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Abstract: The validity of two reanalysis (ERA5 and MEERA2) and seven satellite-based (CHIRPS,
IMERG, PERSIANN-CCS, PERSIANN-CDR, PERSIANN-PDIR, PERSIANN, and TRMM) precipi-
tation products was assessed in relation to the observations of in situ weather stations installed in
different topographical and climatic regions of Pakistan. From 2010 to 2018, all precipitation products
were evaluated on daily, monthly, seasonal, and annual bases at a point-to-pixel scale and over the
entire spatial domain. The accuracy of the products was evaluated using commonly used evaluation
and categorical indices, including Root Mean Square Error (RMSE), Correlation Coefficient (CC), Bias,
Relative Bias (rBias), Critical Success Index (CSI), Success Ratio (SR) Probability of Detection (POD),
and False Alarm Ratio (FAR). The results show that: (1) Over the entire country, the spatio-temporal
distribution of observed precipitation could be represented by IMERG and TRMM products. (2) All
products (reanalysis and SPPs) demonstrated good agreement with the reference data at the monthly
scale compared to the daily data (CC > 0.7 at monthly scale). (3) All other products were outper-
formed by IMERG and TRMM in terms of their capacity to detect precipitation events throughout the
year, regardless of the season (i.e., winter, spring, summer, and autumn). Furthermore, both products
(IMERG and TRMM) consistently depicted the incidence of precipitation events across Pakistan’s var-
ious topography and climatic regimes. (4) Generally, CHIRPS and ERA5 products showed moderate
performances in the plan areas. PERSIANN, PERSIANN-CCS, PDIR, PERSIANN-CDR, and MEERA2
products were uncertain to detect the occurrence and precipitation over the higher intensities and
altitudes. Considering the finding of this assessment, we recommend the use of daily and monthly
estimates of the IMERG product for hydro climatic studies in Pakistan.

Keywords: satellite precipitation retrieval; global precipitation measurement mission; reanalysis
precipitation products; ERA5; CHIRPS; Pakistan

1. Introduction

Precipitation plays an important role to maintain atmospheric balance. It is an essen-
tial parameter of many applications such as climate change studies, crop water require-
ment, natural hazards analysis, hydrological modeling, and the prediction of floods and
droughts [1–3]. In general, two sources of precipitation data (weather radars and rain
gauges) are considered as the most reliable data sources for various applications [4,5]. How-
ever, due to uneven distribution, sparseness of observation data, and the weak relationship
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between precipitation intensity and topography, it is very difficult to obtain accurate and
reliable data in developing regions of the world [6]. Many satellite-based precipitation
products (SPPs) have been launched in recent decades to provide worldwide data for
several hydrological, environmental, meteorological, and agricultural application [7,8].
The SPPs provide un-interrupted estimates at fine spatial and temporal resolutions [9–11].
Other than SPPs, several reanalysis products have also been introduced to overcome the
problem of precipitation sparseness [12].

Although SPPs and reanalysis products are capable of providing un-interrupted
information of global precipitation at fine spatial and temporal resolutions, their accuracy
is dependent on the regional topography and climatic system [13–16]. Therefore, the
assessment of the accuracies of SPPs and reanalysis estimates is very important prior
to their direct application for different hydrological and meteorological studies. The
validation of SPPs and reanalysis products is also a very important to identify a suitable
proxy of gauge-data for crop irrigation scheduling in dry and semi-dry regions with
less ground-based gauging stations, such as Pakistan. Most of the recent SPPs provide
precipitation estimates using advanced precipitation estimation algorithms, which can
provide consistent data at fine spatiotemporal scales using signals from the infrared (IR) and
microwave (MW) sensors. The Global Precipitation Mission (GPM) of National Aeronautics
and Space Administration (NASA) of the United States of America has introduced the
latest SPPs for several hydro-climatic applications. Such products include Integrated Multi-
Satellite Retrievals for GPM (IMERG) and Tropical Rainfall Measuring Mission (TRMM).
Moreover, Precipitation Estimation from Remotely Sensed Information using Artificial
Neural Network (PERSIANN) family’s products are also capable of combining data from
IR and MW sensors to provide uninterrupted precipitation estimates. Previously, several
researchers evaluated the accuracies of reanalysis and SPPs with reference to the in situ
ground-based observations of precipitation in different topographic and climatic regions of
the world [8,15,17–20]. It is well reported that the local topography and climatology greatly
influence the performances of SPPs and reanalysis products [6,10,16,21,22]. However,
the performances of the latest SPPs and reanalysis products were not characterized and
compared over different topographic and climatic regimes of Pakistan. Therefore, this study
aimed to investigate and compare the performances of the nine latest precipitation products
(CHIRPS, IMERG, ERA5, MEERA2, PERSIANN-CCS, PERSIANN-CDR, PERSIANN-PDIR,
PERSIANN, and TRMM) over the diverse climatic and topographic conditions of Pakistan.

Among the considered SPPs, the SM2Rain-ASCAT products are available since 2007.
It is a new globally available precipitation product that was developed using the SM2RAIN
algorithm to extract precipitation estimates from the ASCAT satellite soil moisture data.
The “Climate Hazards Group Infrared Precipitation with Station Data (CHIRPS)” is a
quasi-global precipitation dataset that spans 35 years, available since 1981. CHIRPS in-
corporates in-house climatology satellite imagery (0.05◦ resolution) and in situ station
data to create gridded precipitation time series for trend analysis and seasonal drought
monitoring [13,14,23]. PERSIANN-CDR [24] provides daily worldwide precipitation data
with a resolution of 0.25◦. PERSIANN-CCS is a cloud classification system with inceptions
that can be customized. As compared to the traditional constant threshold approach, the
variable threshold approach in PERSIANN-CCS enables the detection and separation of
cloud computing spots. The IMERG product provides un-interrupted estimates of pre-
cipitation using data from the GPM satellite constellation [25,26]. It has a 0.25◦ × 0.25◦

resolution and provides quasi-global coverage. ERA5 provides hourly estimates of climate
variables at the global scale [27,28]. The Modern-Era Retrospective analysis for Research
and Applications, Version 2 (MERRA-2) provides precipitation data since 1980. MERRA-2
incorporates new features in the GEOS and GSI assimilation models.

Previously, the accuracies of few SPPs, for instance IMERG, TRMM, and PERSIANN-
CDR were evaluated in different parts of Pakistan. However, most studies reported the
performances of SPPs and reanalysis products over the mountainous parts of the country.
In the Hindu-Kush Mountains of Pakistan, for instance, Hamza et al. (2020) investigated
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the accuracy of two precipitation products (IMERG and TRMM) and suggested using the
monthly IMERG product for hydro-climatic applications [29]. Nadeem et al. (2022) evalu-
ated the performances of the PERSIANN product over the Himalayan range of Pakistan [30].
They found significant underestimation of the amount of precipitation represented by the
PERSIANN product. Anjum et al. (2018) compared the performances of IMERG with the
TRMM products over the northern highlands of Pakistan and highlighted the significant
influence of local topography on the performance of both products [31]. Assessments and
comparisons of the performances of different SPPs and reanalysis products over the differ-
ent topographic and climatic regions of Pakistan are lacking until no [29,30,32]. Therefore,
the main aim of this study was to evaluate and compare the performances of nine satellites
and reanalysis products (PERSIANN-CCS, PERSIANN-CDR, CHIRPS, ERA5, IMERG,
MEERA2, PERSIANN-PDIR, PERSIANN, and TRMM) over a wide range of climates and
topographies in Pakistan. Due to the diversity of the climate system and complexity of to-
pography, the observations of precipitation from ground-based gauging stations are sparse
in Pakistan [26–28,33]. It is expected that SPPs or reanalysis products will overcome the
problem of sparsity of precipitation data. This will be the first assessment and comparisons
of nine precipitation products (SPPs and reanalysis) over diverse topographic and climatic
regions of Pakistan.

The assessment methodology is explained in Section 2 of this paper. The study region
is described in Section 2.1, and the datasets are discussed in Section 2.2. In Section 2.3, the
evaluation and categorical indices that were used to assess the SPPs are described. Section 3
of this paper contains the results of this study. Section 4 includes the discussions of the
most important results. The main conclusions from this validation analysis are summarized
in the Conclusions (Section 5). The hydrologists, meteorologists, and water managers
in Pakistan, as well as the algorithm developers working on global SPPs and reanalysis
products, will all find this study’s findings to be useful.

2. Materials and Methods
2.1. Study Region

Geographically, the Islamic Republic of Pakistan is located in South Asia (between
24◦N–37◦N and 62◦E–75◦E). Its total area is approximately 881,913 km2 that is mainly
divided in three distinct regions: Baluchistan Plateau; Indus River (covers provinces of
Punjab and Sindh); and Northern highlands (Khyber Pakhtunkhwa (KPK), Azad Jammu
Kashmir (AJK), Gilgit Baltistan, and the capital of Pakistan “Islamabad”). The annual
precipitation varies greatly over the entire country. The northern highlands of country
receive very heavy precipitation during the winter season (December–February), whereas
the plains of Punjab received 50–70% of precipitation during the summer season (June–
September). The gradient of altitude varies from north to south, with higher altitudes in
the northern parts and lower altitudes in the southern parts. The topographical map of
Pakistan is shown in Figure 1.

2.2. Datasets

In Pakistan, gauge-based rainfall datasets are very limited and maintained by various
Pakistan Meteorological Department weather stations. Daily meteorological data from
110 Pakistan Meteorological Department (PMD) weather stations were collected. However,
for this assessment, the daily observations of only 61 meteorological stations were found to
be reliable due to the missing values (more than 20%) in other datasets. Depending upon
the reliability and quality of the daily datasets of the in situ stations considered herein,
the validation of the considered precipitation products was restricted for the period of
2010–2018. Table 1 presents the details of selected meteorological stations considered for
this validation study.
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Figure 1. Topographical map of Pakistan with locations of metrological stations.

Table 1. Salient features of the gauging stations considered for the validation of products.

Serial
Number Station Lat Long Altitude (m) Average Precipitation

(mm)

1 Astore 35.37 74.90 2168.0 420
2 Balakot 34.38 73.35 981.0 1302
3 Bunji 35.67 74.63 1470.0 178
4 Burzil 34.91 75.09 4030.0 749
5 Chillas 35.42 74.10 1251.0 277
6 Chitral 35.85 71.83 1500.0 432
7 Dir 35.20 71.85 1370.0 1303
8 Drosh 35.57 71.78 1465.0 510
9 G-Dopata 34.20 73.60 813.5 1359
10 Gilgit 35.92 74.33 1457.2 168
11 Gupis 36.17 73.40 2156.0 174
12 Jhelum 32.93 73.73 287.2 834
13 Kakul 34.18 73.25 1309.0 1288
14 Khot 36.52 72.58 3505.0 610
15 Kotli 33.52 73.89 614.0 1233
16 Mangla 33.13 73.63 305.0 943
17 Murree 33.92 73.38 2127.0 1627
18 Muzaffarabad 34.40 73.50 702.0 1384
19 Peshawar 34.00 71.93 327 488
20 Ratu 35.15 74.81 2920.0 662
21 RawlaKot 33.87 74.27 1677.0 1219
22 Skardu 35.34 75.54 2316.5 243
23 S-Sharif 34.82 72.35 970.0 986
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Table 1. Cont.

Serial
Number Station Lat Long Altitude (m) Average Precipitation

(mm)

24
PBO.
Nawab-
shah

26.25 68.36 37 219

25 PBO.
Panjgur 26.96 64.1 968 76

26 PBO. Pasni 25.26 63.48 9 223
27 M.O. Badin 24.63 68.9 9 255
28 Padidan 26.85 68.13 46 122
29 Rohri 27.66 68.9 66 110
30 Hydrabad 25.38 61.8 28 90
31 JACOBABAD 28.3 68.46 55 192

32 Karachi
Airport 24.9 66.93 22 138

33 NawabShAh 26.25 68.36 37 170
34 Larkana 27.53 68.23 52.7 116
35 Rohri2 27.66 68.9 66 84

36 Bahawal
Nagar 30 73.24 307 321

37 Bahawal
Pur 29.33 71.783 110 188

38 Bahawal
Pur(A/P) 29.383 71.683 119 213

39 Bhakkar 31.616 71.06 162 366

40 Noorpur
Thal 31.866 71.9 186 558

41 Jauharabad 32.5 72.43 187 461
42 Faisalabad 31.43 73.13 186 446
43 Jhelum2 32.93 73.73 287 855
44 Khanpur 28.65 70.683 88 254
45 Lahore A.P. 31.583 74.4 216 812
46 Multan 30.2 71.43 122 257

47 Mandi
Bahauddin 32.96 73.8 253 779

48 Sialkot 32.516 74.53 255 1025

49 Sialkot
Airport 32.53 74.03 240 933

50 Sargodha 32.05 72.66 187 545

51 Toba Tek
Singh 30.983 72.783 155 363

52 D.G. Khan 30.05 70.63 148 251
53 Jhang 31.26 72.316 158 405
54 Mangla2 33.06 73.63 283 943
55 Sahiwal 30.65 73.16 172 350
56 Chakwal 32.916 72.85 519 669
57 Gujranwala 32.36 74.35 227 858
58 Okara 30.8 73.43 180 421

59 Rahim Yar
Khan 28.43 70.316 83 157

60 Gujrat 32.56 74.06 240 793
61 Rawalpindi 33.56 73.02 1271 1308

All precipitation products were downloaded from their official websites for the period
of January 2010– December 2018. The estimates of IMERG at 0.1◦ × 0.1◦ spatial resolution
were acquired from (“http://pmm.nasa.gov/data-access/downloads/gms/ (accessed on
15 July 2021)”). The estimates of the TRMM product at 0.25◦ × 0.25◦ scale were downloaded
from (“http://disc2.nascom.nasa.gov/tovas/ (accessed on 20 August 2021)”). Most of
the recent SPPs provide precipitation estimates using advanced precipitation estimation

http://pmm.nasa.gov/data-access/downloads/gms/
http://disc2.nascom.nasa.gov/tovas/
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algorithms, which can provide consistent data at fine spatiotemporal scales using signals
from the infrared (IR) and microwave (MW) sensors. The Global Precipitation Mission
(GPM) of National Aeronautics and Space Administration (NASA) of the United States
of America has introduced the latest SPPs for several hydro-climatic applications. Such
products include Integrated Multi-satellite Retrievals for GPM (IMERG) and Tropical
Rainfall Measuring Mission (TRMM) daily estimates of PERSIANN’s family products
(“https://chrsdata.eng.uci.edu/ (accessed on 21 August 2021)”). Two CHRS data products
(PERSIANN and PERSIANN-CDR) have a spatial resolution of 0.25◦ × 0.25◦ and cover the
latitude range of 60◦S to 60◦N. For analyzing daily precipitation variations and trends, the
PERSIANN-CDR product provides a dependable, high-resolution, and long-term global
precipitation database. The PERSIANN- CSS system covers latitudes from 60◦S to 60◦N
and has a spatial resolution of 0.04◦ × 0.04◦. The PERSIANN-CCS algorithm can be
used to categorize cloud-patch features. PDIR-Now has a very low latency from the time
of the precipitation event (15–60 min) due to the sampling of IR imagery. CHIRPS-2.0
products estimates were downloaded from its official website (“https://data.chc.ussb.edu/
products/CHIRPS-2.0/ (accessed on 17 September 2021)”). ERA5 provides hourly estimates
of climate variables at global scale (30 km). The ERA5 data were downloaded from its
official website (“https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
/ (accessed on 24 September 2020)”).The Modern-Era Retrospective analysis for Research
and Applications, Version 2 (MERRA-2) provides precipitation data since 1980 at 0.5◦ spatial
resolution downloaded from its official website (“https://gmao.gsfc.nasa.gov/reanalysis/
MERRA-2/. MERRA-2/ (accessed on 2 October 2021)”) incorporates new features in the
GEOS and GSI assimilation models. Monthly, seasonal, and yearly data series were derived
from daily estimates.

2.3. Methods

The ground validation of the estimates of nine precipitation products (IMERG, TRMM,
PERSIANN-PDIR, PERSIANN, PERSIANN-CCS, PERSIANN-CDR, CHIRPS, ERA5, and
MEERA2) was performed using the observations of gauging stations. In this validation,
the methodology of previously published studies [30,34] was used. Only those grids
of SPPs and reanalysis products were considered that contained at least one reference
gauging station. The uncertainties in the estimates of considered reanalysis and SPPs were
evaluated and compared with each other at multiple spatial and temporal scales. Errors
in the products at assessed at grid to point level and the entire spatial domain on daily to
annual temporal scales. The spatial distribution map of observed precipitation (as shown in
Figure 2) was developed using the Kriging spatial interpolation technique. This geospatial
technique is recommend for those areas where reference data are nonuniform [32].

Initially, the skill of each product to characterize the spatio-temporal distribution of
observed precipitation over the entire country was evaluated. Then, the validation of all
considered products at point and entire spatial scales was performed with reference to the
observations of 61 gauging stations. For this purpose, previously recommended evaluation
indices, including “Bias, relative Bias (rBias), Root Mean Square Error (RMSE), and Pearson
Correlation Coefficient (CC)”, and categorical indices, including “Probability of Detection
(POD), False Alarm Ratio (FAR), Critical Success Index (CSI), and Success Ratio (SR)” were
used [26]. The evaluation indices were employed to validate the accuracy of precipitation
products (SPPs and reanalysis products) at daily-to-annual scales. The categories indicators
were used to evaluate the product’s ability to identify and represent precipitation.

https://chrsdata.eng.uci.edu/
https://data.chc.ussb.edu/products/CHIRPS-2.0/
https://data.chc.ussb.edu/products/CHIRPS-2.0/
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5/
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5/
https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/
https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/
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in Pakistan.

The dimensionless CC was used to evaluate the linear agreements between the refer-
ence observations and the estimates of precipitation products. The bias was calculated to
check the discrepancies between the observed (reference) and estimated (satellite and re-
analysis) data. The rBias (%) was estimated to assess the relative disagreement (over/under-
estimation) of observed precipitation by the SPPs and reanalysis products. The average
amount of error was estimated by calculating the RMSE (mm/time) of precipitation prod-
ucts with reference to the gauge-based data. The equations of CC, Bias, rBias, and RMSE
are given below:

CC =
∑n

i=1( Gi − G)( Ei − E)√
∑n

i=1(Gi − G)2 ×
√

∑n
i=1( Ei − E)2

(1)

BIAS =
∑n

i=1(Ei − Gi)
n

(2)

r − Bias =
∑n

i=1(Ei − Gi)
∑n

i=1 Gi
× 100 (3)

RMSE =

√
1
n

n

∑
i=1

(Ei − Gi)2 (4)

where Gi represents the data of reference gauges, G shows the average of the gauge data,
Ei denotes the estimates of satellite/reanalysis product, and E indicates the mean of the
estimates of satellite/reanalysis product. The term “n” refers to the total number of datasets.
Precipitation products can be used as a substitute for gauge-based data when their CC
value is near to 1, and their Bias and RMSE values are near to zero. The acceptable range of
the r-Bias and CC for the use of SPPs/reanalysis data in hydrological studies is ±10.0% and
0.7, respectively. The categories indices were computed using the equations listed below:

POD =
H

H + M
(5)
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FAR =
F

H + F
(6)

CSI =
H

H + M + F
(7)

where H represents the number of precipitation events that the SPPs/reanalysis products ac-
curately reported, F represents the number of precipitation events that the SPPs/reanalysis
products misrepresented, and M represents the number of precipitation events that the
reference gauging stations observed but that the SPPs/reanalysis products missed. The
perfect value of CSI and POD is one, whereas the perfect value of the FAR is zero. Figure 3
illustrates the layout of the adopted steps to assess the performances of SPPs and reanalysis
precipitation products over Pakistan.
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For a more precise evaluation of the SPPs and reanalysis products, the probability
density function (PDF) of the daily estimates of in situ gauging stations and nine precipi-
tation products (3PERSIANN-CCS, PERSIANN-CDR, CHIRPS, ERA5, IMERG, MEERA2,
PERSIANN-PDIR, PERSIANN, and TRMM) was examined at various thresholds. The PDFs
were analyzed by following a previous study [17]. The thresholds for daily precipitation
rates were established in accordance with the recommendations of the “World Meteo-
rological Organization (WMO)”. Additionally, the Taylor Diagrams (Taylor, 2001) were
developed to elaborate the summary of the performances of the considered precipitation
products. The daily and monthly estimates of nine different precipitation products were
used to create these graphs, and they were created with reference to the gauge-based data
from Pakistan. Several previous assessments [27,28] of precipitation products had used the
Taylor Diagram to summarize the accuracies of different precipitation products.

3. Results
3.1. Potentials of Precipitation Products to Represent the Spatio-Temporal Distribution
of Precipitation

Comparison of the spatial variability in the amount of average daily precipitation
obtained from the nine precipitation products and the reference stations is shown in Figure 4.
In Pakistan, the northern high lands generally received a higher amount of precipitation. It
was found that the major portion of the annual precipitation in the northern parts of the
country was received during the winter season, while 50–70% of the total precipitation in
the Punjab Province was occurred during the summer season. Considering the gauge data,
higher variability in the amount of average daily precipitation was found in the northern
parts as compared to the southern parts of the country, where daily rainfall is very low.
The results reveal that the IMERG and TRMM products outperformed other SPPs and
reanalysis products in terms of their capability to represent the estimated amount of daily
precipitation variability throughout the entire country. Under humid climatic conditions
(northern parts of the country), the PERSIANN-CCS, PERSIANN-CDR, PERSIANN-PDIR,
PERSIANN, MEERA2, and ERA5 products showed a poor performance in terms of ability
to accurately represent the variability of daily precipitation amount.

In Figure 5, the temporal variability of the average amount of daily precipitation
obtained from the in situ gauges is compared to that of all satellite-based and reanalysis
data for the years 2010–2018. The time-series estimates of the average daily precipitation
amount were derived using the moving average of daily data of all sources. Similar methods
were employed by researchers to depict uncertainty in the estimation of daily precipitation
amounts by SPPs in China’s Tianshan Mountains and the northwestern part of South
America [10,35–37]. Generally, the reference data indicate two peaks in the precipitation
time series data, as illustrated in Figure. PERSIANN-CCS, PERSIANN-CDR, PERSIANN-
PDIR, PERSIANN, and reanalysis products indicate poor performances in terms of skill to
track the temporal variability of observed precipitation over the study domain. However,
the IMERG, TRMM, and CHIRPS products performed better in terms of their capacity to
follow the temporal variability of average daily precipitation. The temporal variability
of precipitation was not tracked by ERA5, whereas MEERA-2 showed an overestimation
of the precipitation amount during both high precipitation periods (February–May and
August–November).
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3.2. Performances of SPPs and Reanalysis Products on Monthly Scale

The comparison of the performances of all reanalysis and SPPs (CCS, CDR, CHIRPS,
ERA5, IMERG, MEERA2, PDIR, PERSIANN, and TRMM) products at monthly scales is
presented in the Taylor Diagram (Figure 6). To create the Taylor diagram, data of all sources
(reference stations, SPPs, and reanalysis products) were normalized. The monthly data
of seven products (IMERG, TRMM, CDR, CHIRPS, ERA5, MEERA2, and PDIR) showed
better agreements with the reference monthly data, as indicated by higher values of CC
(>0.70). However, two products (CCS and PERSIANN) showed poor linear agreements
with the reference data (CC < 0.70). In the Taylor Diagram, straight blue lines denote the
values of CC. The standard deviation (SD) of the monthly estimates of all data sources
(gauges, SPPs, and reanalysis products) was comparable, and the SD values are indicated
by circular dotted lines (with black color) in Figure 5.
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Figure 7 depicts the fluctuations in the estimated CC and rBias values for nine pre-
cipitation products. Overall, both products of GPM (IMERG and TRMM) showed better
performances as compared to all other considered products, as witnessed by the box plots
of CC for both products. In case of rBias, the ERA-5 reanalysis products showed a rela-
tively poor performance as compared to the other products, indicated by the box plot of
rBias of ERA-5 product. Among all considered products, ERA-5 showed the maximum
underestimation of the precipitation amount.

3.3. Assessments of Precipitation Products on Daily Scale

Figure 8 displays the summary of the performances of all precipitation products
(CCS, CDR, CHIRPS, ERA5, IMERG, MEERA2, PDIR, PERSIANN, and TRMM) against
gauged-based daily data in Pakistan. The values of the estimates of CC for IMERG, TRMM,
CDR, CHIRPS, ERA5, MEERA2, PDIR, PERSIANN, and CCS are 0.79, 0.70, 0.47, 0.39,
0.62, 0.63, 0.36, 0.26, and 0.11, respectively. This revealed poor agreement between daily
gauge-bases data and all SPPs except IMERG and TRMM. In terms of CC, only TRMM and
IMERG are in better agreement with gauge data. Similarly, in Figure 8, the box length of
IMERG and TRMM showed good agreement >0.7 with the reference daily data. Box of
CC for the CCS product indicates its poor performance of daily scale. In terms of rBias,
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the CCS products indicated maximum inconsistency in the estimated values of rBias, as
witnessed by the maximum length of its box as compared with the boxes of other products.
The box plot of the ERA-5 product showed the maximum underestimation of the daily
precipitation amount by this product. Overall, the IMERG and TRMM products showed
better performance on a daily scale.
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Figure 9 depicts the influence of precipitation intensity on the evaluation indices
estimated for all precipitation products (CCS, CDR, CHIRPS, ERA5, IMERG, MEERA2,
PDIR, PERSIANN, and TRMM). Errors in the estimates of all products increased as the
precipitation intensity increased, as demonstrated by greater values of RMSE at high rates of
precipitation. Conversely, a direct relationship between the values of CC and precipitation
intensity was found, which revealed a better linear relationship between the reference data
and estimated data from the reanalysis products and SPPs at higher precipitation rates. The
increased rate of precipitation led to a reduction in the level of uncertainty in the estimated
total amount of precipitation that was acquired from all of the products.
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The influence of elevation on the performance evaluation indices of precipitation
products (CCS, CDR, CHIRPS, ERA5, IMERG, MEERA2, PDIR, PERSIANN, and TRMM)
with reference to the gauging stations is shown in Figure 10. Generally, the CC values of
all considered products were inversely proportional to the elevation. This highlights the
poor performances of precipitation products at the higher altitudes. The values of Bias
were generally not influenced by the change of elevation, as shown in Figure 11. It was
also found that the error in the estimates of all products was increased with the increase in
elevation. That might be due to the tough topography at higher altitudes.

Figures 12–14 show the spatial variability of evaluation indices (CC, Bias, and RMSE)
computed for CCS, CDR, CHIRPS, ERA5, IMERG, MEERA2, PDIR, PERSIANN, and
TRMM. We identified a wide range of changes in the evaluation indicators across the entire
study area. The spatial variation of CC for all PERSIANN’s family products indicated
significantly less variations in their CC values over the entire spatial domain. The CC
values varied more widely in the IMERG and TRMM than in other products. The regions
of the country with the highest precipitation rates typically have the higher values of CC.
In terms of a linear relationship with the gauge-based data, ERA5 and MEERA2 products
performed better than the CHIRPS and PERSIANN products, as demonstrated by the
higher CC values of both reanalysis products.

Figure 15 illustrates the seasonal variability of rBias (%) determined for all SPPs and
reanalysis products across the whole study domain. In the winter season, two products—
CCS and PDIR—showed the best performance, as indicated by the lowest values of rBias
for both products. Conversely, CCS showed the worst performance in the spring season,
with the highest overestimation value (rBias > 60%). In the summer season, all precipitation
products revealed an underestimation of the precipitation amount. In this season, only two
products (CHIRPS and MERRA-2) showed relatively acceptable values of rBias (<10%).
ERA-5 showed a significant underestimation of the observed precipitation amount in
all seasons, with the worst performance in the summer season (underestimation > 70%).
Overall, CHIRPS product showed best performance in terms of relative bias, followed
by IMERG.
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Figure 13. Spatial distribution of bias estimated for nine precipitation products in Pakistan.

3.4. Ability of SPPs and Reanalysis Products to Detect the of Precipitation Events

Figure 16 demonstrates the summary of the skills of all considered precipitation
products in terms of the probability of detection (POD) in Pakistan. Using the categories
indices, Roebber [30] developed a performance diagram to visually compare the findings
of the categorical indices. This shows how reference gauges and SPPs/reanalysis products
are related spatially. Some previous studies have used this performance diagram to show
how different precipitation products performed over diverse topographical and climatic
conditions. The estimated value of POD for the IMERG, TRMM, CDR, CHIRPS, ERA5,
MEERA2, PDIR, PERSIANN, and CCS was 0.73, 0.62, 0.56, 0.57, 0.44, 0.51, 0.52, 0.36, and
0.44, respectively. The POD was maximum for IMERG, which indicated that the ability
of the product to detect the occurrence of precipitation was good, and that the SPP was
capable of detecting the occurrence of the majority of spells. As compared with the other
SPPs and reanalysis products, the probability of the detection of PERSIANN and CCS
products was lowest, however, their success ratio to represent the observed precipitation
was good.
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Figure 15. Seasonal variability in the calculated values of rBias (%) for SPPs and reanalysis products
in Pakistan.

The skills of the considered precipitation data products to correctly identify the precip-
itation events in different seasons was elaborated in performance diagrams (Figure 17). In
all seasons, the overall performance of IMERG was superior to that of the other products in
terms of its capacity to identify the occurrence of precipitation (spring (POD = 0.78), winter
(POD = 0.78), summer (POD = 0.78), and autumn (POD = 0.69)). The POD of TRMM was
also good in autumn and winter. PDIR showed unsatisfactory performance in all seasons.
The performance of MERRA2, in terms of seasonal POD, was better than CDR, CHIRPS,
ERA5, PDIR, and PERSIANN.
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The probability density function (PDF) of the observed daily precipitation records
(obtained from the gauging stations) nine precipitation products (IMERG, TRMM, CCS,
CDR, CHIRPS, ERA5, MEERA2, PDIR, and PERSIANN) is shown in Figure 18. The light
precipitation events (<2 mm/day) events were most frequent (approximately 72% of all
events) over the entire study duration, as indicated by the datasets of all sources. MERRA2
products showed a significant underestimation of precipitation at all thresholds. ERA5
indicated the overestimation of light precipitation events but underestimated the moderate
and heavy precipitation events. CCS showed a considerable overestimation of moderate
events. Generally, IMERG and TRMM products revealed a better performance in tracking
the precipitation events at different thresholds.
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Figure 18. Probability density function of reanalysis and SPPs (CCS, CDR, CHIRPS, ERA5, IMERG,
MEERA2, PDIR, PERSIANN, and TRMM) estimated for different intensities of (a) daily, (b) winter,
(c) spring, (d) summer, and (e) autumn precipitation in Pakistan.

In winter, the PDIR product showed a significant overestimation of slight precipitation
events. Conversely, MEERA2 indicated a significant underestimation of light events.
Although the performance of the CCS product to represent the occurrence of light events
was good, it showed an overestimation of moderate-to-heavy precipitation events. The
ERA5 product outperformed all other products this season in terms of its ability to detect
the occurrence of precipitation events in Pakistan. In the spring season, the performance
of IMERG was better than that of all other products. Generally, all other products were
uncertain in their representation of the light-to-moderate precipitation events in the spring
season. In the summer season, ERA5 totally failed to present the occurrences of light-to-
heavy precipitation events. The IMERG product was well trained to track the occurrences
of light-to-heavy precipitation events in the autumn season.

4. Discussion

In this study, several evaluation and categorical indices were used to assess the
performances of nine reanalysis and satellite-based precipitation products (ERA5, MEERA2,
IMERG, TRMM, CCS, CDR, CHIRPS, PDIR, and PERSIANN) in Pakistan. This analysis
was based on the daily, monthly, seasonal, and annual data collected from 61 in situ
gauging stations from 2010 and 2018. The analysis of satellite and reanalysis data products
showed that their performance was strongly influenced by the climatic and topographic
conditions. Several researchers have previously assessed the accuracy of various SPPs
(such as PERSIANN, PERSIANN-CCS, and IMERG) [17,18,24,27,38,39] in diverse climatic
and topographic regions around the world. The results of previous studies showed that
the performance of satellite based and reanalysis precipitation products are dependent
on the in situ climatic and topographic conditions [4]. For instance, Yang et al. (2019)
assessed the uncertainly in the estimates of satellite-based precipitation products over
different climatic and topographic regions in Punjab province of Pakistan [37]. They
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reported that the accuracy of SPPs significantly varied with the change in climatic and
topographic regimes. Hamza et al. (2020) assessed and compared the accuracies of IMERG
and PERSIANN-CDR products on diverse topographic regimes in Hindukush South Asia
and reported that the performance of both products was greatly influenced by the local
topographic conditions [29]. We also found considerable variability in the accuracies of
SPPs and reanalysis over different topographic and climatic regions of Pakistan, which is
consistent with the findings of [37,40].

As compared with the other SPPs, the estimates of IMERG and TRMM were more
accurate in terms of replicating the reference data, which is consistent with the previous
findings of [8,31,38]. The IMERG and TRMM products were also capable of representing
the spatio-temporal distributions of precipitation over Pakistan. This might be due to the
better morphing techniques in both products. This study’s findings are in line with earlier
ones, which found that monthly product predictions are more consistently reliable than
daily estimates [17]. In terms of CC, PERSIANN-CCS, PERSIANN, CDR, and PDIR showed
a poor performance. The seasonal performance of IMERG and TRMM was considerably
better than that of other precipitation products.

5. Conclusions

The assessment of nine satellite-based and reanalysis precipitation products (CCS,
CDR, CHIRPS, ERA5, IMERG, MEERA2, PDIR, PERSIANN, and TRMM) was done on
multiple temporal (daily to annual) and spatial (station and regional) scales, using the data
of 61 in situ gauges in Pakistan. All SPPs were evaluated for the period of 2010–2018. The
important findings of this study are as follows:

• The spatial variability of precipitation in Pakistan was well-depicted by the IMERG
and TRMM products. MEERA2, as well as the PERSIANN family of products, were
unsuccessful in monitoring the spatial patterns of precipitation.

• The daily variability in precipitation could be tracked using both the IMERG and
TRMM products. However, PERSIANN, PERSIANN-CCS, PDIR, PERSIANN-CDR, or
MEERA2 could not adequately describe the temporal variability of precipitation.

• As compared to daily scale, the overall performance of all SPPs and reanalysis products
was significantly improved when evaluated on a monthly scale.

• ERA-5 showed a significant underestimation of the observed precipitation amount
in all seasons, and showed worst performance in the summer season (underestima-
tion >70%). Overall, during the summer season, the CHIRPS product showed the best
performance in terms of relative bias.

• The POD was maximum for IMERG (0.73), which indicated that the ability of the
product to detect the daily occurrence of precipitation was very good as compared to
other SPPs and reanalysis products.

• In all seasons, the overall performance of IMERG was superior to that of the other
products in terms of its capacity to identify the occurrence of precipitation (spring
(POD = 0.78), winter (POD = 0.78), summer (POD = 0.78), and autumn (POD = 0.69)).

• The performance of the ERA5 product was comparatively good over the plane topog-
raphy as compared to rugged topographic conditions.

• The light precipitation events (<2 mm/day) events were at their most frequent (ap-
proximately 72% of all events) over the entire study duration, as indicated by the
datasets of all sources. Generally, the IMERG and TRMM products revealed a better
performance in tracking the precipitation events at different thresholds.

• Only the PERSIANN-CCS product showed significant overestimation ((17.47%) of
observed daily precipitation amount—whereas PERSIANN, PDIR, TRMM, ERA5, and
MEERA2 showed a significant underestimation of the daily precipitation amount
(−11.5%, −12.5%, −15.5%, −40.5%, and −22.15%, respectively). The Bias of IMERG
product on daily and monthly scales was with an acceptable range (±10%).

The findings of this validation study advocate the better performance of an IMERG
product than all other SPPs in Pakistan under various topographical and climatic conditions.
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The IMERG outperformed all other SPPs and reanalysis products (PERSIANN’s family,
CHIRPS, ERA5, MEERA2, and TRMM for the whole country Pakistan. Moreover, in
both daily and monthly scales, the correlation coefficient (CC) for IMERG was (>0.70).
Moreover, the estimated relative Bias was also within the adequate limit (±10). Therefore,
we advise the use of daily and monthly estimates of the IMERG product for hydro-climatic
applications in the Pakistan. Moreover, the data users may also use the monthly estimates
of TRMM products in different studies. Findings of this research will be very helpful
for hydrologists, meteorologists, and water manages in Pakistan, as well as algorithms
developers of SPPs and reanalysis products.
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