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Abstract: Regrowth of forests is expected to be an important driver in the large uptake of anthro-
pogenic CO2 emissions by the terrestrial biosphere. Yet estimates of carbon sink capacity in mid-high
latitude regrowth forests still remain unclear. The Loess Plateau (LP), a key region of the Grain to
Green Program (GTGP), leads in the greening of China, while China leads in the greening of the
world. For the sake of global ecological sustainability and accurate global carbon sink evaluation,
the detection and attribution of vegetation growth on the LP requires further research after 20 years
of ecological restoration. In this study, significant continuous rises (increases of 7.45 gC·m−2·a−2,
R2 = 0.9328, p < 0.01) in net primary production (NPP) have occurred in the past 20 years. Rapid
growth of forest NPP and expansion of forested areas in the southeastern regions has led to vegetation
restoration on the LP. Human activities contributed 64.2% to the NPP increases, while climate varia-
tions contributed 35.8%. NPP in forests and croplands was dominated by human activities, while
grassland NPP was mainly influenced by climate variations on the LP. Meanwhile, a strong El Niño
event exacerbated the obstruction of large-scale ecological restoration. These conclusions can provide
theoretical support for carbon-cycle assessment and the evaluation of sustainable development.

Keywords: net primary production; afforestation; climate change; Grain to Green Program;
El Niño–Southern Oscillation

1. Introduction

The global carbon cycle plays a critical role in biogeochemical processes, which have
important impacts on the nitrogen cycle, the phosphorus cycle, and other material cycles
in ecosystems [1–3]. The terrestrial carbon cycle is the most complex part among multiple
different processes operating on various temporal and spatial scales and the manifestation
of human activities [4–6]. Meanwhile, the terrestrial carbon cycle and global climate change
are strongly coupled, something that has been regarded as a frontier subject of global
change research [7–9]. Tropical forests contain about 40−50% of the terrestrial carbon
stock [10–12]. However, terrestrial carbon sinks are predominantly in mid-to-high latitudes,
rather than tropical forests [13,14]. Monitoring and quantifying changes in carbon sinks in
mid-to-high latitudes, therefore, is essential for understanding the global carbon cycle and
future climate change.

A great global greening trend has been observed during the past four decades, and
the greening trend in China is believed to have been greater than that of the global average,
especially in the northern semi-arid regions [15–17]. Vegetation on the Loess Plateau (LP)
has increased significantly in the past 20 years [18–20]. However, ecological recovery on the
LP is not an easy task due to the harsh climatic conditions and environmental factors [21–23].
The LP is the largest loess accumulation region in the world, with a continental monsoon
climate, little and concentrated year-round precipitation, frequent human activities, serious
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soil erosion, and extremely unstable ecosystems [24–26]. The vegetation on the LP has
nevertheless shown significant improvement, which is closely related to China’s largest
ecological engineering program, the Grain to Green Program (GTGP) [27–29]. This program
aims to (1) reclaim croplands back to forests, (2) afforest semiarid mountainous regions, and
(3) reinforce forest conservation. As the key region of GTGP, the greening of the LP marks
the great success of China’s ecological engineering programs and offers a model for global
ecological restoration, which also suggests that vegetation in mid-to-high latitudes has a
very high carbon sink potential [30,31]. Further studies in the detection and attribution
of the rapid growth of vegetation on the LP are needed to provide guidance for global
ecological programs.

At the ecosystem scale, the net photosynthetic flux of carbon is referred to as net
primary productivity (NPP). As one of the key parameters that characterize terrestrial
ecosystems, vegetation NPP can reflect the production capacity of plant communities under
various natural environmental conditions, which is an important parameter for in-depth
understanding of the surface carbon cycle process [32]. In previous researches, many NPP
estimation models of terrestrial ecosystems have been proposed and applied to different
regions [33], summarized into climate production potential models, ecological process
models and light use efficiency (LUE) models. Of the various models used, land-cover
type is a very important input parameter which decides the plant’s functional type and
photosynthetic efficiency. Uncertainties in previous NPP estimates indicate the many
previous models largely ignore the impact of continuous land-use changes. However,
high-intensity human activities have caused drastic changes in the land cover of the LP in
past decades. Therefore, the influence of continuous land-use changes on model parameters
must be considered in order to accurately estimate the NPP and quantify carbon sinks on
the LP.

Vegetation variations on the LP have been affected by both climate change and human
activities [34,35]. In recent decades, significant climate variations and increasing human
activity have occurred on the LP [17,25]. The significant growth of vegetation on the LP is
a response to an interplay between climatic changes and human disturbance, which has
attracted widespread attention [19,20,36]. A large number of previous studies have explored
the mechanisms by which human activities and climate influence vegetation variations
on the LP. However, the driving mechanism of vegetation variations is still unclear. Most
studies have concluded that strong human activity has dominated the vegetation growth on
the LP in recent decades [19,20], although some research has indicated that climate change
has played more important roles in regulating vegetation dynamics [36]. Many studies
have concluded that precipitation is the most important climatic factor for variation in
vegetation in semi-arid areas [25,37]. However, some research has found that temperature
also has tangible effects on vegetation variation on the LP [38]. In addition, the impacts
of human activities—especially of large-scale ecological engineering programs—on the
LP’s highly heterogeneous vegetation types and landforms still needed to be evaluated and
quantified. To this end, a quantitative analysis of the relative weighting of the impacts of
climate change and human activities on vegetation variation would make the attribution of
greening more reliable.

Meanwhile, climate variations or extremes caused by atmospheric oscillations should
receive more attention in the study of the driving mechanism of vegetation variation.
Few previous studies have been performed on El Niño–Southern Oscillation (ENSO) and
vegetation growth in China, since this country is not among the core regions influenced
by ENSO events [39,40]. The impact of ENSO events on vegetation growth has therefore
remained unclear [41]. However, the LP is deeply affected by the monsoon and ENSO
events have direct impacts on the monsoon climate [42] which has a profound impact
vegetation variation on the LP. Therefore, the impact of ENSO on vegetation variation
requires further research in order to guide the implementation of large-scale ecological
restoration projects.
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This paper focuses on detection and attribution of increases in NPP on the LP from
2001 to 2020 based on multiple variables from satellite sensors and reanalysis datasets.
The objectives of this paper are to: (1) optimize the Carnegie–Ames–Stanford approach
(CASA) model to accurately simulate NPP on the LP over the past 20 years; (2) study the
spatial–temporal patterns of NPP variations on the LP; (3) disentangle the influence of
climate change and human activities on vegetation variations; and (4) discuss the impacts
of atmospheric oscillation on vegetation NPP on the LP.

2. Materials and Methods
2.1. Study Area

The LP, located in the north of China, extends from 33◦41′N to 41◦16′N and 100◦52′E
to 114◦33′E, surrounded by tall mountains, lying to the east of the Riyue Mountains, west
of the Taihang Mountains, south of the Yin Mountains, and north of the Qinling Mountains
(Figure 1). The total area totals approximately 620,000 km2 over an area 1300 km long
and 800 km wide. The administrative divisions include Shanxi Province, Ningxia Hui
Autonomous Region, Shaanxi Province, Gansu Province, Qinghai Province, Inner Mongolia
Autonomous Region, and Henan Province. The LP is the largest, most concentrated and
typical loess landform unit in the world, and is famous for its huge accumulation of
loess (30~200 m) and serious soil erosion [35]. Temperate deciduous forest, forest–steppe,
typical steppe, and temperate desert steppe appear from southeast to northwest. However,
the mountain vegetation in the east and south of the LP show obvious differences in
vertical distribution due to changes in temperature and precipitation with altitude. The
heterogeneity of climatic conditions and ecological environment highlight the regional
differences in the changes to vegetation on the LP. According to the heterogeneity of
its climatic conditions and surface characteristics, the LP can be divided into six sub-
regions: (1) temperate steppe desert (TSD), (2) alpine forest–steppe (AFS), (3) temperate
desert–steppe (TDS), (4) temperate typical steppe (TTS), (5) temperate forest–steppe (TFS),
and (6) temperate deciduous forest (TDF). In general, the precipitation and temperature
decreases from southeast to northwest (Table 1).
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Figure 1. Map of location (a) and land cover (b) of the Loess Plateau in China.

Table 1. Climate conditions and vegetation types in the sub-regions in 2020.

Sub-Regions Area
(km2)

Annual Mean
Temperature (◦C)

Annual
Precipitation (mm) Vegetation Types

TSD 5.07 8.77 251.75 Croplands;
steppe–desert

AFS 3.51 4.60 387.57 Desert; steppe; forest
TDS 8.06 8.33 288.94 Desert; steppe
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Table 1. Cont.

Sub-Regions Area
(km2)

Annual Mean
Temperature (◦C)

Annual
Precipitation (mm) Vegetation Types

TTS 16.80 8.17 413.53 Steppe
TFS 13.37 10.12 519.30 Forest–steppe
TDF 11.61 12.40 600.56 Forests; croplands

2.2. Data Used

Various variables from satellite sensors over the LP and reanalysis datasets were used
in this research. These included land-cover maps, the normalized difference vegetation
index (NDVI), evapotranspiration (ET) from the Moderate Resolution Imaging Spectrora-
diometer (MODIS) on the Terra platform, temperature and solar radiation from the Famine
Early Warning Systems Network (FEWS NET) Land Data Assimilation System (FLDAS),
precipitation from Global Precipitation Measurement (GPM), population distribution from
LandScan, the sea surface temperature anomaly (SSTa) index for Niño 3.4 (5◦N to 5◦S,
170◦W to 120◦W), and monthly averaged total column water vapor from the ERA5 dataset.

MODIS land cover dataset. Collection 6 Terra and Aqua MODIS land cover product
(MCD12Q1) from 2001 to 2020 at yearly temporal frequency and 500 m spatial resolution was
used to indicate the spatial–temporal patterns of land-use change in our study area [43]. This
product provides several classification schemes. The map of the International Geosphere–
Biosphere Programme (IGBP) classification scheme was adopted for this research.

MODIS NDVI datasets. Collection 6 Terra MODIS NDVI products (MOD13A3) for
the period January 2001 to December 2020 were used in this study. The NDVI dataset
provides monthly composite NDVI at a 1 km spatial resolution. The NDVI over our study
area was refined by removing pixels with shadows, inland snow/ice, inland water, and
mixed clouds.

MODIS ET/PET datasets. Collection 6 Terra MODIS Evapotranspiration (ET) prod-
ucts (MOD16A2GF) for the period January 2001 to December 2020 were used in this study.
The dataset provides year-end gap-filled 8-day composite ET, potential ET (PET) at a 500 m
pixel resolution. The ET/PET over our study area was refined by removing pixels with
negative values.

FLDAS temperature and radiation datasets. FLDAS Noah Land Surface Model L4
dataset (FLDAS_NOAH01_C_GL_M) for the period January 2001 to December 2020 was
used in this study. The dataset contains a series of global monthly land surface parameters
simulated from the Noah 3.6.1 model at a 0.1◦ resolution. Near-surface air temperature
and surface downward shortwave radiation were selected to indicate the monthly air
temperature and solar radiation over the LP.

GPM IMERG precipitation datasets. Version 06B Integrated Multi-satellite precipita-
tion products (GPM_3IMERGM) for the period January 2001 to December 2020 were used
in this study. The precipitation estimates from the various precipitation-relevant satellite
passive microwave (PMW) sensors were used. The dataset provides monthly precipitation
over the LP at a 0.1◦ resolution.

Population Distribution datasets. LandScan global population distribution data from
2001 and 2020 were used in this study. LandScan was developed using best available de-
mographic (census) and geographic data, remote sensing, and imagery analysis techniques
within a multivariate dasymetric modeling framework. The dataset provides an ambient
population distribution (averaged over 24 h) on the LP.

The MODIS land-cover datasets with IGBP classification scheme were reclassified
to six land-cover types: forests, shrublands, grasslands, croplands, barren, and water
bodies (Figure 1). The 1 km NDVI products, FLDAS data, and precipitation products were
spatially aggregated to a resolution of 500m and were then used in our model simulation
and analyses.
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2.3. Contribution of Each Driving Factor to Interannual Variation in NPP

Changes in vegetation NPP are mainly affected by climatic and other factors. Climate
factors primarily include temperature, precipitation and solar radiation, while other factors
mainly refer to human activities on the LP. In order to further understand the influence
weights of human activities and climate factors on changes to vegetation NPP, the partial
derivative method [44] was used to calculate the contribution of climate factors and human
activity to interannual vegetation growth for each pixel during 2001 to 2020. This was done
by using

Slope = C(tem) + C(rad) + C(pre) + UF
= ( ∂NPP

∂tem )× ( ∂tem
∂n ) + ( ∂NPP

∂rad )× ( ∂rad
∂n ) + ( ∂NPP

∂pre )× ( ∂pre
∂n ) + UF

(1)

where Slope [gC·m−2·a−2] is the increase rate of NPP; C [gC·m−2·a−2] represents contri-
butions of climate factors to vegetation growth; UF is residual error, which represents the
contribution of human activities; tem, pre, and rad are annual average temperature, annual
precipitation, and annual solar radiation, respectively; and n is year.

2.4. Interactive Effect of Driving Factors on the NPP

Interaction effects become more and more important in the attribution analysis of
vegetation. Geo-detector (i.e., Geographical Detector) is a statistical tool to measure spatial
stratified heterogeneity (SSH) and to make attribution for/by SSH [45]. In this study, a
geo-detector was used to investigate the interaction effects of explanatory variables on
NPP in the various sub-regions of the LP. This was done using Geo-detector software
(http://geodetector.cn/ (accessed on 1 January 2022)).

3. Model and Evaluation
3.1. CASA Model

In this study, the NPP was calculated by Carnegie–Ames–Stanford approach (CASA)
model, which is a light use efficiency model based on global satellite and surface data [46].
This was done using

NPP(x, t) = APAR(x, t)× ε(x, t) (2)

where t is time, x is the pixel number, NPP (x, t) [gC·m−2] is the net primary production
of pixel x at time t, APAR (x, t) [MJ·m−2] represents absorbed photosynthetically active
radiation of pixel x at time t, and ε (x, t) [gC·MJ−1] is the light use efficiency for pixel x at
time t. The absorbed photosynthetically active radiation was calculated as follows:

APAR(x, t) = 0.47× SOL(x, t)× FPAR(x, t) (3)

where SOL (x, t) [MJ·m−2] is solar radiation of pixel x at time t from FLDAS radiation
datasets, FPAR (x, t) is the fraction of absorbed photosynthetically active radiation of pixel
x at time t, and the constant 0.47 is the ratio of effective solar radiation that can be used by
vegetation to the total solar radiation. The FPAR can be calculated as follows:

FPAR(x, t) =
RVI(x, t)− RVIi,min

RVIi,max − RVIi,min
× (FPARmax − FPARmin) + FPARmin (4)

where FPARmax = 0.95 and FPARmin = 0.001 represent maximum and minimum FPAR, and
RVImax and RVImin represent maximum and minimum RVI, which are determined by the
land-cover type [47] (Table 2). RVI can be calculated from the MODIS NDVI dataset.

RVI(x, t) =
[

1 + NDVI(x, t)
1− NDVI(x, t)

]
(5)

http://geodetector.cn/
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The light use efficiency is influenced by many environmental factors, including temper-
ature and moisture. The light use efficiency was calculated by using the model established
by Potter and Field [48,49]. The efficiency, ε, is calculated as follows:

ε(x, t) = Tε1(x, t)× Tε2(x, t)×Wε(x, t)× εmax (6)

Tε1(x, t) = 0.8 + 0.02Topt(x)− 0.0005[Topt(x)] (7)

Tε2(x, t) =
1.1814{

1 + e0.2×[Topt(x)−10−T(x,t)]
}
×
{

1 + e0.3×[−Topt(x)−10+T(x,t)]
} (8)

Wε(x, t) = 0.5 + 0.5× ET(x, t)
PET(x, t)

(9)

where Tε1(x, t) and Tε2(x, t) are the temperature stress factors of the light use efficiency of
pixel x at time t; Wε(x, t) represents the water stress factor of the light use efficiency of pixel
x at time t; and εmax [gC·MJ−1] is the maximum light use efficiency, which differs with
land-cover type (Running et al., 2000, Table 3). T(x, t) (◦C) is the average temperature of
pixel x at time t, and Topt(x) (◦C) is the temperature at the highest NDVI in a year. ET (x, t)
(mm) and PET (x, t) (mm) are actual evapotranspiration and potential evapotranspiration
from the MODIS ET/PET dataset.

Table 2. Maximum and minimum RVI of different vegetation types.

Vegetation types RVImax RVImin

Deciduous needle-leaf forest 6.63 1.05
Deciduous broad-leaf forest 6.91 1.05

Sparse woods 4.49 1.05
Steppe 4.46 1.05

Urban lands 4.46 1.05
Desert 4.46 1.05

Croplands 4.46 1.05

Table 3. Maximum light use efficiency of different vegetation types.

Vegetation Types εmax [gC·MJ−1]

Deciduous needle-leaf forest 1.008
Deciduous broad-leaf forest 1.259

Sparse woods 0.774
Steppe 0.608

Croplands 0.604
Other 0.389

3.2. Model Optimization and Validation

We optimized the CASA model to accurately simulate the net primary productivity
(NPP). In the CASA model, previous research has always simulated evapotranspiration
based on meteorological data. MODIS ET datasets provide high-resolution evapotranspira-
tion data based on satellite data and surface meteorological data, which is a better choice
for the calculation of the water stress factor of the light use efficiency. The MODIS land
cover product from 2001 to 2020 at yearly temporal frequency was used to determine the
maximum light use efficiency and maximum RVI for each pixel, which allowed estimations
of NPP to reflect land use changes over the past 20 years. The continuous changes in land
use obtained from this product made the model estimation more reasonable. In this study,
we simulated monthly NPP between 2001 and 2020 on the LP. Observed biomasses in 2010
were converted to obtain the actual NPP in the sampling area, which were used to assess
the CASA model. As illustrated in Figure 2, the proximity between observed and modeled
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NPP were characterized by NRMSE = 15%, R2 = 0.92, which indicated that NPP on the LP
could be accurately simulated by the CASA model.
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4. Results
4.1. Spatiotemporal Pattern of NPP

The NPP patterns on the LP varied along with the differences in the land cover and
precipitation gradient [50]. In other words, the NPP decreased from the southeast forest
to the northwest desert, varying along the rainfall gradient. Meanwhile, the relatively
low NPP distribution in the southeast and relatively high NPP over the northwest were
produced by croplands. According to the comparison of NPP distribution in 2001 and 2020,
a huge improvement in the NPP has occurred in the past 20 years (Figure 3). NPP increased
by 165.2% from 129.1 gC·m−2·a−1 to 294.3 gC·m−2·a−1 over the study area. Low-NPP
regions are shrinking in the northwest of the LP, while high-NPP areas are expanding in the
southeast of the LP. In sub-regions of forest–steppe, NPP in the TDF increased by 108.4%
from 279.8 gC·m−2·a−1 to 583.1 gC·m−2·a−1, while NPP in the TFS increased by 150.3%
from 189.1 gC·m−2·a−1 to 473.4 gC·m−2·a−1. In the steppe region, NPP in the TTS increased
by 145.0% from 65.5 gC·m−2·a−1 to 160.4 gC·m−2·a−1. In the desert–steppe regions, NPP
in the TDS increased by 32.6% from 25.0 gC·m−2·a−1 to 33.1 gC·m−2·a−1. NPP in the AFS
increased by 28.6% from 192.2 gC·m−2·a−1 to 247.1 gC·m−2·a−1. NPP in the TSD increased
by 56.7% from 53.6 gC·m−2·a−1 to 83.9 gC·m−2·a−1. In general, improvement of NPP in
the forest and steppe was more obvious than that in the desert–steppe.

Significant continuous rises (an increase of 7.45 gC·m−2·a−2, R2 = 0.9328, p < 0.01)
in annual NPP have occurred on the LP during the past 20 years (Figure 4). At the pixel
scale, the increases in NPP appear heterogeneous due to the difference in land cover
on the LP. Most of pixels (93.4%) on the LP showed increases in NPP, and strong and
significant (p < 0.05) increases of NPP occurred in 73.6% of the LP, mainly distributed
in the middle and southeastern part of the plateau. NPP in forest areas showed higher
rises than NPP in non-forest areas. According to the comparison of the NPP variation and
land cover maps, NPP of forests (green pixels in the left panel of Figure 4) increased by
more than 10 gC·m−2·a−2, while NPP data from non-forest regions (yellow or red pixels)
indicate lower increases or faint decreases over the past 20 years. In the forest–steppe
sub-regions, NPP in TFS increased significantly by 13.35 gC·m−2·a−2 (p < 0.05), while NPP
in TDF regions showed lower rises (12.81 gC·m−2·a−2) due to the decreases of NPP in the
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croplands in TDF areas. In the steppe region, NPP in TTS showed significant increases at a
rate of 5.27 gC·m−2·a−2 (p < 0.05). In the desert–steppe regions, NPP saw faint increases in
the TSD (2.55 gC·m−2·a−2), AFS (1.89 gC·m−2·a−2), and TDS (1.61 gC·m−2·a−2) regions.
In general, the rapid growth of NPP in forest regions led significant continuous rises on the
LP over the past 20 years.
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Figure 3. NPP distribution in (a) 2001 and (b) 2020 on the Loess plateau. The numbers on the pixels
represent six sub-regions on the LP: (1) temperate steppe desert (TSD), (2) alpine forest–steppe (AFS),
(3) temperate desert–steppe (TDS), (4) temperate typical steppe (TTS), (5) temperate forest–steppe
(TFS), (6) temperate deciduous forest (TDF). Bar charts show the average NPP in six sub-regions in
2001 and 2020.
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Figure 4. (a) Spatial patterns of variations of NPP on the LP during 2001−2020. The numbers on the
pixels represent six sub-regions on the LP: (1) Temperate steppe desert (TSD), (2) alpine forest–steppe
(AFS), (3) temperate desert–steppe (TDS), (4) temperate typical steppe (TTS), (5) temperate forest–steppe
(TFS), (6) temperate deciduous forest (TDF). The line chart shows the trend in average NPP over the
study area. (b) Significance of variations of NPP on the LP during 2001−2020. The red bar in the right
panel indicates a significant increase (p < 0.01) in average NPP over the TTS and the TFS regions.

4.2. Quantitative Analysis of Contributions of Driving Factors on Variations in NPP

Climate variations and human land use management were both found to be impor-
tant driving factors of vegetation change on the LP [36]. According to our contribution
analysis, changes in regional precipitation, temperature, and solar radiation made positive
contributions to NPP increases. Precipitation contributed 1.53 gC·m−2·a−2 (20.5%) of the
NPP increases, whereas temperature and solar radiation only contributed 0.59 gC·m−2·a−2

(7.9%) and 0.55 gC·m−2·a−2 (7.4%), respectively. In addition, the other factors (mainly
human land-use management) contributed 4.78 gC·m−2·a−2 (64.2%) to the NPP increases
on the LP. At the pixel scale, the negative contributions (red pixels in Figure 5) and low
positive contributions (yellow pixels in Figure 5) were considered invalid contributions.
According to the map of contributions (Figure 5), heterogeneities of contributions were
different for each factor. Precipitation indicated obvious positive contributions on the
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southwestern and northeastern mountain forests, which mainly distributed in TFS and TTS.
Temperature showed positive contributions on the eastern part of the LP, while radiation
showed positive contributions on the southwest of the LP. Human land-use management
indicated huge contributions to NPP increases in the southeastern forest–steppe and obvi-
ous contributions in the middle steppe on the LP. In general, human activities on the LP
appear to have made a greater contribution to the NPP increases than climate variations.

Remote Sens. 2022, 14, x FOR PEER REVIEW 9 of 17 
 

 

4.2. Quantitative Analysis of Contributions of Driving Factors on Variations in NPP 

Climate variations and human land use management were both found to be im-

portant driving factors of vegetation change on the LP [36]. According to our contribution 

analysis, changes in regional precipitation, temperature, and solar radiation made posi-

tive contributions to NPP increases. Precipitation contributed 1.53 gC·m−2·a−2 (20.5%) of 

the NPP increases, whereas temperature and solar radiation only contributed 0.59 

gC·m−2·a−2 (7.9%) and 0.55 gC·m−2·a−2 (7.4%), respectively. In addition, the other factors 

(mainly human land-use management) contributed 4.78 gC·m−2·a−2 (64.2%) to the NPP in-

creases on the LP. At the pixel scale, the negative contributions (red pixels in Figure 5) and 

low positive contributions (yellow pixels in Figure 5) were considered invalid contribu-

tions. According to the map of contributions (Figure 5), heterogeneities of contributions 

were different for each factor. Precipitation indicated obvious positive contributions on 

the southwestern and northeastern mountain forests, which mainly distributed in TFS and 

TTS. Temperature showed positive contributions on the eastern part of the LP, while ra-

diation showed positive contributions on the southwest of the LP. Human land-use man-

agement indicated huge contributions to NPP increases in the southeastern forest–steppe 

and obvious contributions in the middle steppe on the LP. In general, human activities on 

the LP appear to have made a greater contribution to the NPP increases than climate var-

iations. 

 

Figure 5. Contribution of each driving factor to interannual variations in NPP: (a) precipitation; (b) 

temperature; (c) radiation; (d) human land use. Red pixels represented weakly negative contribu-

tions to NPP increases. Yellow pixels represented faint positive contributions to NPP increases. 

Green pixels represented obvious positive contributions to NPP increases. The numbers on the pix-

els represent six sub-regions on the LP: (1) Temperate steppe desert (TSD), (2) alpine forest–steppe 

(AFS), (3) temperate desert–steppe (TDS), (4) temperate typical steppe (TTS), (5) temperate forest–

steppe (TFS), (6) temperate deciduous forest (TDF). 

The driving forces behind vegetation change were heterogeneous along with spatial 

patterns of the land cover on the LP. Based on a comprehensive analysis of contributions 

of each driving factor in Figure 5, human land use dominated the NPP variations in 58.8% 

Figure 5. Contribution of each driving factor to interannual variations in NPP: (a) precipitation;
(b) temperature; (c) radiation; (d) human land use. Red pixels represented weakly negative contri-
butions to NPP increases. Yellow pixels represented faint positive contributions to NPP increases.
Green pixels represented obvious positive contributions to NPP increases. The numbers on the pixels
represent six sub-regions on the LP: (1) Temperate steppe desert (TSD), (2) alpine forest–steppe (AFS),
(3) temperate desert–steppe (TDS), (4) temperate typical steppe (TTS), (5) temperate forest–steppe
(TFS), (6) temperate deciduous forest (TDF).

The driving forces behind vegetation change were heterogeneous along with spatial
patterns of the land cover on the LP. Based on a comprehensive analysis of contributions of
each driving factor in Figure 5, human land use dominated the NPP variations in 58.8%
of areas on the LP, which were mainly distributed in the TDF, TFS, central TTS, and TSD
regions. Climate-dominant areas were mainly distributed in the TTS and TDS regions
(Figure 6). In the forest–steppe regions (TDF and TFS), more than 80% of pixels indicated
human activities dominated NPP variations in the forests and croplands. In the TSD and
AFS, increases in NPP were dominated by human activities in more than 50% of pixels,
including many areas of cropland. In the steppe regions (TTS and TDS), increases in NPP
in the grasslands were mainly influenced by climate variation, while precipitation was the
most important climate factor for grasslands. In general, NPP in forests and croplands were
dominated by human activities, while grassland NPP was mainly influenced by climate
variation on the LP over the past 20 years.
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Figure 6. (a) Spatial pattern of dominant driver of variations of NPP on the LP. The numbers on the
pixels represent six sub-regions on the LP: (1) Temperate steppe desert (TSD), (2) alpine forest–steppe
(AFS), (3) temperate desert–steppe (TDS), (4) temperate typical steppe (TTS), (5) temperate forest–
steppe (TFS), (6) temperate deciduous forest (TDF). (b) Relative contribution of climate factors and
human activity to variations of NPP in sub-regions on the LP.

Vegetation growth was determined by the combined effects of driving factors. There-
fore, analysing these interactive effects has been an important part of deepening our
understanding of the attribution of vegetation variations. Based on Geo-detector analysis,
interactive effects were calculated to characterize the weights and interactive effects of dif-
ferent driving factors on vegetation variations. In Figure 7, all of the effects of the interaction
between land use and climate factors exceeded 0.5 in the TTS, TFS, and TDF sub-regions,
which indicates that land use was a core driver of vegetation growth in the southeastern
LP. In the northwestern regions, the interactive effects of land use∩climate factors were
relatively weak, which meant that the impacts of land use were weaker, and climate factors
had a higher impact weight than that in the southeastern LP. Furthermore, the interaction
between land use and precipitation had the highest ability to explain changes in NPP in
the TDS, TTS, TFS, and TDF sub-regions, which meant land use and precipitation were
the two most important factors for vegetation variation in most areas of the LP. In general,
vegetation was mainly affected by land use in the southeastern LP, while the influence
weights of climatic factors increased in the northwestern part.
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4.3. Changes in Population Patterns and Vegetation Types on the LP

GTGP, the most important land-use management program in China, has made great
contributions to the greening of the LP. Eco-migration has been a very important aid to
support the GTGP’s implementation. Panels (a) and (b) in Figure 8 represent the map of
population density on the LP in 2000 and 2020, divided into different levels. In this study,
we defined the population density as follows: 0−5/km2—areas of extremely low density,
depopulated zone; 5–500/km2—areas of moderate density, rural area; >500/km2—areas of
high density, urban area. Depopulated zones increased by 63.86% from 15.87% to 26.00%
of the whole region from 2001 to 2020. Rural areas decreased by 15.64% from 81.10% to
68.41% of the LP, while urban areas increased by 84.06% from 3.04% to 5.59% of the LP. By
comparing Figures 1 and 8, it can be seen that the newly added depopulated zones (red
ellipses) were mainly distributed in the forest areas (TDF and TFS), which indicates that
the government has protected and restored forests through eco-migration over the past
20 years, and that this has led the significant continuous rises in NPP on the LP over the
past 20 years. Combined with the previous results, ecological migration has played an
important role in afforestation/reforestation, which was conducive to the rapid growth of
NPP in forest regions.
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Figure 8. Human activity on the LP over the past 20 years. Panels (a) and (b) are maps of population
density on the LP in 2000 and 2020, respectively. Panel (c) shows fractions of pixels for different
population densities. Panel (d) represents variations in NPP with percentage area of forests, non-
forest vegetation, and barren land on the LP. The red ellipses in panel (a) and (b) represent the regions
with extreme decreases in population density. The color bars in panel (d) show the various stages of
land use-managements.

According to land-cover change, the land-cover map was reclassified into three types:
forest, non-forest vegetation, and barren land. The forested area increased by 28.7%, while
barren land decreased by 32.8%. Based on the white paper, “Twenty Years of Convert-
ing Farmland to Forest and Grass in China”, changes in forests, non-forest vegetation,
and barren land can be divided into four stages: 2001–2006; 2006–2012; 2012–2016; and
2016–2019. In first stage, forest areas continually increased, while non-forest vegetated
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areas continually decreased and barren land weakly decreased on the LP. The NPP on the
LP increased significantly in 2001–2006. In stage 2, forest areas still continually increased,
while barren lands tangibly decreased. However, non-forest vegetated areas underwent
almost no change. The NPP on the LP increased significantly in 2006–2012. In stage 3,
all the forests, non-forest vegetation, and barren lands underwent no obvious change.
The NPP increases were very weak in this stage. In stage 4, forest areas increased, while
barren lands tangibly decreased. Non-forest vegetated areas underwent almost no change.
NPP increased after 2016 on the LP. In general, increases in forested areas have led to the
increases in NPP on the LP over the past 20 years.

4.4. Impact of Strong El Niño Event on the Vegetation on the LP

Precipitation gradients determined the spatial distributions of vegetation types on
the LP, which affected the spatial patterns of NPP. In recent decades, extreme events of
atmospheric oscillations, such as ENSO events, have had important impacts on global
climate change [51]. In the north of China, precipitation has always been low in El Niño
years and high during La Niña events [42], which affects vegetation variations in arid and
semi-arid regions. Essentially, La Niña event precipitation leads to positive influences on
NPP, while El Niño events have negative effects on vegetation on the LP. According to the
sea-surface temperature anomaly (SSTa) for Niño 3.4 (Figure 9), six El Niño events and
seven La Niña events have occurred during the past 20 years. According to the comparison
of the NPP, SSTa, and precipitation data, the super El Niño event in 2015 led to a decrease
in water vapor transport from the ocean to the LP (Figure 9d,e), which caused the lowest
precipitation (29.5% lower than multi-year average precipitation) in the growing season
over the past 20 years. The extreme drought eventually led to the vegetation browning,
and then made 2015–2017 a low point in the greening of the Loess Plateau.
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Figure 9. Time series of (a) NPP, (b) SSTa for Niño 3.4, and (c) precipitation in growing season over
the periods 2001–2020 and anomaly distribution of vertically integrated summer water vapor in
(d) 2015 and (e) 2016. The brown bar represents the decrease in NPP and precipitation affected by the
strong El Niño event in 2015. The arrows in panel (c) and (d) represent the wind direction.



Remote Sens. 2022, 14, 4706 13 of 16

5. Discussion
5.1. Heterogeneity of Vegetation Variation over the LP

Complicated topography, surface runoff, and precipitation gradients determine the
spatial distributions of vegetation types on the LP, which affects the spatial patterns of
NPP. According to the elevation map of the LP, there are many mountains in the southern
and eastern part of the LP. These mountains receive a lot of water vapor from the East
Asian monsoon and block the transportation of water vapor to the northwestern region.
Therefore, obvious precipitation gradients are formed on the LP, which leads to the spatial
patterns of “forest–steppe–desert steppe” from southeast to northwest. Meanwhile, surface
runoff also has impacts on the vegetation type. As can be seen on Figure 1, the Yellow
River flows through the northern steppe desert of the LP, providing enough water for
vegetation growth. After more than 2000 years of water conservancy and agricultural
developments, the Hetao plain was formed in the arid desert area of the LP, becoming an
important grain-producing area of China [52]. In this study, it was found that NPP varied
with changes in land-cover type. The highest NPP occurred in mountain forests, followed
by cropland, steppe, and desert steppe. Over the past 20 years, regional asymmetrical
vegetation improvement has occurred on the LP. The improvements in the southeastern
forest and forest–steppe were more obvious than those in the northwestern desert–steppe.

Continuous increases in vegetation productivity have been heterogeneous over the
past 20 years on the LP. NPP in most regions has undergone significant increases, mainly
distributed in forest and steppe areas. The forests which saw a rapid growth in NPP are
mainly distributed in the southeast regions where there were many mountains, including
the Qinling Mountains, Lvliang Mountains, and Taihang Mountains. Mountain forests
were found to have rich biological species, more hierarchical structures, and higher pho-
tosynthetic productivity, giving them the benefits of regulating climate, conserving water
and soil sources, acting as windbreaks, and assisting with sand fixation. The improvements
of forest vegetation were of great significance to the ecological restoration of the LP. NPP in
typical steppe areas also indicated significant increases, mainly distributed in the central
areas of the LP. The improvements in steppe vegetation were of great significance to the
control of desertification on the LP. Meanwhile, urbanization has caused decreases in NPP
in the Hetao plain and Guanzhong plain.

5.2. Heterogeneity of Attribution of the Vegetation Variations

The GTGP is China’s largest ecological engineering program, and was initiated in 1999,
mainly focusing on mountainous regions [16]. The LP was a key area for the implementation
of the project. In this study, the contributions of human activities and climate variations on
NPP were 64.2% and 35.8%, respectively. Increases in newly added depopulated zones and
forest areas indicate that eco-migration and afforestation/reforestation were core drivers of
increased NPP in forest areas (TDF and TFS). Human activities were the dominant factor
driving increases in NPP in the southeastern LP, while climate variations were the dominant
factor driving increases in NPP in the west and north of the LP.

The temporal stages in changes to forest and non-forest areas were related to the
stages of the GTGP. In the initial stage of the project, 2001–2006, forested areas increased
significantly, while non-forest areas decreased tangibly. In the consolidation phase, from
2006 to 2012, the conversion of cultivated land to forests was suspended in order to ensure
sufficient cultivated land area, while the afforestation of barren mountain and the setting
aside of hills for afforestation continued. The forested areas continually increased, while the
barren lands tangibly decreased. In the transition phase, from 2012 to 2016, the government
investigated and studied the implementation plan for the next phase of GTGP. All the
forest, non-forest, and barren areas underwent no obvious change. In 2016, the second
stage of GTGP started. Forested areas increased, while barren land tangibly decreased.
According to Figure 8, the phases of increasing NPP corresponded to the changes in forest
areas over the past 20 years, which indicates that the mountain forests in the southeast
of the LP were key project areas for the GTGP. Meanwhile, ecological migration was
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conducive to reducing the negative effects of human activities in the forest areas. In general,
afforestation/reforestation had a dominant effect on increases in NPP in the southeastern LP.
In the western and northern areas of the LP, the increases in precipitation had a dominant
effect vegetation growth on the steppe in semi-arid regions.

In this study, we mainly focused on the influence of climate change and human
activities on the NPP on the LP, and gave less consideration to other factors, such as CO2
fertilization effects and nutrient limitation. In the future, more comprehensive consideration
should be given to the driving mechanisms of changes to the NPP of vegetation. Meanwhile,
extreme atmospheric oscillations such as ENSO events have had important impacts on
global climate change in recent decades. This paper preliminarily explored the impact of
strong ENSO events on NPP. We found that strong El Niño events exacerbated obstruction
of the GTGP’s goals. The influence of atmospheric oscillations on the carbon cycle requires
further analysis in the future.

6. Conclusions

NPP has undergone significant continuous rises (7.45 gC·m−2·a−2, R2 = 0.9328, p < 0.01)
on the LP over the past 20 years, with rapid growth of NPP in forests in the southeastern
regions a key driver of this. The contributions of human activities and climate variations
to NPP were found to be 64.2% and 35.8%, respectively. The effects were heterogeneous,
varying with spatial variations in land cover. Mountain forests in the southeast of the LP
were key project areas for the GTGP. In addition, ecological migration and the population
agglomeration caused by urbanization were conducive to reducing the negative effects of
human activities in forested areas. As a result, afforestation/reforestation had a dominant
effect on increases in NPP in the southeastern LP, whereas in the western and northern areas,
climate variations, especially increases in precipitation, dominated vegetation growth on the
steppe in semi-arid regions. Furthermore, strong ENSO events exacerbated obstruction of
the GTGP’s goals. In general, the results of this study provide a comprehensive perspective
on the detection and attribution of greening in a core GTGP area of China. In future research,
climate extremes caused by ENSO should be identified to study and predict vegetation
variations on the LP.
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