spectra, and (c) multispectral classification diagram.

(2) Point cloud data for tree species classification

Multispectral data can identify and classify tree species, but only 2D data of individual
trees can be obtained. LIDAR data exhibit strong penetration into plants, but they cannot
classify tree species. To obtain the individual tree parameters of each tree species, it is
necessary to combine multispectral classification data and LIDAR point-cloud data. The
spectral angle classification result data and the LIDAR point cloud data are first loaded
in the Cloud Compare software. In the case of the same coordinate system registration,
the spectral angle classification result in the interface will be displayed on the top, and the
LIDAR data will be on the bottom. By cutting the data, the LIDAR data will be trimmed
and filtered out according to the spectra-angle classification results, and consequently,
the LIDAR data of each tree species will be formed. The results of the spectral angle
classification are combined with the LIDAR point cloud data to classify each tree species,
as shown in Figure 6.
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Calculation of Individual Tree Biomass of Classified Tree Species

After tree species classification, the individual tree parameters can be extracted from
each classified tree. The preprocessing of point cloud data, ground point classification,
individual tree segmentation, etc., is performed using the LIDAR 360 software.

(1) The noise mainly includes high-position gross error and low-position gross error. The
algorithm searches adjacent points within a specified neighborhood; calculates the
average distance d from the point to the adjacent points; calculates the median, mean,
and standard deviation σ of the average distances; and removes noise by selecting
appropriate parameters.

(2) The improved progressive triangulation filtering algorithm (iPTD) is used to classify
ground points [45]. A sparse triangulation is generated through seed points and
is later encrypted by the layer through iterative processing until all ground points
are classified.
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(3) The digital terrain model (DTM) is removed from the digital surface model (DSM) to
obtain the canopy height model (CHM) [46]. Through the upstream ridge segmen-
tation algorithm, the high points of the CHM are regarded as peaks, and the low
points are regarded as valleys. The water areas are filled, and barriers are built as
the water edges as determined from segmentation. In experiments, when performing
CHM segmentation, a tree is often identified as several trees based on the algorithm
alone, resulting in multi-division so that there are more trees after CHM segmentation
than actual trees. Consequently, we need to combine CHM segmentation and manual
operations to classify trees. The data classification was conducted using Cloud Com-
pare and LIDAR360 software. The individual tree segmentation of the seed points is
used to define the parameter variables such as the tree height and DBH, as shown in
Figure 7.

(4) The volume calculations of the study area adopt the individual tree binary volume
model volume V = aDb Hc, where a, b, and c are model parameters; D is the DBH;
and H is the tree height.
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We calculate the biomass for willow, poplar, clove, and lacebark pine by adopting
the individual tree biomass model. The total above-ground biomass of WT = a

(
D2H

)b,
underground biomass of WR = WT/3.85, and biomass of W = WT + WR.

We calculate the biomass for cypress by adopting the cypress biomass model with a
trunk biomass of WS = a

(
D2H

)b, branch biomass of WB = c + d
(

D2H
)
, leaf biomass of

WL = e + f
(

D2H
)
, total above-ground biomass of WT = WS + WB + WL, underground

biomass of WR = g + h
(

D2H
)
, and biomass of W = WT + WR, where a, b, c, d, e, f , g, and

h are model parameters [47].

3. Results
3.1. Evaluation of Tree Species Identification Based on Multispectral Data
3.1.1. Evaluation of Samples before Classification

For each category of training samples, the transformed divergence method is used
to evaluate the separation degree of spectral eigenvectors from different categories. The
conversion dispersion is given as TDij = 2

(
1− e−Dij/8

)
, where DI J is the dispersion of

two categories and is expressed as:

Dij =
1
2

tr

[(
∑i −∑j

)
×
(
∑−1

i −∑−1
j

)]
+

1
2

tr

[(
∑−1

i +∑−1
j

)
×
(
Ui −Uj

)
×
(
Ui −Uj

)T
]

(2)

where U is the sample mean vector, ∑ is the covariance matrix, ∑−1 is the inverse matrix
of the covariance matrix, tr[A] is the sum of the diagonal elements of matrix A, and i and
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j represent the two ground object types, which are valued between 0 and 2. Generally
speaking, 1.8 is selected as the threshold value for the sample separation between different
objects [48]. When the sample separation is more than 1.8, it is qualified. The greater the
separation, the better the computer’s ability to distinguish two kinds of ground objects.
The transformed divergence results of the samples are shown in Table 6.

Table 6. Transformed divergence of samples.

Training
Samples Poplar Cypress Clove Tree Lacebark Pine

Willow −1.877 −1.939 −1.979 −1.999
Poplar −1.999 −1.945 −1.999

Cypress −1.999 −1.998
Clove tree −1.999

Validation
Samples Poplar Cypress Clove Tree Lacebark Pine

Willow −1.874 −1.981 −1.967 −1.999
Poplar −1.968 −1.910 −1.998

Cypress −1.997 −1.869
Clove tree −1.999

3.1.2. Evaluation of Results after Classification

The kappa analysis (kappa coefficient method) adopts a discrete multivariate technique
that considers all factors of the matrix. This is an index to measure the coincidence or
accuracy between two graphs [49]. The formula is given as:

Khat =

N
r
∑

i=1
xii −

r
∑

i=1
(xi+x+i)

N2 −
r
∑

i=1
(xi+x+i)

(3)

where r is the total number of columns in the error matrix; xii is the number of pixels in
row i and column i in the error matrix; xi+ and x+i are the total number of pixels in row i
and column i, respectively; and N is the total number of pixels used.

The overall classification accuracy is the number of correctly classified samples divided
by the total number of samples, which only uses the number of pixels located along the
diagonal. The Khat considers not only the correctly classified pixels located on the diagonal
but also various missing points and misclassification errors not along the diagonal. These
two indicators are often inconsistent. In the evaluations, more accurate information is
attained by calculating the above indicators [50]. Table 7 displays the results of spectral
angle classification.

Table 7. Spectral angle classification results.

Overall Accuracy (40/78) 51.28% Kappa Coefficient 0.42

Tree Willow Poplar Cypress Clove Tree Lacebark Pine
Commission (Percent) 58.33 0.00 28.57 53.85 10.00

Omission (Percent) 79.17 28.57 50.00 50.00 18.18

3.2. Biomass Based on Classified Tree Species
3.2.1. Comparison between DBH and Tree Height

The CCC and RMSE were used to evaluate the relationship between the DBH parame-
ters obtained from the TLS and UAV-LS+TLS and the tree height obtained by UAV-LS and
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UAV-LS+TLS. Compared with the Pearson correlation coefficient, the merit of CCC is that
it can detect offsets in the measurements and gain offsets. The calculation is given as [31]:

CCC =
2ρσ12

σ2
1 + σ2

2 + (µ1 − µ2)
2 (4)

where ρ denotes the correlation coefficient between two variables and σ2 and µ mean the
variance and mean of measures. The RMSE is utilized to measure the magnitude and mean
sign difference (MSD) of the modeled volume deviation [31].

(1) A comparison between the DBH and tree height of various species is shown in
Figure 8.

(2) A comparison between DBH and tree height of all tree species is shown in Figure 9.

3.2.2. Biomass Calculations for Each Tree Species

First, tree species were classified through multispectral data combined with field
investigations. Then, multispectral classification data were combined with LIDAR point-
cloud data to classify point-cloud tree species. Finally, the biomass of each tree species was
calculated. Calculations of the tree species biomass can be seen in Table 8.

Table 8. Calculation results of tree species biomass.

Tree Species Volume/m3 WT/kg WR/kg W

Willow 13.99 12,251.55 3182.22 15,433.77
Poplar 10.29 9105.79 2365.14 11,470.93

Clove tree 6.56 5738.49 1490.52 7229.01
Cypress 12.73 11,257.70 3881.98 15,139.68

Lacebark pine 1.42 1256.47 326.36 1582.83
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Figure 8. The DBH and tree height fit diagrams for each tree species. (a) Poplar, (b) Willow, (c) Lace-
bark pine, (d) Cypress and (e) Clove tree.
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Figure 9. (a) The DBH fit for all tree species and (b) All tree heights.

4. Discussion and Conclusions
4.1. Multispectral Identification of Tree Species

A UAV equipped with a multispectral sensor can provide an improved resolution.
The position and shape of plants can be seen on the image map. The tree species identified
were used to extract the spectrum of each plant from the image, and the tree species were
classified by building a database. When extracting spectral curves, the various tree species
in the stand in the blue, green, and red bands differ slightly, with large differences in the
infrared 2 (750 nm) and near-infrared (840 nm) bands. The reflectance values of various
tree species within this wavelength range differ greatly, indicating that the infrared and
near-infrared bands play important roles in species classification. The same tree species
in the study area can have variability in their spectra, and there can be foreign objects
with the same spectrum due to differences in the tree species density, age, shadows, and
other factors, as well as different tree species, due to the surrounding environment. The
reflectivity of the same tree species produces different spectra under different sunlight
conditions, and various tree species produce the same spectrum, which impacts the clas-
sification accuracy [51–53]. The selection and number of training samples also impact
the classification.

According to the field survey and orthophoto map, some knowledge of the study area
is used to select training samples to accurately represent the spectral characteristics of each
category in the entire region. The training samples of the same category are homogeneous,
do not contain other categories, and are not boundaries or mixed pixels between other
categories. When the collected spectral curves of various tree species are built into a
database for the classification of tree species, the threshold of the spectral angle greatly
impacts the classification results. The SAM algorithm compares the unknown spectral lines
and classifies them with the sample spectral spectrum in n-dimensional space [42]. When
the angles between the reference spectrum vector and each pixel vector are compared, a
greater angle makes the pixels more similar to the reference spectrum. Thus, multispectral
identification of tree species needs further exploration.

4.2. Individual Tree Parameter Segmentation and Comparison

Unlike the forest biomass estimated by optical remote sensing at the stand level, the
3D structural parameters of trees can be obtained from LIDAR point cloud data, but tree
species cannot be classified from it. The individual plant biomass is directly associated
with the tree size such as DBH and tree height [54–57]. However, due to the influence of
site conditions, tree structure, and low vegetation in the study area, the data collected by
UAV laser scanning (UAV-LS) are susceptible to canopy influence, and the information
below the canopy is missing. Meanwhile, the data collected by terrestrial laser scanning
(TLS) are susceptible to canopy influence, and the information above the canopy is missing.
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The integrated UAV-LS+TLS greatly increases the accuracy of individual tree parameter
extraction and provides a prediction error with reasonable volume. In a single stand, the
individual tree parameters can be obtained by LIDAR to determine the biomass. However,
in complex stands, obtaining individual tree parameters requires identifying the tree species
by optical remote sensing to divide the stand and combine the multispectral tree species
classification with LIDAR point cloud data [58–60]. This provides the individual tree
biomass for each tree species. The CHM segmentation depends on manually setting the
width of the search window to filter the local maximum. As the crowns of willow and
poplar are large, each branch may contain more than one local maximum, which often
identifies a single tree as several trees. This causes multiple points per tree and artificially
increases the number of trees after CHM segmentation. Thus, this process cannot perform
automatic and batch processing. It is also necessary to further improve individual plant
detection and segmentation based on UAV least squares [61–63].

The CCC of lacebark pine and cypress is relatively low when comparing the parameters
of individual trees of each species after segmentation. This is because they are distributed
near willows with large tree heights and many small branches, which block the UAV field
of view during data collection and result in relatively low point cloud densities. The point
cloud density is a critical factor that affects the accurate acquisition of individual tree
biomass parameters [31,34,64]. Improving the density of point clouds by modifying the
flight path, flying from multiple angles, and selecting an appropriate flight altitude help
obtain individual wood parameters efficiently and accurately. Comparing the individual
tree parameters in the entire stand shows that the CCC of the DBH is 0.87 and the RMSE
is 10.45, while the CCC of the tree height is 0.92 and the RMSE is 1.41. The experimental
results show that TLS has a high consistency with the UAV-LS+TLS when the DBH and
UAV-LS are obtained for tree heights.

4.3. Conclusion

Orthophoto data are used for field investigations of tree species, which are classified
in conjunction with multispectral data. The multispectral data and LIDAR point cloud
data are combined to classify each tree species. Finally, the individual tree biomass of each
species after classification is calculated. The research results show the following.

(1) In the study area, the multispectral tree species identification shows that the extracted
spectra can accurately identify Lacebark pine, and the identification of other tree
species is slightly lower than that of Lacebark pine. Thus, the reflectance spectrum of
Lacebark pine can be applied to the identification of Lacebark pine species.

(2) The comparison of DBH after TLS and UAV-LS+TLS and the comparison of tree height
after UAV-LS and UAV-LS+TLS under appropriate conditions show that the DBH
parameters obtained by TLS and tree height parameters obtained by UAV-LS have
good availability.

(3) In complex stands, multispectral techniques can be used to identify tree species, and
LIDAR technology can be used to perform individual tree parameter calculations.
Accurately combining the two data, it is feasible to identify tree species in complex
forest stands and calculate the biomass of individual trees.
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