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Abstract: The rule of thumb “the right tree in the right place” is a common idea in different countries
to avoid damages caused by trees on sidewalks. Although many new planting techniques can be used,
the estimation of the trunk flare diameter (TFD) could help the planning process to give tree roots
more space to grow over the years. As such, we compared the applicability of point clouds based on
iPad Pro 2020 image processing and a precise terrestrial laser scanner (TLS FARO) for the modeling
of the TFD using different modeling procedures. For both scanning methods, 100 open-grown and
mature trees of 10 different species were scanned in an urban park in Cracow, Poland. To generate
models, we used the PBH (perimeter at breast height) and TFD variables and simple linear regression
procedures. We also tested machine learning algorithms. In general, the TFD value corresponded
to two times the size of a given DBH (diameter at breast height) for both methods of point cloud
acquisition. Linearized models showed similar statistics to machine learning techniques. The random
forest algorithm showed the best fit for the TFD estimation, R2 = 0.8780 (iPad Pro), 0.8961 (TLS FARO),
RMSE (m) = 0.0872 (iPad Pro), 0.0702 (TLS FARO). Point clouds generated from iPad Pro imageries
(matching approach) promoted similar results as TLS FARO for the TFD estimations.

Keywords: hand-held laser scanning; tree modeling; urban tree; biometrical parameters

1. Introduction

Cities have been strategic ecosystems to research the conditions and patterns of trees’
growth and their interaction in the urban environment [1–3]. It is assumed to be relevant,
as trees promote an enormous effect on humans’ quality of life. Different studies have
pointed out that trees improve the air quality by removing pollutants and carbon [4], avoid
flood events by reducing the runoff effect [5], improve human comfort by regulating the
microclimate [6], increase the value of properties, and increase the sense of environmental
justice [7]. There are also other benefits provided by trees, all called ecosystem services.

On the other hand, trees can promote a series of disservices related to safety and
security, health, economy, mobility and infrastructure, and environmental and energy
issues [2,8]. These disservices depend on the qualities of the built environment and the
social-cultural aspects, as they might be produced depending on the species composition,
location of the tree, the growth patterns, the life stage, the stress caused to trees, and the
intensity of maintenance practices [2].

Regarding the disservices promoted by trees, two viewpoints should be relevant to
the public management: the popular perception of trees’ problems and benefits and the
ratio between the maintenance costs and the value of the tree [1,9]. These ideas can drive
the way people put a price on trees and their needs to counterbalance the urban problems
and make cities more resilient to the effects of climate change [1,3].
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The planning process for the management of urban trees is an important step that
should be seriously regarded by public managers [10], as more than 55% of people live in
urban settlements around the world [11]. It helps to overcome the harmful ideas about
trees and avoid problems due to tree growth on inadequate sites in cities. In the planning
process regarding different types of urban green infrastructures that compose the urban
forest, the management of the space available to trees on sidewalks and the interaction with
urban infrastructures is one of the main challenges faced by public managers [8,12,13].

The space occupied by a tree at the ground level depends on the size of its trunk
flare diameter (TFD), the region where the topmost roots connect to the trunk right in
the above-ground portion [13]. As trees grow, the TFD becomes larger due to mechanical
responses to the static load (tree structure weight) and dynamic load (wind drag forces)
that influence trees growing in isolation [8,14,15]. So, the size of the space available for trees
to grow on sidewalks is relevant for the avoidance of problems with pavement breakage
and limitations on accessibility [8].

Problems regarding sidewalk breakage and conflicts with accessibility have been
reported by some studies on urban trees [2,12,13,16] and in most cases, it is due to the
natural trunk flare growth in an inadequate space to the tree on the sidewalk. In some
places, pavement removal around the trunk flare can be a solution, but the best thing is to
promote a qualified planning process, giving trees appropriate space for their growth over
the years after planting [8,13].

To help in this procedure of planning, fitting general models for estimating the TFD
from the DBH size of trees over the years can be the best option to give them the best-qualified
soil area around the trunk. In this sense, not much effort has been made; the research works
from North et al., Hilbert et al., and Koeser et al. [12,13,17] were the first to present models to
estimate the TFD from the size of the tree DBH (diameter at breast height).

One option to acquire data to generate models could be 3D point clouds from laser
scanning devices such as the terrestrial laser scanner (TLS) or hand-held laser scanners
(HLS). Research shows that TLSs can deliver precise and accurate point cloud data needed
to measure and estimate DBH, tree height, volume, position, and canopy cover [18–21], but
3D data gathered using an iPad Pro application, a new and quite low-cost solution, have
also shown accuracy and precision for the detection of the tree trunk and estimations of
the DBH [22–24]. Although this new device presents limitations regarding the distance
from the device to the tree [23], it can be an alternative to the costs and time-consuming
nature of the TLS. At the same time, it can show precision and reliability for use in forest
inventory practices [23,24].

In addition, the iPad Pro’s LiDAR and camera sensors can be used to quickly create
3D scenes on the tablet itself using apps where the point cloud transformed to mesh is
colored using the RGB texture collected by its cameras [25], aiding in the identification of
objects of interest and their quality in situ. Working with the data collected from this device
does not require advanced knowledge due to its user-friendly applications, such as the one
that Tatsumi et al. developed [25], making it easy for the operator to learn and use it.

Although the iPad Pro has limitations regarding the maximum distance (approx. 5.0 m)
from the device to the tree [23,26,27], this approach can be an alternative to TLS devices in
terms of its portability, easy handling, agility in data acquisition, and affordability. At the same
time, it can show accuracy and reliability for use in forest inventory practices [23,24,26,27].

Considering the problem of tree trunk flare modeling and the costs of a professional
TLS to be used as a source of data, our research aimed to evaluate the applicability of iPad
Pro point clouds for the modeling of the TFD of urban trees as an alternative to the point
clouds generated by a precise terrestrial laser scanner which have been traditionally used in
different forestry practices. This is an important research subject, as data from point clouds
managed by machine learning techniques can make analysis faster than the traditional
methods in the field.
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2. Materials and Methods
2.1. Information on the Study Area

We acquired data in the Polish Airmen Park in the city of Cracow, Poland (Figure 1).
This park is one of the main urban green infrastructures. It is in the northeastern part of the
city, surrounded by a train railroad, three avenues, and settlement buildings. It has a total
area of 43 ha, divided into two parts: the north part, with an area of 4.5 ha, and the south
part, with an area of 38.5 ha.
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Figure 1. The study area: (a) overview map of Poland; (b) location of the Polish Airmen Park in
Cracow; (c) the Polish Airmen Park in Cracow and the location of the scanned group of trees.

The south part of the park is composed of different groups of tree species, either
with or without shrubs or ornamental plants on the ground level. Among these groups,
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there are open spaces covered by grass, infrastructure to relax or practice sports, and a
well-established system of pathways connecting different parts of the park.

2.2. Procedures for Data Acquisition

Field data were acquired during the summer of 2020 from 100 open-grown trees
of 10 different groups of species with varying sizes, ages, and distances among trees in
each group. Only trees with upright and unique trunks were selected to avoid problems
during the scanning process with the iPad Pro. The species selected were Acer platanoides
(Norway maple), Acer saccharinum (Silver maple), Betula pendula (European white birch),
Fraxinus excelsior (European ash), Larix decidua (Common larch—two groups),
Populus balsamifera (Balsam poplar), Quercus rubra (Northern red oak), Robinia pseudoa-
cacia (Black locust), and Tilia cordata (Littleleaf linden). Prior to the scanning process, all
tree trunks were marked at the PBH (perimeter at breast height—1.30 m above ground)
position with a white or red line to recognize this position in the colorized 3D point clouds
(Figures 2 and 3). We chose these groups of trees due to the similarity of growth conditions
to isolated and open-grown trees in places surrounded by urban infrastructures such as
sidewalks and parking lots. In such places, trees’ trunk flare growth can be affected by
wind load and the static load of the tree, due to their weight [8,14,15].
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Figure 2. The scanning process of a selected tree of Populus balsamifera: (a) the PBH position marked
with a red stripe; (b) the point clouds of the tree.

The research steps are described in a flowchart (Figure 4). We adopted two methods
to “scan” tree trunks, one with a handheld device, the iPad Pro 2020 (12.9” screen), and
the other using a terrestrial laser scanner, the FARO FOCUS 3D X130. For the iPad Pro, we
used the Abound Capture application, Beta version (Abound Labs, 2020; New York, NY,
USA), to “scan” trees one by one by positioning the iPad Pro at 1.3 m above ground level
and 2.0 m from the trunk (Figures 3 and 4) due to the inability of the device to create a 3D
point cloud for objects more distant than 5.0 m.

Abound Capture was one of the first apps developed for scanning objects and creating
a 3D-textured object for augmented reality (AR), which allowed us to export the generated
image-matching 3D point clouds (*.laz). With the FARO FOCUS device (Figure 5), the
scanning process was performed from at least five stations per group of tree species at a
distance <12.0 m from the scanner to the sphere targets used as matching objects for single
scans. This device was set to 1

4 of full resolution and 4× quality, which enabled us to obtain
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the laser beams at the tree trunk every 6 mm at a 10.0 m distance from the scanner station.
The laser scan files (*.fls) were first matched into FARO Scene trial software, with fitting
errors ranging from 3.1 to 5.7 mm.
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texturized 3D image; (b) the 3D point cloud profile of the tree scanned; (c) the slice of point cloud at
the PBH position.

2.3. Procedures to Analyze the Point Clouds

The compressed point clouds based on the iPad Pro approach (“.laz” files) were
converted to “.las” files through the “laszip” command in the software Fusion (USDA,
version 3.8, Portland, OR, USA) [28] to make it possible to work in TerraScan (Terrasolid,
version 14, Espoo, Finland) running with Microstation (Bentley, version V8i, Select Series 2,
Exton, PA, USA) software.

The 3D point clouds of every single tree from the iPad and FARO TLS point clouds
were classified using a macro tool in TerraScan (Terrasolid) software to extract a 2.0 cm
width trunk slice at 1.30 m above ground (ranging from 1.29 to 1.31 m), corresponding
to the PBH position on tree trunks marked in red or white (Figures 2–4). The TFD was
estimated using the Measure Distance tool in the Microstation software by identifying
the points representing tree roots that went into the soil (Figure 6). This diameter was
measured in four equidistant positions to consider the possible variation around the trunk.

All 3D point clouds representing the piece of trunk marked as a white or red line
(1.30 m above ground level) were converted into shapefiles by using tools in the FUSION
software. For each shapefile analyzed, the size of the PBH slice was measured in QGIS
software (version 3.12) by using the convex hull algorithm to perform estimations. We
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measured the PBH instead of DBH to avoid the addition of errors due to the non-cylindric
slices of the trunks.
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Figure 5. The FARO TLS scanning in a group of Acer saccharinum trees (a) showing in (b) the white
mark at the PBH position on the trunk, part of the PBH slices of trees scanned (c), the thickness of the
PBH slice from point clouds (d), and the slice of the PBH point cloud (e).

2.4. Procedures to Predict the Trunk Flare Diameter (TFD)

As the relationship between the variables PBH (in meters) and TFD (in meters) has
shown to be linear, we used simple linear regression procedures to generate models, as used
by Hilbert et al. [13]. We also applied machine learning techniques to test if the estimation’s
preciseness and accuracy would improve.

In the modeling process, we used the TFD as a dependent variable and PBH as an
independent variable. Both variables were transformed (e.g., lnTFD, lnPBH, PBH2, PBH3,
1/PBH,

√
PBH, and others) to create a set of variables to make it possible for the selection

of the best fitted through forward stepwise regression in the software R.
The selection of the best-fitted model to estimate the TFD was performed by analyzing

the highest value for the coefficient of determination (R2) or the highest value for the
adjusted coefficient of determination (R2

adj.) for the logarithmic models, the lowest value
for the root mean square error (RMSE), the lowest value for the estimated standard error
(Syx%) and by the analysis of the graphical distribution of the residues. In addition, the
models selected were verified according to the linear regression’s assumptions: linearity,
normality, homoscedasticity, and independence [29].

To verify the quality of the estimations by the best models, we compared the estima-
tions of the TFD with the real values obtained using HLS (iPad Pro) and the FARO TLS,
through the paired chi-squared test. For the models where the dependent variable had a
logarithmic transformation (e.g., lnTFD), we also introduced Meyer’s coefficient into the
model to avoid logarithmic discrepancy [30].

To test the improvement in the TFD estimations between the iPad Pro and FARO
TLS point clouds, we used machine learning (ML) algorithms, applying the PBH as an
independent variable. The algorithms tested were artificial neural networks (ANN), k-
nearest neighbors (KNN), support vector machine (SVM) with the kernel linear method,
and random forest (RF). In all estimations with these algorithms, data were not transformed
as in the modeling process previously described. Before running the algorithms, all data
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were standardized to speed up the convergence rate, reduce the iteration process [31], and
reduce errors in the running process of the ANN algorithm [32]. The tested algorithms
were part of the package Caret (classification and regression training) in the software R.
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Figure 6. The trunk flare diameter (TFD) limit in two trees of different species: (a) Acer saccharinum;
(b) Populus balsamifera, and the position of the TFD measurement in different equidistant directions (c),
and the measurement of TFD (d) visualized in a point cloud based on iPad Pro (HLS).
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We applied repeated k-fold cross-validation using 10 folds and three repetitions to vali-
date and improve the machine learning procedures used. The repeated cross-validation can
be used to evaluate the generalizability of the model, as this procedure can provide a more
stable estimate of the prediction accuracy when compared to simple cross-validation [33].
Results from the algorithms were evaluated according to their accuracy and precision by
the statistical criteria: coefficient of determination (R2), root mean square error (RMSE),
and the analysis of the graphical distribution of the residues.

3. Results

We measured the point clouds for the PBH and TFD from two different techniques
(iPad Pro and TLS FARO), and data from the 100 trees measured presented the same pattern
of variation, with similar coefficients of variation for each variable measured. For PBH,
data varied from 0.47 m to 2.28 m with a mean value of 1.10 m and a CV equal to 39.64%
for the iPad Pro, and from 0.54 m to 2.31 m with a mean value of 1.17 m and a CV equal
to 37.79% for the TLS FARO (t-test = 1.0573, p-value = 2.91−1). For TFD, data varied from
0.28 m to 1.2 m with a mean value of 0.68 m and a CV equal to 34.86% for the iPad Pro,
and from 0.25 m to 1.06 m with a mean value of 0.57 m and a CV equal to 35.79% for the
TLS FARO (t-test = 3.4193, p-value = 7.65−4). In general, the TFD value corresponded to
two times the size of a given DBH for both methods of data acquisition.

Differences in the minimum, mean, and maximum values between techniques can be
due to the resolution of the equipment (higher in the TLS FARO) and due to the smoothing
process of the 3D texturizing in the iPad Pro, which cannot produce a regular trunk shape
and produces a less detailed ground surface. The TFD mean value was 1.9 times the DBH
values for the iPad Pro data, and 1.5 times for the TLS FARO data, with 12.87% and 11.57%
for the coefficients of variation, respectively.

The pattern of data distribution for the variable PBH between the FARO and iPad
(Figure 7a) is linear, as for the variable TFD (Figure 7b). Between the variables used in
the modeling process, a linear distribution pattern was also observed (Figure 7a,b) with
a similar pattern of data distribution for both methods used (TLS FARO and iPad Pro).
However, for the relationship between TFD and PBH (Figure 7c,d), data tend to present
more variation along with the size of the tree trunk and their trunk flare values, mainly for
PBH greater than 1.5 m.

The stepwise regression returned two sets of variables reliable for model construction
with significant coefficients (β0 and β1, p < 0.01). For the iPad Pro, the set of variables
consisted of the variables PBH, lnTFD, and 1/

√
PBH, and for data from the TLS FARO, the

set of variables consisted of the variables lnPBH, lnTFD, and 1/
√

PBH. Models adjusted
for both methods of data acquisition are similar (Table 1). The quadratic models with the
independent variables PBH and PBH2 showed better statistics for R2 and Syx% but did
not follow the assumption of the residuals homoscedasticity [29], even after applying the
weighted regression process.

Table 1. Models fit by the forward stepwise regression for both sources of data acquisition.

Model Source Models’ Variables and Coefficients R2 R2
adj. Syx% RMSE (m)

1 iPad Pro TFD = 0.1119 + (0.5113 × PBH) 0.8998 0.8988 7.5 0.0741
2 iPad Pro TFD = (e 1.2502 − (1.6901 × (1/

√
PBH))) × (e (0.5 × 0.013828909)) 0.8818 0.8806 11.7 0.0774

3 TLS FARO TFD = 0.5216 + (0.5354 × (ln PBH)) 0.8984 0.8973 6.5 0.0646
4 TLS FARO TFD = (e 1.3497 − (2.0349 × (1/

√
PBH))) × (e (0.5 × 0.011781564)) 0.9120 0.9111 10.8 0.0651

ln = natural logarithm, TFD = tree flare diameter, PBH = perimeter at breast height, R2 = coefficient of determina-
tion. R2

adj. = adjusted coefficient of determination, Syx% = estimated standard error, RMSE = root mean square
error, AC = Abound Capture application.

From the adjusted models (Table 1), Models 1 and 3 are not reliable because they do
not follow the assumption of the residual homoscedasticity [29], although they presented
the best statistics for R2, Syx%, and RMSE. So, the best and most reliable models to estimate
TFD from PBH point clouds are Models 2 and 4, composed of the same variables but with
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different coefficients according to the method of data acquisition (TLS FARO or iPad Pro).
To Models 2 and 4, the values for Meyer’s coefficient were added (e0.5 * MSres) to correct the
logarithmic discrepancy, with values around 1.0.

The residual distribution, along the predicted TFD (Figure 8), showed a similar pattern
between the models adjusted for each source of data (iPad Pro, Models 1 and 2; or TLS
FARO, Models 3 and 4). The residual distribution for the data from TLS FARO is better fit
to the line at point zero, which reflects the smallest RMSE values.
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All fitted models presented a satisfactory residual dispersion with homogeneous
points along the regression line, without under- or overestimated points. For both models
two and four, the estimated values were not significantly different from the original values
of TFD (χ2iPad = 1.05, DF = 99, p-value = 1.00; χ2TLS = 0.67, DF = 99, p-value = 1.00).

Considering the machine learning techniques applied (Table 2), the random forest
algorithm delivered slightly different precision parameters than the other algorithms (lower
values for R2 and greater values for RMSE) for both methods of data acquisition (iPad Pro
and TLS FARO).
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Table 2. Precision statistics for each of the four algorithms applied for data from iPad Pro and TLS FARO.

Data Source Algorithm R2 RMSE (m)

iPad Pro (Abound Capture) ANN 0.9171 0.0736
iPad Pro (Abound Capture) KNN 0.9048 0.0791
iPad Pro (Abound Capture) SVM 0.9172 0.0726
iPad Pro (Abound Capture) RF 0.8780 0.0872

TLS FARO (3D X130 Model) ANN 0.9164 0.0649
TLS FARO (3D X130 Model) KNN 0.9106 0.0668
TLS FARO (3D X130 Model) SVM 0.9159 0.0671
TLS FARO (3D X130 Model) RF 0.8961 0.0702

ANN: artificial neural networks, KNN: k-nearest neighbors. SVM: support vector machine, RF: random forest (RF).

In the graphical dispersion of residuals against the predicted TFD (Figures 9 and 10),
the random forest algorithm delivered the most interesting dispersion of residuals with
points closer to and along the regression line, for both methods (iPad Pro and TLS FARO).
Although all the other algorithms presented similar patterns, the SVM algorithm has a
pattern of underestimation for the TLS FARO (Figure 10) and the KNN algorithm has an
upper limit for the maximum values of TFD of 0.90 m for the TLS FARO data.

Among machine learning techniques, it was not possible to verify a satisfactory
improvement in the precision parameters, compared to the fitted linear models. Otherwise,
RMSE values from the machine learning algorithms are lower (Table 2) than the RMSE
values from the linear models (Table 1), and for both groups of techniques, the R2 values
were similar but higher for the machine learning algorithms.
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4. Discussion

TFD data were collected in four different and equidistant directions around each tree
due to the dimensional variability that can be promoted by factors such as the soil quality
(depth and density), wind mean speed and direction, and solar radiation intensity over the
tree crown [13,15]. However, for the local conditions of the group of trees measured at the
Polish Airmen Park, we have found a uniform TFD size around tree trunks, with no specific
projections for a given geographic position due to aforementioned factors. This made the
modeling process more reliable, with a reduction in the magnitude of estimation errors.

On the other hand, the variability observed for the measured attributes is due to the
diversity of species (10 species), inequality, and the conformation of the spatial distribution
within the park. Due to these characteristics, the fitted models are more general, and in
this case they can be used to estimate the TFD for a greater number of species that are
frequently planted in different places in cities.

In general, the fitted models presented a high performance based on the evaluated
parameters, showing consistency with the results obtained in similar studies [12,13,17]. For
different groups of tree species and different places, with simple linear regression models using
DBH as an independent variable, Hilbert et al. [13] obtained values of R2 and R2

adj. above 0.80
and values of RMSE between 0.05 and 0.18 m, which concurs with the data presented.
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It is worth noting that although the fitted models have presented excellent results, it
is known that they should be used with caution and in planning situations with similar
values to the values studied here, since the equations can generate a greater error for trees
with PBH values greater than the values obtained in this research (2.31 m in PBH or 0.74 m
in DBH).

As for the methods of data acquisition, point clouds can be considered highly accurate
and easy to automate the analysis procedures, but different methods and devices to collect
data can generate different results and errors [24]. The FARO Focus 3D X130 is a profes-
sional terrestrial laser scanner with greater coverage, greater detailing. Therefore, it is more
complex, demanding adaptations and longer time of analysis to obtain the measurements
correctly. The survey made with the iPad Pro already generates a less dense point cloud
and is less rich in details; however, it needed many adaptations at the time of its use. These
were situations that required a large amount of analysis and resourcefulness to obtain
reliable data for the study.

The iPad Pro’s HLS has proven to be a useful and accurate tool for collecting tree
data. In a study by Tatsumi et al. [25], the DBH results of mapping trees using this
method and a traditional survey procedure with a tape measure were almost equal.
Çakir et al. [26] also showed that this procedure produces accurate results for both forest
and urban forest research regions, when compared to field measurement methods. Al-
though this methodology has its limitations regarding the maximum distance from the tree
(up to 5.0 m), it proves to be an efficient tool overall, depending on the type and conditions
of the forest measurements [22–25].

Regarding the prediction of TFD by machine learning techniques, a modest improve-
ment in the R2 and RMSE metrics was verified, compared to the traditional modeling
process. This may have occurred due to the data showing linearity between the dependent
and independent variables, which resulted in a good fit of the traditional models. Never-
theless, this result may be related to the small number of samples (n = 100) and the low
complexity of the variables studied.

As highlighted by Thongpeth et al. [34] in a study carried out with an extensive
database (n = 18,342) of 11 variables, the performance of machine learning techniques
depends on the sample size. Therefore, a great database tends to provide better prediction
performance, as these techniques need a large sample to learn, while the performance of
linear models depends on the data variance.

Studying the TFD is essential for the proper planning and management of urban forests.
It has been known that increased width of the planting strip decreases the probability of
damage to the sidewalks and curbs [13,17,35]. In this sense, one of the applications of
the TFD estimation models is to assist in the management and prevention of damage by
serving as a tool for the planning of spaces that are more suitable for the growth of trees. As
the trees grow, they can become incompatible with urban infrastructure due to the increase
in anchorage size to support the incident static and dynamic loads [8,14,15]. Through this,
they end up damaging sidewalks, floors, and buildings. In addition, the way that sidewalks
are built in association to small planting pits and the poor quality of seedlings and soil can
also contribute to increasing damages [15,36].

With this, the variables TFD, DBH, and PBH are very important for the proper planning
of the sizes of some urban structures, such as sidewalks, curbs, and the flowerbed where
trees can be planted. In this context, Koeser et al. [17] estimated the TFD and proposed
an equation using the estimated TFD values and a buffer value equal to 1.2 to predict the
minimum planting widths for small- to medium-sized trees in urban areas. The simplified
model to estimate TFD had an R2 of 0.79, based on data from 288 trees (from newly planted
to the largest sized tree found) of eleven different species.

Furthermore, the newly adjusted models, which predict the TFD as a function of the
PBH, can be used in other areas, such as environmental protection. For example, in the
case where a removed tree is found, one can measure the surface anchoring and discover
the approximate PBH of the tree. With this variable, through other models, it is possible



Remote Sens. 2022, 14, 4661 15 of 16

to estimate the total height and the crown area to determine values of fines and judicial
reimbursements due to unauthorized tree removal. Thus, these models do not have their
application restricted to urban areas and are of great benefit to forest science.

5. Conclusions

Our findings suggest that the point clouds based on the iPad Pro (HLS) are reliable to
use as a source of data acquisition for modeling the TDF of urban trees, generating models
as precise as those generated by the FARO FOCUS 3D (TLS) point clouds.

Considering the tested techniques, both promoted good and similar statistics and
traditional linear models estimated by regression process were not different from the
machine learning techniques, although the random forest algorithm showed the best fitting
for the TFD estimation.

The fitted models and algorithms showed reliability and no overestimation or under-
estimation of the estimated TFD, which is a promising response to studies related to the
topic of both the planning of the best space for tree growth at the ground level and the use
for DBH estimations due to illegal tree removal.
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