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Abstract: Height variations caused by mass change make an important contribution to the tectonic
uplift of the Qinghai-Tibet Plateau (QTP). To study the deformation attributable to hydrological
loading and real potential tectonic vertical motion, satellite gravity data from the Gravity Recovery
and Climate Experiment (GRACE) and GRACE Follow-On (GRACE-FO) with data from the Global
Land Data Assimilation System (GLDAS) and Global Positioning System (GPS) are adopted to
estimate height variations in QTP. Based on spherical harmonic function (SHF) and Green’s function
(GF), the results show the trend of height variations is unevenly distributed in the spatial domain.
The SHF indicated that the rate in the southwest of the QTP is ~1 mm/year, while the northern and
eastern show a subtle decreasing trend, which indicates hydrological loading is not the main cause of
the uplift observed with GRACE. The maximum annual amplitude of height variations is ~12 mm,
reaching the annual maximum around February to March. The average correlation coefficients of SHF,
and GF height variations with GPS heights are 0.70 and 0.82, respectively. Based on cross wavelet
transform, it is concluded that there are annual signals between the height variations derived from
GPS with GRACE (-FO) and GLDAS. Finally, the tectonic vertical motion in the QTP is given by
removing the effect of hydrological loading, which shows most GPS stations are uplifted at a rate of
0.06 mm/year–1.97 mm/year.

Keywords: GRACE; GLDAS; height variations; Qinghai-Tibet Plateau

1. Introduction

The Qinghai-Tibet Plateau (QTP, 25◦N–40◦N, 74◦E–104◦E) with an average altitude of
more than 4000 m, known as the third pole, is a tectonic extrusion and deformation zone as
result of the collision between the Indian and Eurasian plates [1]. Accurate determination of
height variations over the QTP is important for the study of plate movement and evolution,
and ecological changes [2]. The continuous uplift and geophysical processes of the QTP
have always been a controversial issue [3]. The traditional method of obtaining height
variations mainly relies on precise levelling measurements [4]. With the development
of space geodesy technology, GPS network provides high-precision quantitative data of
crustal motion by observing the coordinate changes of GPS stations [5–7]. The GPS vertical
coordinates mainly include linear trends and seasonal variations at annual scales, while
the causes of linear trends include tectonic and non-tectonic motions (e.g., mass change)
and other factors [6]. Liang et al. [8] estimated the three-dimensional velocity field for the
QTP, with the Himalayan Mountains uplifting of 2 mm/year. Moreover, repeated absolute
gravity measurements are also sensitive to mass migration and vertical deformation of the
surface. Xing et al. [9] combined high-precision absolute gravity measurements and GPS
data to quantify the average uplift rate of 1.4 mm/year on the QTP. Van Camp et al. [10]
discussed the tectonic interpretation from stations in Tibet using absolute gravity survey.
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Bayesian gravity adjustment could also apply for the hybrid gravity survey network to
estimate crustal mass redistributions in QTP [11].

GRACE was launched in March 2002, and its main mission is to detect time-varying
gravity because of Earth’s mass distribution [12,13], which has been generally used for
global or regional terrestrial water storage (TWS) changes [14–21], dynamic monitoring
of glacier and polar masses [22], etc. GRACE-FO was launched in May 2018 to take over
the scientific mission of GRACE. Goncalves et al. [17] argued that a basin scale water
budget involving GRACE solutions is an operative and efficient way to estimate the region-
wide recharge of a large confined-unconfined aquifer system. GRACE-derived TWS is the
composition of various water storage components, i.e., soil moisture storage, snow and
surface water storage, and groundwater storage [13]. Recent research has demonstrated that
GRACE combined with hydrological data can detect variations in the composition of TWS
in large areas over the last two decades [18–20,23]. Othman et al. [13] showed a reliable
calculation of the water budget in Iraq using GRACE-derived TWS and groundwater.
Abhishek et al. [19] quantified the GRACE-derived TWS and groundwater to investigate
major flood and drought event of the Chao Phraya River Basin, which will efficiently
sustain the basin’s socio-economic activities.

According to the theory of elastic loading [24], the GRACE time-varying gravity field
model not only allows the gravitational field detect changes in hydrological mass, but
also estimate the vertical deformation on the surface due to the corresponding changes.
Duan et al. [25] obtained the uplift rate of QTP using GRACE gravity data by removing the
gravity effect of TWS. In addition, the surface loading model could reveal the variations of
surface loading caused by atmospheric, hydrological, and non-tidal oceanic factors [26];
van Dam and Wahr [27] argued that the vertical displacement due to atmospheric loading
is 15–20 mm obtained by Green’s function.

Tectonic motion and seasonal surface deformations in the QTP can be determined
by time-variable satellite gravity data, GPS, and surface loading model with continually
increasing data density and precision. Zou et al. [28] found that the summer monsoon and
precipitation cause seasonal variations in southern Tibet. Sun et al. [2] confirmed that the
thickness of the earth’s crust is increasing at a rate of millimeters to decimeters per year
of the QTP from gravity data and GPS measurements. Liu et al. [29] derived the crustal
thickening rate of 3 mm/year by GRACE data over the QTP. The highest uplift rate of the
QTP is location in Longmen Shan fault, at a rate of ~7–9 mm/year [26,30]. Groundwater is
not significant in the signals of QTP derived from GRACE, and mainly caused by tectonic
movements [31]. In general, it has been confirmed that the QTP continues to uplift, both
strong seasonal fluctuations and long-term trends are observed. However, there are some
issues when evaluating tectonic motion and seasonal surface deformations in QTP, e.g.,
different data processing methods, less data used, not removed hydrological signals, and
short research period.

Thus, this study estimates the height variations caused by the hydrological mass
change in the QTP based on comprehensive comparisons the geodetic and hydrological
model. This paper is organized as follows. In Section 2, the study data, e.g., GRACE
time-varying gravity field model, GLDAS hydrological model and GPS data are briefly
explained. In Section 3, the methods of estimating height variations are presented. In
Section 4, long-term trend and annual signals of height variations in QTP are analyzed
and the correlation of results derived from different datasets is assessed. In Section 5, the
tectonic motion is presented where the effect of the hydrological loading is eliminated in
GPS vertical deformation.

2. Study Data
2.1. Time-Varying Gravity Data

The GRACE (-FO) RL06 Level-2 data released by the Center for Space Research
(CSR, https://www2.csr.utexas.edu/grace/RL06.html, accessed on 1 December 2021) [32]
are used to estimate the height variations from April 2002 to December 2020. Linear
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interpolation is performed to fill in missing data for one or two months during the separate
GRACE or GRACE-FO mission. However, it is worth noting that linear interpolation may
also introduce the uncertainty, especially when flood or drought events occur [33].

Since the GRACE gravity model is centered on the center of mass, the degree-1
coefficients (C10, C11, S11) estimated by Satellite Laser Ranging (SLR) are used, thus taking
into account the geocenter motion [34]. Meanwhile, C20 derived from GRACE (-FO) show
substantially larger uncertainty, in addition to the failure of an accelerometer on the GRACE
satellite since October 2016, which caused a lower accuracy of the C30 term [35]. The SLR-
derived C20 and C30 are suitable for replacing any problematic GRACE (-FO) estimates.
The effect of glacial isostatic adjustment (GIA) effect is corrected by ICE-6G_D model [36].
The DDK3 filtering method is taken to process the time-varying gravity spherical harmonic
coefficients to attenuate the striping errors and correlation errors of higher degree terms [37].

2.2. GLDAS Noah Hydrological Model

The surface water storage changes from Global Land Data Assimilation System
(GLDAS) Noah V2.1 hydrological model [38] are used to estimate the hydrological loading,
with a spatial-temporal resolution of 1 month and 1 degree, respectively. The 0–2 m soil
moisture, canopy water, and snow are derived from the GLDAS and summed as the total
land water storage, then the monthly water storage changes are obtained by subtracting
the average value of water storage during the study period.

2.3. GPS Data

Daily GPS data is provided by China Earthquake Networks Center, Nation Earth-
quake Data Center (https://data.earthquake.cn/, accessed on 7 November 2021). The
data are continuous observations from the Crustal Movement Observation Network of
China (CMONOC). Thirty-four GPS continuous stations located on the QTP are used to
study the vertical displacement (Figure 1). Among them, LHAS, DLHA, and XNIN have
been observed since 1999, while the rest of the stations have been recording data since
around 2010.
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The raw GPS observations are processed by the GAMIT/GLOBK software [39] with
the orbit and clock bias provided by International GNSS Service (IGS). The tropospheric
delays are corrected using the Global Mapping Function (GMF) model and the ionospheric
effects are weakened based on the ionosphere-free combinations. The antenna phase center
is corrected by the IGS antenna model, the solid tide, and the polar tide is corrected using
the International Earth Rotation Service 2003 (IERS03) model, and the ocean tide loading
effects are corrected by the Finite Element Solution 2004 (FES2004) model. The GNSS
Missing Data Interpolation Software (GMIS) [40] is used to fill in the missing GPS data.

The signal of environmental loading in the GPS vertical coordinate mainly includes
non-tidal atmospheric loading (NTAL), non-tidal ocean loading (NTOL), and hydrolog-
ical loading. Since the surface vertical deformation derived from GRACE (-FO) gravity
solutions mainly contains hydrological loading, NTAL and NTOL in the GPS need to be
removed. The Modern-Era Retrospective analysis for Research and Applications, Version 2
(MERRA2) [41] atmospheric loading model, and the Max Planck Institute Ocean Model
(MPIOM06) [42] non-tidal ocean loading model provided by the International Mass Load
Service (http://massloading.net/, accessed on 7 November 2021) [43] are taken to process
GPS vertical coordinate in this paper. The annual amplitudes of NTAL and NTOL at the
GPS stations are shown in Figure 2. Compared with the NTOL, NTAL has a greater impact
on the QTP, with the maximum annual amplitude up to 4.1 mm. The amplitude of NTAL
is inversely proportional to the altitude, and the edge of the study area is more affected
by NTAL than the internal high-altitude region. The maximum annual amplitude of the
NTOL is about 0.4 mm, with an east-west distribution, i.e., high in the west and low in
the east.
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In addition, the contribution of the thermoelastic effect to the GPS bedrock is at the
millimeter level on the global scale [44]. The bedrock thermal expansion [45] of 34 GPS
stations is estimated using 1 km monthly temperature data [46] in this paper. Figure 3
shows the annual amplitude of bedrock thermal expansion, which increases from 0.76 mm
to 1.49 mm with increasing latitude. The bedrock thermal expansion is deducted from the
GPS vertical displacement to eliminate the effect of temperature change.

http://massloading.net/
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3. Research Methodology
3.1. Height Variations

Height variations ∆H represent the change in orthometric height (above the geoid) in
this paper, which are determined as follows:

∆H = ∆h− ∆N (1)

where ∆N and ∆h represent the temporal variation of geoid height and surface vertical
displacement, respectively.

The gravity field is usually represented in the form of the geoid. Temporal variation of
geoid height ∆N can be estimated by the spherical harmonic function [47]:

∆N(r,ϕ,λ) =
GM
rγ

lmax

∑
l=0

(
a
r
)

l l

∑
m=0

(∆Clm cos mλ + ∆Slm sin mλ)Plm(sin ϕ) (2)

where (r, ϕ, λ) are geocentric radius, latitude, and longitude on the ellipsoid, respectively,
GM is the constant of earth gravitation, a is the semi-major axis of the reference ellipsoid,
l and m are the degree and order of the spherical harmonic coefficients, respectively,
lmax(= 60) is the maximum degree of the spherical harmonic coefficient, Plm are the fully
normalized Legendre functions of degree l and order m, γ represents the normal gravity at
the computation point, ∆Clm and ∆Slm derived from GRACE (-FO) is the residual of fully
normalized stokes coefficients, from which the average stokes coefficients over the study
period have been subtracted.

The surface vertical displacement ∆h is determined by two methods in this paper,
the spherical harmonic function (SHF), and Green’s function (GF), which are described in
Sections 3.1.1 and 3.1.2, respectively.

3.1.1. Spherical Harmonic Function

The height variations ∆HSHF are estimated by the GRACE (-FO) time-varying gravity
field model. Based on the earth loading deformation and gravity field theory [48], the
surface vertical displacement is determined by the spherical harmonic coefficient derived
from GRACE (-FO) as follows:

∆hSHF =
3aρw

ρave

lmax

∑
l=0

l

∑
m=0

(∆Cσ
lm cos mλ + ∆Sσ

lm sin mλ)
hl

2l + 1
Plm(sin ϕ) (3)
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where ∆hSHF is the geometric height change (above the ellipsoid) assuming that the gravity
changes measured by GRACE are the result of changes in mass loading, ρw is the water
density, ρave is the earth’s average density, hl is the load Love numbers of degree l, and
surface density Stokes coefficient ∆Cσ

lm and ∆Sσ
lm defined as:{

∆Cσ
lm

∆Sσ
lm

}
=

ρave

3ρw

2l + 1
1 + kl

{
∆Clm
∆Slm

}
(4)

Combining Equations (3) and (4) obtains the vertical deformation due to mass change
by the time-varying GRACE (-FO) gravity model:

∆hSHF = a
lmax

∑
l=0

l

∑
m=0

(∆Clm cos mλ + ∆Slm sin mλ)
hl

kl + 1
Plm(sin ϕ) (5)

where the load Love numbers hl and kl based on the Preliminary Reference Earth Model
(PREM) [49] obtained from Wang et al. [50].

3.1.2. Green’s Function

The height variations ∆HGF are determined by Green’s function (GF) according to
the elastic half-space model [24]. The ∆hGF can be determined as follows [51], which is a
simplification of the usual load theory based on Farrell [24]:

∆hGF = −2ρw · ∆EWT · R0 · g
1− v2

E
(6)

where ∆EWT is the time-variation of equivalent water thickness derived from the GLDAS
hydrologic model, R0 is estimated by assuming a disk loading corresponding to the radius
based on the spatial resolution of GRACE satellite missions’ data (R0 = ca. 167 km), g is the
gravitational acceleration, v is the Poisson’s ratio, and E is Young’s modulus. The Poisson’s
ratio v is generally set to 0.25 [52]. The type of rock in the QTP is mainly syenite-diopside
and granite-biotite; therefore, the E value is estimated to be 50 GPa in this study.

3.2. Least Square Fitting

The least squares spectral analysis is used to estimate the long-term trend, annual and
semi-annual signals of height variations, which is as follows [53]:

y(ti) = a + bti + c sin(2πti) + d cos(2πti) + e sin(4πti) + f cos(4πti) + νi (7)

where ti is the epoch in unit of year, a and b are constant term and linear long-term
trend, respectively, the coefficients (c, d) and (e, f ) describe the annual and semi-annual
amplitudes, respectively, νi is the residual.

Time series of annual and semi-annual amplitudes (Aann and Asemi−ann) and phase
(ϕann and ϕsemi−ann) can be expressed as:{

Aann =
√

c2 + d2

Asemi−ann =
√

e2 + f 2 (8)

{
ϕann = arctan(d/c)
ϕsemi−ann = arctan( f /e)

(9)

4. Results and Analysis
4.1. Height Variations on the QTP

According to the GRACE (-FO) temporal gravity field model, the geoid changes ∆N
are obtained by Equation (2), and the vertical surface deformation ∆h estimated by SHF,
and GF methods are derived by Equations (5) and (6), respectively. The height variation
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∆H is determined by the ∆N and the ∆h through Equation (1). The time series of ∆N, ∆h,
and ∆H are shown in Figure 4. The trend and annual signals based on the least squares
fitting are shown in Table 1.
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Table 1. Linear trend and annual signals based on the least squares fitting.

Time Series Linear Trend (mm·Year−1) Annual Amplitude (mm) Annual Phase (◦)

∆N 0.08 ± 0.01 2.32 ± 0.06 230.48 ± 0.03
∆hSHF 0.29 ± 0.02 2.12 ± 0.12 73.71 ± 0.06
∆hGF 0.12 ± 0.01 1.73 ± 0.04 39.79 ± 0.02

∆HSHF 0.21 ± 0.02 4.34 ± 0.16 61.57 ± 0.04
∆HGF 0.03 ± 0.01 4.03 ± 0.08 45.91 ± 0.02

From Figure 4, it can be seen that ∆N, ∆h, and ∆H in the QTP all show strong seasonal
fluctuations, most notably annual variations. Moreover, the long-term trend is not obvious,
only showing a subtle upward trend, which suggests the hydrological mass of the QTP has
maintained a long-term balance during the study period. It is confirmed the hydrological
loading is not the main reason for the continuous uplift observed with GRACE and GLDAS.
The hydrological loading is not significant in the QTP, with the annual amplitude of about
2.12 ± 0.12 and 1.73 ± 0.04 mm by SHF and GF, respectively (Figure 4b). The annual
phase difference between ∆N and ∆h is about 6 months, revealing the relationship between
hydrological mass change, geoid height, and surface vertical displacement. The average
∆H of the QTP varies significantly in different periods, for example, the difference of
∆HSHF between September 2003 and April 2017 reaches 18 mm (Figure 4c). Additionally,
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∆H reached the maximum and minimum values around February to March and August to
September, respectively, and the maximum difference between the SHF, and GF is about
4 mm in the same period.

The long-term trends and annual amplitudes of ∆H in the QTP based on the least
squares fitting are shown in Figures 5 and 6, respectively. The trends of height variations
in the study area are characterized by uneven spatial distribution (Figure 5), roughly
bounded by block boundaries, with large differences on both sides. The trend of uplift
in the southwestern part of the QTP near the Indian plate is about 1 mm/year, while the
northern and eastern shows a subtle decrease (Figure 5a), which agree with the results in
Duan et al. [25]. Overall, ∆HGF derived by the GLDAS hydrological model are smaller than
the ∆HSHF to some degree.
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Figure 6 suggests there is a good agreement between the annual amplitudes of ∆H
estimated by SHF, and GF, which all show a latitudinal distribution, i.e., the annual ampli-
tudes decrease gradually with increasing latitude. The maximum annual amplitudes of
∆HSHF, and ∆HGF are 13.06 mm, and 12.15 mm, respectively, where the maximum values
are located in the southern part of the QTP, while the rest of the region is not significant
less than 5 mm.

4.2. Comparison of Height Variations at GPS Stations

The height derived directly from GPS is the surface vertical displacement, noted as
∆hGPS in this study. It is necessary to subtract the geoid change ∆N from averaging ∆hGPS

by each month, which converts ∆hGPS into height variations ∆HGPS based on Equation (1).
Table 2 shows the long-term trends of height variations ∆H at GPS stations based on

the least squares fitting. The long-term trends derived from GRACE (-FO) and GLDAS are
fairly close to each other at some GPS stations (e.g., DLHA, QHLH, QHMY, and SCJL), but
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differ considerably in most stations. GPS-derived ∆H include not only the hydrological
loading but also the effect of tectonic movements [52], which are significantly different
from the results of time-varying gravity and hydrological models.

Table 2. Long-term trends of height variations at GPS stations.

Station Lon. (◦) Lat. (◦) GPS Time Span (Year) GPS (mm/Year) SHF (mm/Year) GF (mm/Year)

DLHA 97.38 37.38 1999.16~2021.24 0.15 ± 0.04 −0.20 ± 0.02 −0.27 ± 0.01

GSMA 102.06 34.02 2010.67~2021.24 0.61 ± 0.16 −0.24 ± 0.03 −0.34 ± 0.02

LHAS 91.1 29.66 1999.16~2021.24 0.15 ± 0.08 0.76 ± 0.03 0.30 ± 0.02

QHBM 100.74 32.93 2010.88~2021.24 0.12 ± 0.13 −0.09 ± 0.03 −0.23 ± 0.02

QHDL 98.1 36.3 2010.65~2021.24 0.58 ± 0.20 −0.23 ± 0.02 −0.31 ± 0.01

QHGC 100.13 37.33 2011.01~2021.24 0.93 ± 0.16 −0.16 ± 0.02 −0.30 ± 0.01

QHLH 93.33 38.74 2010.72~2021.09 0.71 ± 0.18 −0.12 ± 0.02 −0.13 ± 0.01

QHMD 98.21 34.92 2011.18~2021.24 1.40 ± 0.19 −0.13 ± 0.02 −0.26 ± 0.02

QHME 101.4 37.47 2010.65~2021.24 1.62 ± 0.14 −0.12 ± 0.02 −0.29 ± 0.01

QHMQ 100.25 34.48 2010.64~2021.24 0.52 ± 0.17 −0.09 ± 0.02 0.10 ± 0.01

QHMY 90.8 38.48 2011.44~2021.23 0.37 ± 0.16 −0.07 ± 0.02 −0.03 ± 0.01

QHTT 92.44 34.22 2011.25~2021.23 1.28 ± 0.15 −0.01 ± 0.02 0.07 ± 0.01

QHYS 97.01 33.01 2010.66~2021.24 −0.25 ± 0.19 0.07 ± 0.03 −0.13 ± 0.02

SCDF 101.12 30.98 2011.01~2019.04 0.12 ± 0.18 −0.12 ± 0.03 −0.18 ± 0.02

SCGZ 100.02 31.61 2010.31~2021.24 0.15 ± 0.13 −0.02 ± 0.03 −0.17 ± 0.02

SCJL 101.5 29.01 2010.54~2021.23 −0.48 ± 0.16 −0.12 ± 0.03 −0.15 ± 0.02

SCLH 100.67 31.39 2010.39~2021.24 0.37 ± 0.13 −0.02 ± 0.03 −0.17 ± 0.02

SCLT 100.22 29.99 2011.27~2021.24 0.61 ± 0.13 0.03 ± 0.03 −0.09 ± 0.02

SCML 101.28 27.93 2010.50~2021.24 −0.70 ± 0.21 0.08 ± 0.04 −0.03 ± 0.03

SCXC 99.8 28.94 2010.55~2021.24 −0.19 ± 0.14 0.15 ± 0.03 −0.02 ± 0.03

XJYT 81.97 36.43 2011.13~2021.24 −0.21 ± 0.14 0.07 ± 0.02 −0.03 ± 0.01

XNIN 101.77 36.6 1999.16~2021.24 −0.04 ± 0.06 −0.19 ± 0.02 −0.33 ± 0.02

XZAR 87.18 29.27 2011.27~2021.24 −0.05 ± 0.20 0.59 ± 0.03 0.26 ± 0.02

XZBG 81.43 30.84 2011.25~2021.18 0.25 ± 0.23 1.18 ± 0.04 0.41 ± 0.03

XZCD 97.17 31.13 2010.33~2021.24 2.27 ± 0.20 0.39 ± 0.03 0.04 ± 0.02

XZCY 97.47 28.66 2010.68~2021.24 0.42 ± 0.23 0.43 ± 0.03 0.10 ± 0.03

XZDX 91.1 30.48 2011.09~2020.57 0.36 ± 0.16 0.66 ± 0.03 0.29 ± 0.02

XZGE 80.11 32.52 2010.94~2021.01 0.40 ± 0.20 0.92 ± 0.03 0.26 ± 0.02

XZNQ 92.11 31.49 2010.70~2013.41 −0.00 ± 0.44 0.56 ± 0.03 0.27 ± 0.02

XZRK 88.87 29.25 2011.44~2021.24 0.91 ± 0.17 0.61 ± 0.03 0.26 ± 0.02

XZRT 79.72 33.39 2010.82~2021.24 0.47 ± 0.14 0.81 ± 0.03 0.17 ± 0.02

XZZB 84.16 29.68 2011.38~2019.91 1.15 ± 0.26 0.76 ± 0.04 0.33 ± 0.02

XZZF 86.94 28.36 2012.40~2021.24 0.63 ± 0.27 0.73 ± 0.04 0.30 ± 0.02

YNZD 99.7 27.82 2011.00~2021.22 −0.72 ± 0.20 0.08 ± 0.04 −0.03 ± 0.03

The annual amplitude of ∆H at the GPS stations is given in Figure 7, where the length
of the arrow represents the magnitude of the annual amplitude and the angle turned
clockwise from north represents the annual phase. The annual phase at 34 GPS stations is
roughly located in the range of 10◦ to 50◦ (Figure 7), corresponding to the annual maximum
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around January to March, and the annual phase of ∆HGPS is earlier than other results.
There is a phase difference of about 25 days between the ∆HSHF derived from GRACE (-FO)
time-varying gravity model with the ∆HGF estimated by GLDAS hydrological model. One
possible cause of the obvious phase difference is the local groundwater-induced porous
response, which is not considered in our elastic loading model and may lead to a phase shift
of ground deformation [54]. The annual amplitudes of ∆H obtained by different methods
are approximately equal in the southern parts of the QTP, while ∆HGPS in western and
northern parts are larger than the ∆HSHF or ∆HGF.
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The time series of vertical displacement with the long-term trend removed at LHAS,
QHBM, SCLH, and XZCY stations are shown in Figure 8, which suggests there is the largest
amplitude of ∆hGPS, while ∆hSHF, and ∆hGF have approximately equal annual amplitudes.
In addition, the different results showed significant seasonal fluctuations, with the most
significant annual periodic signals. Vertical displacement uplifts in winter and descends
in summer. The annual peak of subsidence occurs in summer, which coincides with the
time of year when the summer monsoon brings heavy precipitation and increases the
surface mass loading [16]. It can be inferred that the seasonal fluctuations in the QTP
are largely influenced by the hydrological loading due to precipitation, with the surface
loading increasing during the summer and decreasing during the winter.

4.3. Correlation Analysis of Height Variations at GPS Stations

The correlation coefficient is used to evaluate the degree of linear correlation between
two time series. Figure 9 presents the correlation coefficients of ∆HGPS time series with
∆HSHF, and ∆HGF, respectively, with the long-term trend removed. ∆HGPS are positively
correlated between the ∆H estimated by the GRACE and GLDAS. Compared with the
∆HSHF (Figure 9a), the correlation coefficients of ∆HGF and ∆HGPS (Figure 9b) are larger,
with the average correlation coefficients of 0.70, and 0.82 between the SHF/GF and GPS,
respectively, which indicates that GPS, GRACE (-FO), and the GLDAS detect some degree
of the same geophysical signal while mixing the non-hydrological signal in the GPS height.
The correlation strength varies among GPS stations, and the correlation is stronger in the
southern part of the QTP near the Indian and Myanmar plates than in the northern part,
which may be due to the more significant hydrological loading caused by the whole TWS
in the southern part.
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4.4. Wavelet Coherence analysis of Height Variations at GPS Stations

Since correlation analysis is sensitive to phase, but cannot evaluate the consistency
of amplitudes. The wavelet coherence analysis [55] could characterize the signal in the
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spatial and frequency domains, so the continuous wavelet transform (CWT) is used to
analyze relationships in the time-frequency space of height variations derived from GPS,
GRACE (-FO), and GLDAS. The method of wavelet coherence analysis can be found in
Grinsted et al. [55].

Station LHAS is used as an example for wavelet analysis in this paper. Figure 10
shows the CWT power spectrum of ∆HGPS with ∆HSHF (∆HGF) for the LHAS station,
which indicates that the height variations estimated by different methods have a resonance
period of 8–16 months (0.7–1.3 years) within the study period and pass the significance
test. It suggests that ∆H of LHAS station have significant annual period signals, while
the other periods are not significant. CWT reveals the oscillation period of the multi-time
scale transform characteristics of the single time series. To analyze the characteristics of the
mutual period between height variations derived from GRACE (-FO), GLDAS with GPS,
Cross wavelet transform (XWT), and wavelet coherence (WTC) are performed.
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Figure 10. Continuous wavelet (CWT) power spectrum of height variations derived from (a) GPS,
(b) SHF and (c) GF at LHAS station.

XWT reveals the phase relationship in the high energy region common to both data
within the time-frequency space. From Figure 11, it can be seen that ∆HGPS exists a period
of 8 to 16 months (0.7–1.3 years) with ∆HSHF (∆HGF) and passes the significance test. Most
arrows in this period face to the right, indicating the same phase. In addition, there is a semi-
annual periodic signal of some energy (2012 and 2014), but the energy is not significant.
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WTC compensates for the deficiency of XWT in the low-energy region and estimates
the correlation between the two datasets. Figure 12 shows that in addition to the annual
period (0.7–1.3 years), there are also semi-annual and 32-month (2.7 year) periods between
∆H derived from GPS and GRACE/GLDAS. The 2.7-year periodic oscillation between
∆HGPS and ∆HSHF passed the significance test in the whole period, indicating that ∆H
detected by GRACE (-FO) in the high-frequency part is the main factor of the GPS height
variations. The 2.7-year period also exists between GPS and GF from 2002 to 2011, and the
specific reasons for this period need further analysis.
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Height variations derived from different datasets mainly present the annual peri-
odic oscillation signal. To quantitatively express the relative phase relationship between
two signals [56], the average values of WTC-based semblance (Figure 13a) and average
relative phase angle (Figure 13b) are estimated.

The average values of WTC-based semblance for most GPS sites are close to 1
(Figure 13a), which indicates the height variations derived from GRACE (-FO) or GLDAS
almost explain GPS height in annual periodic signals, but not completely. In addition, the
average WTC-based semblance of GPS and SHF is significantly lower than that of GPS
and GF at stations DLHA, QHLH, QHMY, XINI, XZGE, and XZRT, which may be since
groundwater loading is not the main factor causing height variations at these stations.
The average semblances of the annual periodicity for most of the other stations are ~0.98,
showing there is a strong geophysical coherence between the height variations derived by
GPS and GRACE/GLDAS. After removing NTAL, NTOL, and bedrock thermal expansion,
the hydrological mass migration is the main reason for the seasonal height variations of
the GPS.

The average relative phase angle of ∆HGPS is earlier than other results, and that esti-
mated by GPS and GF is closer, whose difference is smaller than GPS and SHF (Figure 13b).
In this regard, we find that the height variations derived from GLDAS are more consistent
with GPS in the range of annual fluctuation.
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5. Discussions
5.1. Differences in Height Variations Derived from GRACE (-FO) and GLDAS

In this paper, GRACE (-FO) and GLDAS are used to study the vertical displacement
and height change in the QTP. From Section 4.1, it can be seen that the SHF and GF
methods could reveal the long-term trend and seasonal fluctuations of height variations
in the QTP, but there are still some differences between the different results. Figure 4b,c
show that the annual amplitudes of the height derived from GRACE (-FO) are larger
than those from GLDAS. The reason may be that GLDAS only contributes to 0–2 m soil
moisture canopy water, and snow to hydrological mass changes, ignoring the effort of
deep subsoil water, groundwater, lakes, wetlands, etc. While GRACE (-FO) considers
gravity as hydrological mass after removing atmospheric and non-tidal oceanic influences
and integrating various factors such as groundwater and deep soil water, therefore the
amplitude of height variations estimated by GRACE (-FO) is larger than that of GLDAS.
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We estimate groundwater by TWS derived from GRACE minus soil moisture and snow
water equivalent obtained from GLDAS based on regional water balance [13,19]. The
groundwater of the QTP accounts for ~28% of the TWS. To be clear, the proportion of
groundwater is overestimated because we ignored surface water due to data limitations.
The effect of groundwater on height variations was not modelled separately because
we focused on the whole hydrological loading. In general, it can be concluded that the
discrepancy in height variations between GRACE (-FO) and GLDAS is mainly due to the
different technical models.

In addition, the GRACE mission had some measuring and processing errors, which
may related to truncation; van Dam et al. (2007) argue that the error of the GRACE gravity
model is less than the millimeter level [57]. The inversion of height variations by GRACE
(-FO) has certain drawbacks, which reflect the mass change at a large scale and lacks spatial
resolution for the influence of small-scale material sources. There will be a large bias in
areas dominated by groundwater loading because the displacement caused by groundwater
is in the opposite direction of surface loading [7]. The discrepancies between GRACE and
GLDAS are mainly related to their uncertainty, including initial conditions, climate forcing,
land cover input, model structure, etc. [58]. There are still some unmodeled errors, such as
seasonal variations in immaterial gravity loading (temperature and magnetic fields), whose
effects need to be further explored.

5.2. Quantitative Assessment of Hydrological Loading on GPS Height

To quantitatively assess the effectiveness of removing the hydrological loadings in
GPS vertical displacement by GRACE (-FO) and GLDAS, the weighted root-mean-square
(WRMS) and its reduction could be estimated, which is defined by Equations (3) and (4) in
He et al. (2017) [59].

The WRMSreduction reflects the consistency of ∆HGPS and ∆HSHF (∆HGF) in the annual
periodic signals and the closer its value is to 1 indicates that the period term of the two fits is
closer to each other. Figure 14 shows the WRMSreduction ratio by removing the GRACE (-FO)
and GLDAS-derived height variations from GPS-derived seasonal signals at the QTP 34 GPS
stations. The average WRMSreduction between GPS and SHF/GF is 29% (Figure 14a), and
37% (Figure 14b), respectively, which indicates the effect of GPS removed by GF methods is
better than that of SHF. The height variations ∆HGF estimated by GLDAS is more consistent
with the annual signals of ∆HGPS, therefore the improvement of hydrological loading by
GLDAS in GPS height is better.
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Comparing Figure 9 with Figure 14, it can be seen that there is a certain spatial corre-
lation between the correlation coefficient and the WRMSreduction, which are significantly
larger in the south of the QTP than in other regions. The hydrological loading is the domi-
nant factor influenced by the summer monsoon in the southern, where the GRACE (-FO)
or GLDAS seasonal signals with GPS show better consistency. While the north of the study
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area, which is closer to the interior, is less influenced by the summer monsoon, where the
correlation and consistency are significantly lower.

5.3. Tectonic Movement Rates

The height variations derived from GPS include not only surface mass loading but also
the effects of internal tectonic movements [5]. The surface loading in GPS heights needs
to be deducted to reveal the tectonic movements of the QTP. There are some discussions
on comparing or combining vertical displacement from GRACE and GPS to study the
water cycle and tectonic movements [26,27,30,31,51,55,56]. However, the use of GRACE
to remove the hydrological loading in GPS may be imperfect due to differences in obser-
vational patterns. Zhang et al., argued that the loading differences between GRACE and
GPS are significant both on a regional average and at a single point, and directly using
GRACE to remove the seasonal signal from GPS to study the remaining tectonic signal is
challenging [60]. In contrast, the results in Figure 14 from the GRACE (-FO) and GLDAS
hydrological models to remove the hydrological loading signal from GPS, respectively,
show a higher WRMSreduction by GLDAS.

As shown in Section 5.2, WRMS of the height variations of 34 GPS stations are reduced
to different degrees by removing the hydrological loading in GPS height with GRACE
(-FO) and GLDAS, and WRMS by the GF is reduced to the greatest extent. Therefore,
the hydrological loading in the GPS height variations is removed by the ∆hGF and the
remaining signal is considered to be caused by the tectonic motion.

Figure 15 shows the vertical rates of tectonic motion of GPS station with the loading
effects removed (GPS height subtracts GLDAS-derived hydrological loading based on the
GF). Except for the subsidence of XZNQ, XINI, XJYT, YNZD, and SCML, all other stations
are uplifting at a rate of 0.06mm/year−1.97 mm/year in the study area (Figure 15). The
uplift rate of the main Main Himalaya Thrust and the Karakorum-Jiali Fault Zone is about
1 mm/year, and individual GPS stations (e.g., XZNQ) show a subsidence component,
which may be related to the rebound fault activity or local collapse of the margin. The
uplift rate of the northeastern part is not significant, while the stations near the Jinsha
River-Honghe Fault Zone uplift at a rate of 0.2–1 mm/year, except for the SCML station,
which indicates a significant subsidence rate.
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The deformation detected by GPS is mainly affected by the local loading around
100–200 km. Some faults do not show a unified tectonic movement, but are composed of
multiple distinct motions, e.g., Jinsha River-Honghe Fault Zone. The northern part of the
Jinsha River-Honghe Fault Zone, represented by SCLT and SCXC, shows a unified uplift
trend, which is caused by active subduction of the Yangtze Craton [26]. While the southern
part, represented by SCML, shows a subsidence trend attributed to the asthenosphere. It
is the same result as that of Hao et al. [61], who argued that the assumption of uniform
extension does not explain the subsidence of southern Sichuan–Yunnan fragment.

6. Conclusions

The crust of Tibetan Plateau is still uplifting and thickening nowadays which was
revealed by the geological and tectonic results. Based on the GRACE (-FO) time-varying
gravity model, GLDAS, and GPS vertical coordinate time series, the height variations
(above the geoid) of the QTP from 2002 to 2020 are obtained in this study. The overall
height variations caused by hydrological mass on QTP during the study period show a
slight increase, which indicates hydrological loading is not the main cause of the uplifting
observed with GRACE.

The seasonal term (e.g., annual and semi-annual period) caused by hydrological
loading is included in the GPS vertical displacement, which needs to be eliminated to
reveal the tectonic motion. In terms of hydrological load on GPS height, GLDAS-derived is
more consistent with GPS height than that from GRACE (-FO) based on WRMSreduction. The
vertical tectonic motion of GPS stations is estimated with the GLDAS-derived hydrological
loading removed. Most stations are uplifted at the rate of 0.06mm/year–1.97 mm/year.
To explain the uplift rate of QTP in more detail, more intensive GPS continuous stations
need to be analyzed, and more accurate physical models of surface vertical displacement
such as hydrological and atmospheric loads and bedrock thermal expansion also need to
be considered. Overall, the approach of estimating height variations and tectonic motion in
this paper provides a valuable reference for the study of other earthquake-prone areas such
as Japan, Chile, etc., and engineering works, e.g., deformation monitoring of constructions.
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