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Abstract: Ship detection and management in coastal regions are challenging tasks due to the com-
plex appearances of ships and the background. For further applications in the context of fisheries
monitoring and vessel traffic services, a single-channel synthetic aperture radar (SAR) is mounted
on a number of maneuvering and inexpensive rotor platforms, which are utilized according to the
consideration of flexible observation, cost savings, weight, and space constraints. In this paper, a
hierarchical scheme of ship detection, ship imaging, and classification is proposed. It mainly includes
three parts. First, a mixture statistical model of semi-parametric K-lognormal distribution based
on adaptive background windows with a constant false alarm rate (CFAR) is proposed for ship
prescreening in SAR imagery. Then, the discrimination stage, combined with ship imaging via the
difference between the true ship targets and the false ones in the aspects of micro-Doppler motion
properties, is performed. Finally, the simulation and field data processing results are presented to
validate the proposed scheme.

Keywords: synthetic aperture radar (SAR); ship detection; statistical model; K-lognormal distribution;
constant false alarm rate (CFAR)

1. Introduction

Synthetic aperture radar (SAR) is an active ground imaging system, which is known
for its all-weather capabilities, wide swath, and high resolution [1]. In recent years, more
and more SAR systems are equipped on some flexible platforms for ship surveillance
and management, and will be widely applied in ocean observation in the future. For
further applications in coastal regions, some single-channel SAR systems are mounted
on a number of airborne platforms. Compared with the other SAR platforms, such as
spaceborne SAR [2] and missile-borne SAR [3], airborne SAR platforms can easily realize
repeat observation, and can be beneficial to ship detection in coastal regions. Therefore, it is
significant to develop the single-channel airborne SAR automatic ship detection algorithms.
In recent research on SAR automatic ship detection systems, many systems are mounted
on spaceborne SAR for its wide swathes—for instance, RADARSAT-2, TerraSAR-X, and
Gaofen [4–6]. Compared with spaceborne SAR, airborne SAR is better for more flexible
tasks [7]. With the development of imaging techniques and varied modes in SAR systems,
numerous algorithms of multi-channel SAR ship detection are performed to improve
performance; for instance, references [8–11] have done a good job by combining the sea
interferogram’s magnitude and phase (SIMP) in along-track interferometric SAR (ATI-SAR).
Although multi-channels SAR systems improve the detectability of ship targets, single-
channel SAR systems are often equipped with the consideration of cost saving, weight
constraint, and more flexible observation [12–14]. In recent years, some ship detection
algorithms from SAR imagery based on deep learning have been widely applied [15–22].
Deep learning is a trend of ship detection from SAR images in the future, and has made
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significant progress, but it usually conforms to the optical ship detector (OSD) and the post-
processing of spaceborne SAR images, and depends on a high resolution or on complex
computation, which makes it not suitable for a real-time SAR system such as airborne
SAR [23–25]. For a single-channel airborne SAR, a ship detection system requires real-
time processing; constant false alarm rate (CFAR) detection is a good choice, but a single
CFAR cannot be directly performed for SAR images [26]. Some modified algorithms
have improved the performance of ship detection, such as multilayer CFAR detector [27],
modified CFAR detectors [28], and so on. However, these CFAR detectors cannot be suitable
for ship target detection in coastal regions. The scheme commonly contains three main
stages [29]: preprocessing, prescreening (ship candidate detection), and discrimination; the
whole scheme is illustrated in Figure 1.

Figure 1. Illustration of ship detection and imaging scheme.

Preprocessing is an initial stage in which the land areas are masked out of the image
being processed. A common approach for land masking in spaceborne SAR systems is to
register the SAR image with geographic maps, as this method is not perfect in the airborne
SAR systems; the existing coastal regions are not known precisely, and registration errors
occur [30]. In order to accommodate for this issue, a fast land masking method with land
area constraint is proposed. Compared with the masking methods of spaceborne SAR,
there will be fewer pseudo targets existing, and these pseudo targets will be eliminated in
the following prescreening and discrimination stages, which are totally ignored in recent
publications. In the prescreening stage, modeling the background statistically with CFAR
processing is often used. Consequently, many studies focus on the distribution of sea
clutter, and some classical distributions of sea clutter, such as Weibull [31], K [32], and
Gamma [33], are proposed to assess their performance. In order to accommodate the
complex sea clutter, a linear combination of K distribution and Wishart distribution is
performed, as K distribution has arisen mainly to represent radar sea clutter [34]. This
combination has inspired us with the idea of building a mixture distribution for modeling
both the sea clutter and the ship targets. A lognormal distribution [35] is suitable for
modeling the metallic target, while ships are typically constructed from large flat metal
sheets. Then, a linear combination of K distribution and lognormal distribution named
K-lognormal distribution is proposed in this paper. Further, we give an adaptive window
for a background statistic that can perfectly combine with the mixture distribution. Using
the modified background window, the proportions of the sea clutter region and the target
region, as well as the statistical properties of the clutter data and the ship target data, are
obtained. In order to obtain the entire ship candidates, the required false alarm rates (CFAR
threshold) are usually very low in the stage of prescreening. Consequently, some false
targets are included, which will be removed in the subsequent precise detection.

The innovative work of this paper is summarized as follows. In this paper, for ship
target detection on the sea, the proposed adaptive background window is combined
with the mixed two parameter model to better and faster characterize the distribution
characteristics of sea clutter and ships, and the adaptive threshold method can accurately
separate the target and clutter, and support the distribution of the two parameter model
more accurately. The proposed method can achieve adaptive ship target detection in coastal
areas, and has engineering feasibility. In addition, ship detection based on deep learning
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methods is also a hot topic of current research. However, such methods may be easily
limited by the focus quality of the ship and the size of the ship target in the image, making
it less effective in detecting small ship targets and severely defocused ship targets, which is
difficult to adapt to the complex marine environment. In contrast, the proposed method
in this paper has good results under the condition of small and defocused targets. The
simulation and measured data also show that deep learning methods are less effective with
small and defocused targets.

Coastal surveillance and ship detection are cited as being two of the main motivations
of this paper, and the whole procedure is organized as follows: Firstly, the modified
prescreening method based on the mixture model and the adaptive background window
are analyzed in Section 2. Secondly, an improved discrimination algorithm, combined with
ship imaging, is proposed to reduce the false rate in the stage of prescreening. Thirdly,
the results of real data processing used to evaluate the proposed detection scheme are
described in Section 4. Finally, conclusions are drawn in Section 5.

2. Modified Prescreening Algorithm

The conventional ship detection algorithms of single-channel SAR are proposed from
the view of the ship targets off the coast, without considering the impacts of coastal
regions [30]. In this section, a preprocessing step is performed, which is introduced to
eliminate the effect of coastal regions before prescreening. The whole preprocessing is
done in the SAR image domain, and mainly includes three aspects: sea-land segmentation,
land masking, and morphological offset. After the preprocessing, the modified mixture
distribution model, combined with an adaptive window and CFAR for ship candidate
detection is analyzed in detail; the whole flowchart is illustrated in Figure 2.

Figure 2. Flowchart of prescreening.

2.1. Preprocessing

In order to implement sea–land segmentation, we firstly perform the mean filtering
operation and amplitude normalization. We assume that a SAR image is illustrated by
S(i, j) (i, j = 0 : 255) in the image domain as Figure 3a, and we binarize the input SAR
image using the Otsu algorithm [30], which can adaptively divide the image into two parts:
one is the background (sea surface) and the other contains the bright targets (land and ship
targets), shown in Figure 3c. After the binarization, the image S(i, j) can be rewritten as

S1(i, j) =

{
1 if S(i, j) ≥ T

0 otherwise
(1)

where T is the expected threshold. In addition, some holes-filling methods will also be
applied to eliminate the hole-regions, and to protect the following land masking operation.
For ship targets in the SAR imagery, metallic ship targets may have “fore and aft separation”,
as is shown in Figure 3. In order to accommodate this issue, morphological offsets such
as morphology dilation and erosion are applied to fill the separation and some isolated
holes. Further, land masking is necessary, not only for the obvious reason that only ships
in the ocean are of interest, but also because ship detectors can produce high numbers of
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false alarms when applied to land areas. In this operation, we include a minimum land
area constraint to prevent the ships themselves from being masked out. Then, a volume
traversal is performed to obtain the boundaries of each ship candidate. Assume there are
Tk ship candidates in the image, and

Bk = Tk(ik min, ik max; jk min, jk max)

Lk = ik max − ik min

Wk = jk max − jk min

(2)

where ik and jk are the boundaries of the k-th ship candidate in the range and azimuth
direction, respectively. Lk and Wk represent the length and width of the k-th ship candidate
in the image domain, respectively. Finally, an adaptive background window, which is the
double of Lk and Wk, is utilized to extract the background and the ship candidates for
further prescreening.

Figure 3. Preprocessing. (a) Original SAR image; (b) after mean-filtering; (c) after Otsu and morpho-
logical offset; (d) after land masking.

2.2. K-Lognormal Model for Prescreening

In this part, a modified mixture model for ship detection is performed for prescreening.
The previous studies have shown that the K distribution is suitable for modeling the sea
clutter [32], and a lognormal distribution is suitable for modeling the SAR data collected
from metallic targets [35], such as ship targets. Based on the advantages of the mixture
model, a K-lognormal model is proposed, which uses a K distribution to describe the sea
background, and a lognormal distribution to describe the ship and other metal targets. The
probability density function of the K distribution can be expressed as

p(x|k1) =
2
x

(
Lνx

µ

) L+ν
2 1

Γ(L)Γ(ν)
Kν−L

[
2
(

Lνx
µ

) 1
2
]

(3)

where k1 = (µ, ν), and µ denotes the mean value. ν denotes the shape parameter, L denotes
the number of image views, Γ(·) denotes the Gamma function, and Kν−L(·) denotes the
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second kind of modified Bessel function of order ν− L. In order to obtain an accurate K
distribution, we need to estimate the parameters of k1. Traditional parameter estimation
methods (such as the maximum likelihood method) have the problems of a large amount
of calculation and a low efficiency; in order to avoid complicated estimation processes and
a large amount of calculation, Blacknell et al. [36] proposed the use of the statistical value
of pixels in the background window to replace the estimated value for approximate fitting.
The statistical value of (µ, ν) can be expressed as

µ = 〈x〉 (4)(
1 +

1
ν

)(
1 +

1
L

)
=

〈
x2〉
〈x〉2

(5)

where 〈·〉 denotes the expected operation. Furthermore, we used lognormal distribution to
describe the target distribution, and its probability density function can be expressed as

p(x|k2) =
1√

2πσx
exp

(
− (ln(x)− µ)2

2σ2

)
(6)

where k2 = (µ, σ) denotes the standard deviation. Next, the K-lognormal distribution
model can be obtained by mixing the K-lognormal distribution model with the lognormal
distribution model in a certain proportion, which can be expressed as

p(x|k) = λ1 p(x|k1) + λ2 p(x|k2) (7)

where k = (k1, k2, λ1, λ2) , λ1 + λ2 = 1, and λ1, λ2 ≥ 0. When λ1 = 0, the formula can
describe the self-distribution characteristics of the target to be detected. When λ2 = 0, the
formula can describe the background distribution characteristics of the target to be detected.
For the above mixture model, we only need to use the parameter estimation method to
obtain the value of λ1(λ2) in different target regions to obtain the mixture distribution
model of the target and the background to be detected. In practical engineering applications,
due to the real-time property of the parameter estimation method, there may be problems
such as too many iterations. In order to avoid the complex parameter estimation, we use the
coefficient solving method for the multi parameter distribution model, which approximates
the fitting by using the proportion of the number of fitting pixels used in each distribution
model to the total number of pixels. Using the above mixture model as the background
distribution in CFAR detection, the false alarm probability formula can be expressed as

Pf a = 1−
∫ T

−∞
p(x|k )dx =

∫ ∞

T
p(x|k )dx (8)

where Pf a denotes the false alarm probability; given the false alarm probability and solving
formula (8), the threshold T is obtained. Then, we can make a preliminary judgment of the
target to be detected by the threshold detection of the target and the background.

Based on a target selected with an adaptive background window in Figure 3, the fitting
and comparative analysis of a single K-distribution model and a mixed distribution model
is carried out. The selected target is shown in Figure 4. In order to verify the fitting results
of the proposed mixture distribution model, single-background K-distribution fitting and
mixture distribution model fitting are carried out for the ship target in Figure 4, and the
results are shown in Figure 5. Compared with the single K-distribution fitting in Figure 5a,
the fitting curve of the mixture distribution model in Figure 5b can better approximate the
amplitude distribution characteristics of the target to be detected.

First, from the comparison of fitting results in Figure 5, it is obvious that the mixed
distribution model in Figure 5b can accurately fit the distribution characteristics of the target
to be detected and its surrounding background, compared with the single K distribution
model. It should be noted that the view number of the image in Figure 5a is 2. According
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to the mean and variance of the target to be detected and the background in Figure 4a, the
graphical parameter v = 3.32 of the k distribution parameter is obtained using formula (5),
and then the k distribution curve is fitted. For Figure 5b, according to the mean and variance
of the target background (c) to be detected, the shape parameter v = 2.18 is calculated using
formula (5). According to the ratio of the number of target pixels to be detected in Figure 4b
to the number of target background pixels to be detected in Figure 4c and λ1 + λ2 = 1,
λ1 = 0.42 and λ2 = 0.58 can be obtained, and then the mixed model distribution can be
easily fitted.

Figure 4. Separation of the target to be detected from the background. (a) Target and background to
be detected; (b) Target to be detected; (c) Background to be detected.

Figure 5. Comparison of fitting results of two models. (a) K-distribution model; (b) Mixture distribu-
tion model.

3. Ship Discrimination

Through the above rough detection method, most non-ship targets such as land
residues can be eliminated, but there will still be some false targets that cannot be eliminated,
which will cause a large false alarm. In order to further reduce the false alarm rate, this
paper proposes a target fine detection algorithm based on the characteristics of ship motion.
Ship targets have translational motion and rotational motion, but pseudo-targets do not
have that characteristic. The target to be detected after rough detection is further purified,
to realize the fine detection of ship targets on the sea.

In order to better analyze the motion characteristics of ships, the center point of ships
is taken as an example from the perspective of SAR imaging. Firstly, the imaging geometric
model is analyzed (as shown in Figure 6). The radar platform moves at a uniform speed
along the flight track, and v denotes the speed. Assume that at time ta = 0 , the carrier
height is h. At this time, the velocity components of the ship target are vx , vy, and vz,
respectively. The oblique angle of the beam ray direction is θ , and R0 is the oblique distance
when the beam centerline sweeps through the target. Taking the center point of the ship
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target as an example, the instantaneous oblique distance (approximately to the fourth order)
can be expressed as

R(ta) =

√√√√√√((v− vx)ta − R0 sin θ)2 + (h + vzta)
2

+

(
vyta −

√
R2

0cos2θ − h2
)2

≈ R0 +
4

∑
i=1

Ai(R0)ti
a i = 1 ∼ 4

(9)

where
Ai(R0) = ki(v; R0) + ki

(
vx, vy, vz, v; R0

)
(10)

where ki(v; R0) i = 1 ∼ 4 represents the coefficients containing only the carrier motion
and not the ship motion, in which this part is compensated in SAR focusing imaging;
ki
(
vx, vy, vz, v; R0

)
i = 1 ∼ 4 is each coefficient including ship motion, and this part of the

component is unknown. After the SAR image is focused, for the center point of the ship,
the residual oblique distance caused by the ship’s own motion is

∆R(ta) ≈ ∆R +
4

∑
i=1

ki
(
vx, vy, vz, v; R0

)
ti
a (11)

where ∆R is a constant. This residual oblique distance seriously affects the focusing of the
ship center point, and there are space–variance characteristics due to the inconsistency of
the residual oblique distance at each position of the ship. In order to further analyze the
influence of residual skew distance, the echo signal in the range frequency domain and the
azimuth time domain after range compression can be expressed as (its window function
form is ignored here)

Ss( fr, ta) = exp
(
−j

4π( fr + fc)

c
· ∆R(ta)

)
(12)

It is not difficult to find that the residual skew distance has a certain influence on the
envelope and phase, and that the sensitivity of phase to error is significantly higher than
that of the envelope. According to formula (12), the primary term of the residual oblique
distance affects the azimuth focus position, which will change the focus position of the final
target, and this part is mainly caused by the radial motion speed of the ship, while the high-
order term determines the image focus quality. If the target to be detected has radial motion
velocity, it can be determined that the detection target is a ship target. However, if there is
no radial motion velocity of the target to be detected, it does not mean that the target to be
detected is a pseudo target. We analyze the ship motion characteristics of short synthetic
aperture time under the mobile platform. In Figure 7a, the ship moves perpendicular to
the radar beam direction. At this time, there is no radial motion velocity in the residual
oblique distance. In Figure 7b, if the ship moves along the radar beam direction, there is no
rotational motion component of the ship in the residual oblique distance. Therefore, the
problem of ship target precise detection can be transformed into the determination of the
first-order term and a high-order term of phase in the target to be detected; that is, to judge
whether the moving target to be detected has radial motion speed and its own rotational
characteristics, and then to determine whether it is a real ship target.
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Figure 6. Geometric model of ship target imaging using the mobile platform SAR.

Figure 7. Analysis of ship motion characteristics. (a) Only self sway; (b) only radial motion exists.

3.1. Radial Motion Judgment of Target to Be Detected

After SAR focusing processing, because the ship target is a non-cooperative target and
its imaging motion characteristics are unknown, it is difficult to realize ship imaging by
using the unified focusing idea of SAR imaging. In order to carry out fine focus imaging on
non-cooperative targets, the ISAR imaging method needs to be used to realize the fine focus
imaging of the target to be detected. ISAR imaging is generally divided into four steps:

(1) Envelope alignment to remove the envelope migration caused by the overall move-
ment of the target.

(2) Phase compensation to remove the phase error caused by the overall movement of
the target.

(3) Keystone transform; removing the over distance cell migration caused by the rotation
of the target itself.

(4) Azimuth imaging.

It is assumed that the signal of the target to be detected after separation is

s(tr, ta) = sc

(
tr −

2(Rt(ta) + Rr(ta))

c

)
exp

(
−j

4π

λ
(Rt(ta) + Rr(ta))

)
(13)

where sc(tr) is the envelope, Rt(ta) denotes the range change caused by the target transla-
tion, which has the same impact on each scattering point on the target, and it can reflect
the distance change caused by the radial motion of the ship to be detected; Rr(ta) devotes
the distance change caused by target rotation. Its size is related to the position of the
target scattering point. It is also the source of ISAR high-resolution imaging. This item is
mainly caused by the swing of the ship itself. The purpose of envelope alignment is to
remove the influence of Rt(ta) on envelope offset. Because the scattering points caused
by the two adjacent echoes move very little; that is, their real envelopes are very similar,
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the correlation of adjacent envelopes can be used for alignment. After envelope alignment,
formula (14) becomes:

s(tr, ta) = sc

(
tr −

2Rr(ta)

c

)
exp

(
−j

4π

λ
(Rt(ta) + Rr(ta))

)
(14)

At this time, the overall offset of the envelope extracted using the envelope alignment
can accurately reflect the radial velocity component of the ship; that is, for pseudo targets
such as land, the radial component of the carrier has been completely removed and there is
no radial velocity component in the SAR focusing process, so the envelope will not have
the problem of over range cell migration. We take a range unit of SAR imaging as the
threshold, and set the overall offset of the extracted envelope to exceed the threshold; that
is, the target to be detected is considered as a ship target.

3.2. Entropy Judgment of Target to Be Detected

In order to eliminate the pseudo target in the target to be detected, according to the
analysis of ship motion characteristics, it is difficult to determine this only by relying on a
single judgment of ship radial motion speed, which needs to be further judged according
to the motion characteristics of ship swing. In order to distinguish the pseudo target from
the real ship target, it can be further distinguished by judging whether the target to be
detected has achieved precise focusing, and the image entropy can directly reflect the image
focusing quality. Therefore, this section proposes to combine the image entropy judgment
method of the target to be detected with the radial velocity judgment method, to realize the
precise focusing detection of the ship target.

The echo phase after envelope alignment still contains Rt(ta); at this time, the influence
of Rt(ta) on the phase needs to be removed. After phase compensation, formula (14) can be
rewritten as

s(tr, ta) = sc

(
tr −

2Rr(ta)

c

)
exp

(
−j

4π

λ
Rr(ta)

)
(15)

According to formula (15), the echo is only affected by Rr(ta). After the above pro-
cessing, the imaging of the target to be detected can be transformed into the ISAR imaging
turntable model, and the geometric diagram is shown in Figure 8. The motion of the ship
target is complex, and there are three dimensions of swing, resulting in the change of
Rr(ta) also being complex. Here, taking a point with coordinate (Xn, Yn) as an example,
the instantaneous phase can be obtained

s(tr, ta) = sc

(
tr −

2Rr(ta)

c

)
exp

[
−j

4π

λ

(
XnΩzta −

1
2

YnΩ2
zt2

a

)]
(16)

where Ωz is the effective rotation speed. When the coherent accumulation angle is small, the
rotation speed of the ship target can be considered as a constant. In formula (16), the primary
rotation term determines the final focusing position of the target point without affecting
the focusing quality. The secondary rotation term affects the focusing performance of the
image. For the envelope migration caused by the rotation term, the keystone transform
can remove its influence, and then the signals of each scattering point of the target can be
controlled in a single range cell, which is conducive to subsequent processing. However, the
phase is more obviously affected by rotation, resulting in time-varying echo Doppler. The
traditional Fourier change cannot accurately estimate the Doppler frequency. It is necessary
to use parameter estimation methods such as time-frequency analysis to estimate the time-
frequency distribution of each range cell, and then to take out the frequency distribution at
a certain time to form the ISAR image of the target according to the combination of range
cell, to realize the precise focusing imaging of the target to be detected.
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Figure 8. ISAR turntable model of ship target.

ISAR imaging precise focusing processing is performed on all targets to be detected.
For land targets, good focusing has been achieved during SAR imaging, and the change of
image entropy is small. At this time, for ship targets, the image is defocused before ISAR
precise focusing, so that the image entropy changes greatly before and after precise focusing.
The change rate of image entropy can truly reflect whether the target to be detected is a
ship target. For the target image (set to S3(i, j)) to be detected, |S3(i, j)|2 = S3(i, j)S∗3(i, j) is
the pixel density and ES = ∑i,j |S3(i, j)|2 is the energy of the target image to be detected,
and then the image entropy can be defined as

Φ = −∑i,j
|S3(i, j)|2

ES
ln
|S3(i, j)|2

ES
(17)

The minimum entropy change rate of the image, determined as the ship target via
radial velocity judgment, is taken as the threshold, and those higher than this threshold
are determined as the ship target [37]. Assuming that there are Tk1 targets to be detected
after rough detection of the ship targets, it is determined that there are Tk2 ship targets
among the Tk1 targets to be detected according to the radial velocity of the ship targets. The
entropy change rate ∆Φ is obtained by using statistics of image entropy before and after
fine focusing on the Tk2 ship targets, and then the precise detection and judgment is carried
out on Tk1 − Tk2 targets to be detected

∆Φ|Tk1−Tk2
≥ TS = min[∆Φ(Tk2)] → Real Ship Target (18)

To sum up, through the joint judgment of the radial velocity of the target to be detected
and its motion characteristics such as swing, the target to be detected can be accurately
detected, the pseudo target can be eliminated, and the false alarm rate can be reduced. The
precise focusing of the ship target is realized in the process of precise detection.

4. Simulation Verification and Processing of Field Data

In order to verify the effectiveness of the proposed ship detection and imaging al-
gorithm, simulation data and field data are used to illustrate the effectiveness of image
preprocessing. The simulation data are used to illustrate the effectiveness of image prepro-
cessing, the radial velocity judgment method in ship detection and ISAR imaging, and the
measured data are used to verify the effectiveness of the whole algorithm.

4.1. Simulation Data Verification

The simulation geometric model is shown in Figure 9. There are three ship targets in
the scene, and the ship model is shown in Figure 10. The motion parameters of the mobile
platform are shown in Table 1, and the ship motion parameters are shown in Table 2. In the
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simulation scene, a ship target is placed at the center of the beam. In addition, one ship
target is placed along and perpendicular to the radar line of sight, with an interval of 1 km;
B and C move at a speed of 10 m/s along the route, while A swings in place. In the echo
data at this time, A and C exist in the same distance unit and cannot be separated.

Figure 9. Geometric diagram of ship target imaging simulation by airborne radar.

Figure 10. Ship model diagram.

Table 1. SAR system parameters. A linear FM signal is used for transmission.

Carrier frequency 9.6 GHz PRF 2 KHz

Range bandwidth 200 MHz Height 15 km

Range sampling rate 240 MHz Slant 35 km

Azimuth accumulation time 2 s Velocity 150 m/s

Azimuth angle 45◦ Squint angle 40◦

Pulse width 40 µs Range chirp rate 5× 1012
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Table 2. Ship motion parameters.

Size (88, 19.8, 33) m Speed (0, 10, 10) m/s

Roll amplitude 19.2◦ Rolling period 12.2 s

Yaw amplitude 1.9◦ Yaw period 14.2 s

Pitch amplitude 1.7◦ Pitch period 6.7 s

Figure 11 shows the image of the SAR coarse focus, in which the ship targets A and C
cannot be separated from the data domain on the same range unit, and can be separated
in the image domain after coarse focus. Since ship target A has no speed, its final focus
position is located at the azimuth center, while for ships B and C, their radial speeds make
them deviate from the azimuth center. After ship detection, the ship target is accurately
separated, as shown in the rectangular window in Figure 11. The separated ship targets
can be obtained by returning the detection results to the original SAR image, as shown in
Figure 12. It is easy to see that the ship target after SAR coarse focus processing has poor
imaging results due to the motion component of the ship itself, which cannot meet the
imaging requirements. Further ISAR precise focus imaging is needed.

Figure 11. SAR rough focusing and ship detection result.

Figure 12. Ship target extraction result.

In order to verify the effectiveness of using radial velocity to determine the ship target
in ship precision detection, the point target with the largest energy is extracted from ship
targets A and C as the reference point, respectively, and the target is placed in the data
center for azimuth eight-fold upsampling interpolation. It can be found that the main
energy peaks are located in the center at this time, as shown by the dotted line in Figure 13.
The radial velocity of the reference point is determined. After determination, it is found
that the point with radial velocity deviates from the central position, while the point target
without radial velocity is still in the central position. This phenomenon verifies that the
radial velocity will cause the final position offset of the azimuth point, and it can determine
whether the target is a ship. It should be noted that this method can only determine that
the target to be detected is a ship target, but it cannot be sure that it must not be a ship
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target. The determination of radial velocity provides a certain basis for the subsequent
precise detection of the entropy change rate.

Figure 13. Determination result of ship target radial velocity.

Next, ISAR imaging is performed on the separated individual targets, and the results
are shown in Figure 14. It can be seen that after ISAR imaging, the imaging results of each
target are clearer, and the structure of the ship target can be distinguished. In addition,
due to the complex sway of the ship target, the imaging plane of each ISAR image is
different, which leads to different observation angles of each ISAR image to the ship target;
furthermore, due to the difference in the rotating speed of each target relative to the line of
sight of the radar, the ISAR imaging result and size are both different.

Figure 14. ISAR precise focus imaging results.

4.2. Processing Results of Field Data

In order to verify the effectiveness of the proposed algorithm, the field data of a certain
spaceborne SAR (the field data in the preprocessing of this article) is used. Figure 15 shows
the detection results of a spaceborne SAR ship using the reference detection algorithm
in [37]. The reference algorithm in [37] only uses a single K distribution for detection.
It can be seen that the use of a single distribution model will cause most ship targets to
miss alarms, as shown by the elliptical dashed line in the figure. In addition, because the
reference algorithm does not have a precise detection algorithm, there is a certain false
alarm in the final detection result, as shown by the rectangular dashed box in Figure 15a.
Moreover, we also use a deep learning network for ship target detection. The detected
network is YOLOx, and the training data adopts the SSDD data and HRSID data; the
detection results are shown in Figure 15b. It can be seen from Figure 15b that some small
ships are not detected. Therefore, the detection accuracy of the ship detection method
based on deep learning is relatively low, and the alarm leakage rate is high. This is mainly
because the deep learning method may be greatly affected by the size of the ship target.
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Figure 15. Results of reference algorithm. (a) The reference algorithm in [37]; (b) Deep learning
network.

Figure 16a is the rough detection result of the ship mentioned in this paper. It can be
seen that the proposed mixed distribution is more accurate than the single distribution
model in the rough detection, and there is no missing alarm. However, there are still three
false targets on land (dotted rectangular box) in rough detection, which has a certain false
alarm rate. In order to reduce this false alarm, the precise detection algorithm proposed in
this paper is further adopted. As shown in Figure 16b, three land targets are eliminated,
which reduces the false alarm rate to a certain extent. It should be noted that there may
be a false alarm target in the detection result of the algorithm proposed in this paper, as
shown in the triangular area in the figure.

Figure 16. Detection results of the proposed algorithm. (a) Rough detection results; (b) Precise
detection results.

Further, taking the real data of a helicopter-borne SAR on a sea port as an example,
the focus image of the SAR to be detected is shown in Figure 17a. It can be seen that
the land part is well focused, but the ship target and other targets are defocused due to
their own motion. The reference algorithm is used to detect ship targets in the image to be
detected, and the result is shown in Figure 17b; similar to the results of the above-mentioned
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spaceborne SAR, the reference algorithm has certain missed and false alarms. The rough
detection results of the proposed method are shown in Figure 17c, and it can be found that
the proposed method does not have missing alarms, but there are still some false alarms.
In order to more clearly reflect the comparison between the ship target reference algorithm
and the rough detection result of the proposed algorithm, we extract the result of the
reference algorithm and the rough detection result of the ship. As shown in Figure 17c,d, it
can be seen that in the rough detection of the ship, compared with the reference algorithm,
there are more false alarm targets (shown in the dashed box). After the coarse detection
of 38 ship targets to be detected, it can be determined that there are 5 ship targets based
on the prediction of radial motion. The minimum change in entropy of these five ship
targets is 0.2193, as shown by the dotted line in Figure 18. Using this as a threshold to
perform entropy change rate statistics on the remaining ship targets, 18 pseudo-targets are
eliminated out of 38 targets, and the final 20 accurate ship targets are obtained, as shown
in Figure 17f. Figure 17g shows the results of the detection algorithm based on the deep
learning network. From Figure 17g and Table 3, one can see that its detectability is the worst,
mainly because the detection algorithm of the deep learning network is sensitive to the
quality of the image to be detected. Since the image to be detected is seriously defocused,
the detection ability of the deep learning algorithm is weak. In actuality, the image to be
detected may not be perfectly focused, and so it may be difficult for the detection algorithm
based on deep learning to achieve a good performance. Compared with the traditional
detection algorithm, the proposed method has a higher detection accuracy and can better
adapt to the complex detection environment after two-step detection processing.

Figure 17. Comparison of detection results between the reference algorithm and proposed algorithm.
(a) SAR focus image to be detected; (b) Reference algorithm detection results; (c) The rough detection
results of the proposed algorithm; (d) Extraction of rough detection results of the proposed algorithm;
(e) Reference algorithm detection result extraction; (f) Extraction of precise detection results using the
proposed algorithm; (g) Results based on deep learning network.
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Figure 18. Entropy change rate result.

In order to further measure the quality of ship inspection, this article uses the quality
factors of inspection to describe it, which can be expressed as

ε =
Tt

Tr + Tf a
(19)

where Tt denotes the accurate number of detected ships, Tr denotes the actual number
of ship targets in the image to be detected, and Tf a denotes the number of false alarms.
When the quality factor is closer to 1, the ship detection effect is better. Table 3 shows the
quality factors of the reference algorithm and the proposed algorithm in the measured data,
and the comparison shows that the proposed algorithm has better detection performance,
which verifies the effectiveness of the proposed method.

Table 3. Results of ship detection.

Parameters Reference Algorithm in [37] YOLOx Rough Detection Precise Detection

Number of correct tests 9 7 17 20

Actual number 20 20 20 20

False alarm number 2 0 4 1

Quality factor 0.4091 0.3500 0.7083 0.9524

Taking a single target separated from the helicopter-borne SAR data as an example
(the elliptical area in Figure 17f), ISAR imaging is performed on it. The result is shown in
Figure 19. Swing and other factors cause the image to be severely defocused. After ISAR
focus processing, the target is well focused, and the ship target can be further calibrated to
determine and recognize the size of the ship.
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Figure 19. Ship target data extraction and fine focusing processing.

5. Conclusions

In the process of ship target detection in a coastal area via airborne SAR, due to
the influence of complex sea clutter distribution, land, and other factors, the traditional
detection algorithm may not be applicable. Based on this, this paper proposes a two-step
hierarchical processing algorithm of rough detection and precise detection. First, the image
preprocessing is used to eliminate the land area, and the target to be detected is obtained
by using an adaptive background window. Afterwards, considering that the traditional
single background distribution model may not be suitable for complex sea backgrounds, a
K-lognormal mixture distribution model combining background and target is proposed,
and is combined with the CFAR detection algorithm to achieve a rough detection of ship
targets. Finally, it is further proposed to use the ship’s own motion characteristics to
determine whether the target to be detected is a ship target, so as to realize the precise
detection of the ship. The proposed method can adaptively set the background window
size in combination with the target, while avoiding a high number of false alarms and
missed detections, and can effectively detect ship-like targets in complex sea conditions.
The measured data verifies the effectiveness of the proposed method.
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