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Abstract: Change detection (CD) in hyperspectral images has become a research hotspot in the field
of remote sensing due to the extremely wide spectral range of hyperspectral images compared to
traditional remote sensing images. It is challenging to effectively extract features from redundant
high-dimensional data for hyperspectral change detection tasks due to the fact that hyperspectral data
contain abundant spectral information. In this paper, a novel feature extraction network is proposed,
which uses a Recurrent Neural Network (RNN) to mine the spectral information of the input image
and combines this with a Convolutional Neural Network (CNN) to fuse the spatial information of
hyperspectral data. Finally, the feature extraction structure of hybrid RNN and CNN is used as a
building block to complete the change detection task. In addition, we use an unsupervised sample
generation strategy to produce high-quality samples for network training. The experimental results
demonstrate that the proposed method yields reliable detection results. Moreover, the proposed
method has fewer noise regions than the pixel-based method.

Keywords: change detection (CD); recurrent neural network (RNN); convolutional neural network
(CNN); hyperspectral image (HSI)

1. Introduction

In recent years, change detection (CD) has attracted increasing interest due to its wide
range of possible applications [1–7], such as urban development, land cover monitoring,
natural disaster detection, and ecosystem monitoring. CD aims to identify the changing
area by comparing two images of the same place taken at two different times [8].

With the rapid development of remote sensing technologies, obtaining large numbers
of hyperspectral images (HSIs) for CD has become much easier. HSIs have more detailed
spectral patterns and textural information than other remote sensing images, such as RGB
images, multispectral images (MSIs), and synthetic aperture radar (SAR) images [9–11].
Consequently, HSIs have the potential to identify more subtle variations [12], and the
detailed composition of different categories are effectively distinguished. However, the
high-spatial-resolution characteristics of HSIs will also bring challenges to the CD feature-
extraction network. In summary, there are two reasons for this. Firstly, labeled HSI datasets
for CD tasks are lacking, making it difficult to train a deep feature extraction network using
a supervised learning algorithm. Secondly, because the spectral bands of HSIs are relatively
dense, the image-processing methods for multispectral or optical remote sensing images
cannot be directly migrated to effectively mine the spectral information of HSI.

Focusing on the challenges mentioned above, some new advances have recently been
achieved in improving HSI-CD feature extraction. Among them, principal component
analysis (PCA) [13] is the most commonly used component, which can map the high-
dimensional information of HSI to the low-dimensional space. Specifically, in order to
acquire the mapping features, take the HSI of H×W×C as input, and obtain the coefficient
of the C channel to generate the HW×HW covariance matrix. According to this covariance
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matrix, the mapping transformation operation of each H ×W layer is obtained, and this
transformation is linear. Another component worth mentioning is compressed change
vector analysis (C2VA) [14], which is inspired by metric learning and can be implemented
in two steps. First, it calculates the spatial Euclidean Distance between each 1× 1× C
pixel and clusters each pixel with the idea of metric learning. Second, it calculates the
spatial angle of each pixel and establishes the phase relationship between different pixels
to classify different categories. This transformation is non-linear. The above two methods
are the classic work of change detection, and many subsequent works have been improved
based on them, such as sequential spectral change vector analysis (S2CVA) [15], Robust
Change Vector Analysis (RCVA) [16]. However, all of the above methods use the statistical
information of all pixels in a single channel to determine the importance of the current
channel and then compress high-dimensional features into a low-dimensional feature space.
Differing from previous work, we consider how to make each pixel select the optimal
channel for the final task, and integrate these channels into a new feature channel, to release
the potential of the maximally effective information.

Compared with the fully convolutional network (FCN) and convolutional neural
network (CNN), the recurrent neural network (RNN) can identify the data association
between sequence information. Applying the RNN structure to the feature extraction of
HSIs has the following advantages:

1. The sequence information of HSIs can be retained. The previous band selection
method will destroy the time sequence of feature space, while RNN will give each
sequence a new weight to maintain the spectral information, and the importance of
each spectral can be enhanced or inhibited by the weights.

2. The sequence process of RNN is beneficial when reducing the redundant informa-
tion in HSI. As the features between adjacent channels of a hyperspectral channel
are similar, it is even possible to predict the current channel’s information from
the previous channel’s features. RNN can make full use of this feature to filter
redundant information.

Based on the two superiorities mentioned earlier, this paper develops a new feature
extraction network based on the hybrid CNN and RNN for HSI-CD tasks. The main
contributions are summarized as follows:

1. A feature extraction network based on RNN is proposed, which can better retain
the time sequence information of HSIs and is also more conducive to filtering out
redundant information.

2. The subsequent CNN structure utilizes the spectral information of adjacent regions to
suppress noise and improve change detection results.

3. For binary change detection, our method can extract the most relevant feature channel for
each pixel. It can relieve the mixture problem of remote sensing image change detection.

The rest of this paper is organized as follows. Section 2 gives a brief review of the
related work. Section 3 introduces the preliminary knowledge about our method and
describes our proposed method in detail. The datasets and comprehensive experimental
results are shown in Section 4. The discussion of the effectiveness of RNN and the setting
of hyperparameters is presented in Section 5. Finally, in Section 6, we provide a summary
of this paper.

2. Related Work

The current CD methods used for HSIs can roughly be divided into four categories:
change vector analysis, spectral unmixing, deep neural network methods, and optimized
pseudo-label generation methods.

2.1. Change Vector Analysis (CVA) Based Methods

The change vector detection method [17] is the pre-classification change detection. A
spectral change vector between the two time phases is computed to show the degree of
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change. Bruzzone et al. [18] designed an unsupervised change detection algorithm based
on CVA. The paper by Bovolo et al. [19] addressed unsupervised change detection by
proposing a proper framework for a formal definition and a theoretical study of the CVA
technique. Thonfeld et al. [16] proposed an approach called RCVA, aiming to mitigate the
effects of differences in viewing geometries or registration noise. The CVA technique was
also used in [20,21]. Furthermore, Gong et al. [22] proposed a reformulated fuzzy local-
information C-means clustering method for classifying changed and unchanged regions
in the fused difference image. Celik et al. [23] proposed the use of a PCA algorithm to
generate feature vector spaces and K-Means clustering using Euclidean distance for change
detection. Nielsen [24] proposed an iterative weighted multivariate change detection (IR-
MAD) algorithm based on the MAD, which extends the MAD by iterating the weights of
different observations. Tang et al. [25] used a pixel ratio approach to identify the range
of change. They determined the change type in the classification map by comparing
object-based classifications. Rawashdeh and Bashir [26] used the pixel-by-pixel method of
differential change detection to identify and evaluate newly implemented irrigation areas.
All the above literature examples are classic methods in the change detection field, and they
promote the development of change detection. However, there are still some challenges
when applying the above methods to HSI-CD.

2.2. Spectral Unmixing Based Methods

To solve this mixture problem, which is caused either by the limited spatial resolution
of the sensors, which includes different objects in a single pixel, or by the combination of
the distinct materials into a homogeneous mixture, spectral unmixing techniques were
developed. Liu et al. [27] proposed an unsupervised multitemporal spectral unmixing
for detecting multiple changes in HSI. In literature [28], subpixel change detection is
addressed for a case study using abundance and slope features. Ertürk et al. [29] exploited
dictionary pruning for the first time in HSI-CD using sparse unmixing. Furthermore, in [30],
Ertürk et al. investigated CD for HSI by spectral unmixing and systematically presented
the advantages that can be gained by using such a method. Li et al. [31] presented an
integrated change detection method based on multi-endmember spectral unmixing, joint
matrix and CNN (MSUJMC) for HSI. Considering the endmember spectral variability,
they obtained more reliable endmember abundance information with multi-endmember
spectral unmixing (MSU). Due to the highly mixed nature of pixels in HSI data, instead of
directly using the raw pixel for anomaly detection, Qu et al. [32] proposed an algorithm
that applies spectral unmixing to obtain the abundance vectors and uses these vectors
for anomaly detection. Seydi et al. [33] presented a new hyperspectral change detection
framework based on a robust binary mask and convolutional neural network. In this
research, they generated pseudo-training data based on an image-differencing algorithm
and spectral unmixing manner for multiple change detection. In [34], the authors proposed
a novel technique for unsupervised change detection in multitemporal satellite images
using principal component analysis and K-Means clustering. Although the method based
on spectral unmixing can solve the mixture effect, it still does not select the best channel for
each pixel according to different categories.

2.3. Deep Neural Network Based Methods

Recently, researchers have begun to consider the use of deep learning methods to
extract features for HSI-CD. Huang et al. [35] proposed a multi-temporal HSI-CD method
based on tensor and deep learning to make full use of the underlying feature change
information of HSI. Zhan et al. [36] trained a supervised siamese convolutional network,
which learned to directly extract features from the image pairs. In the literature [37],
Mou et al. embedded a recurrent neural network and a convolutional neural network into
an end-to-end network, which focuses on analyzing temporal dependence and generating
rich spectral-spatial feature representations in bi-temporal images. Ken et al. [38] proposed
a novel change detection method that uses CNN features in combination with superpixel
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segmentation. Wang et al. [39] presented a faster, region-based convolutional neural
network (Faster R-CNN) for the detection of high-resolution remote sensing image changes.
Liu et al. [2] proposed an unsupervised deep convolutional coupling network for change
detection, which is symmetrical, with each side consisting of one convolutional layer and
several coupling layers. Wang et al. [12] introduced a General End-to-end Two-dimensional
CNN (GETNET) framework for HSI-CD, in which they designed an effcient 2-D CNN
structure to learn the discriminative features at a higher level. In order to better extract
the discriminative CNN features, Li et al. [40] proposed a novel noise modeling-based
unsupervised FCN framework for HSI-CD. However, most of the above literature only
focuses on using the statistical information of each channel to determine the importance
of the channel for feature selection. This will bring two problems: one is that each pixel
does not select the optimal channel, and the other is that, for each category of tasks, the
extracted features are not targeted, but some channel features are selected for the overall
task. Our proposed HSI-CD feature extraction network based on RNN can solve these two
problems very well.

2.4. Pseudo Label Generation Methods

Due to the difficulty of collecting change detection datasets and annotations, most of
the current mainstream change detection techniques are based on unsupervised learning.
During the unsupervised training of the network, the generation of pseudo-labels for the
samples is an important research focus. The quality of the pseudo-labels determines the
performance of the subsequent detection results. Li et al. [41] converged the similarity
matrix of the initial features by deep belief network into two classes as a pseudo-label for
global-local SPPNet training data. Gao et al. [42] used a logarithmic ratio operator and a
hierarchical FCM classifier to generate pseudo-label training samples. Zhang et al. [43]
proposed an automated method to detect changes in bi-temporal SAR images based on a
pre-train scheme and the PCANet algorithm. They utilized the parallel FCM to produce
three types of pseudo-label training pixels: changed, no-change and intermediate pixels.
Liu et al. [44] applied a log-ratio algorithm to generate the pseudo labels, and then trained
the network utilizing the change information extracted by the pretrained model and
contained in the pseudo-labels. Zhou and Li [45] designed an image filter to control
the usage of change information in the pseudo-labels in the network’s training process.
Furthermore, they proposed a novel training strategy, named unsupervised self-training.
The usage of the joint pseudo-labels can reduce the negative influence of errors in the single
set of pseudo-labels.

3. Method

In this work, an effective feature extraction network for HSIs is proposed, where the
sequence information of hyperspectral images can be retained and each pixel can select the
optimal channel information. The proposed method is based on the hierarchical integration
of the RNN and CNN, which are both the current state-of-the-art DNN architecture for
temporal sequence processing. Concretely, a graph illustrating the presented method is
shown in Figure 1, from which we can see that the proposed methodology contains three
main parts: low-dimensional feature extractor, high-dimensional feature extraction module
based on hybrid RNN and CNN, and the final, fully connected layer. The low-dimensional
feature extractor and the hybrid feature learning module will be introduced in the next
few sections.
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Figure 1. Architecture of our proposed method, which contains three main parts: the convolutional
neural network part, recurrent neural network part and the final, fully connected layer part.

3.1. Low-Dimensional Feature Extractor

CNN is a category of neural network that is mainly used to examine, recognize or
classify images as it simplifies them for improved understanding. The advantage of CNN is
that it requires less labor and pre-processing. Backpropagation is also a part of the learning
procedure, making the network more efficient. The design is intimately related to MLP, as
it consists of an input layer of neurons, multiple hidden layers, and an output layer. Each
individual neuron in one layer is attached to each neuron in a subsequent layer.

As shown in Figure 1, in our model, we first apply a convolutional layer with size
of 1× 1 on an HSI to extract the shallow features. Then, a filter of size 3× 3 is repeatedly
applied to the sub-matrices of the input feature maps. It is worth noting that the size
of the feature map, in this case, is H ×W × 128, meaning that we reduced the channels
of the input image to 128 instead of 32 while keeping the length and width the same.
This will eliminate the loss of temporal information caused by the CNN dimensionality
reduction.The feature maps of two convolutional layers are calculated as follows:

X = Φ( f 3×3
c2

(Φ( f 1×1
c1

(x)))) = Φ(ω2(Φ(ω1(x)))), (1)

where f 1×1
c1

and f 3×3
c2

stand for the convolutional kernel of size 1× 1 (3× 3) with channel
c1 (c2). Φ represents ReLu function and ω1 and ω2 are parameters of convolutional layers
f 1×1
c1

and f 3×3
c2

, respectively.
It is important to state that, in addition to the two convolutional layers mentioned

above, our model also has a separate convolutional layer following each RNN. The pur-
pose is to better mix the sequence information extracted from the RNN for higher-level
semantic representation.

3.2. Feature Learning of Hybrid RNN and CNN

Our initial assumption was to directly feed hyperspectral data with sequence infor-
mation to an RNN. As depicted in [37], RNNs have been extensively deployed to deal
with sequence data. This extracts both the temporal dependencies between data samples
in a sequence and captures the most discriminative features for that sequence to execute
various tasks. However, in actual operation, the RNN will be slower than the CNN due to
the optimization problem of the parallel computing library. In the first few layers of the net-
work, in order to improve the training speed, we first used the CNN for the dimensionality
reduction of the data. Then, the RNN was utilized to capture the temporal information
hidden in channels of feature maps generated by CNN for further processing. RNNs
have the benefit of acquiring complex temporal dynamics over sequences in comparison
to standard feedforward networks. Given an input sequence x1, x2, . . . xT , an RNN layer
calculates the forward sequence of the hidden states

−→
H =

(−→
h1 ,
−→
h2 , . . . ,

−→
hT

)
by iterating

from t = 1 to T: −→
ht = σ

(−→
W ixi +

−→
W h
−→
h t−1 +

−→
b h

)
, (2)
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where
−→
W i is the weight matrix from input to hidden and

−→
W h is the weight matrix from

hidden to hidden. In addition to the input xi, the hidden activation
−→
h t−1 of the former

time step is fed to affect the hidden state of the current time step. In a bidirectional RNN, a
recurrent external layer is used to evaluate the backward sequence of the hidden outputs←−
H from t = T to 1. ←−

ht = σ
(←−

W ixi +
←−
W h
←−
h t−1 +

←−
b h

)
. (3)

In experiments, our model stacks two bidirectional recurrent layers if not specifically
informed otherwise. At each time step t, the cascade of forward and backward hidden
states

[−→
h t,
←−
h t

]
of the current layer is considered as the next recursive layer’s input. In

this case, the output at each frame t is the conditional distribution p(xt|xt−1, . . ., x1). For
example, a polynomial distribution would be exported with a softmax activation function.

p
(

xi,j = 1 | xt−1, . . . , x1
)
= exp

(
wjh〈t〉

)/
∑K

k=1 exp
(

wkh〈t〉
)

. (4)

Furthermore, we can compute the probability of each sequence x by integrating these
values using the following equation.

p(x) = ∏T
t=1 p(xt | xt−1, . . . , x1). (5)

The outputs of the convolutional layer following RNN are flattened and form a feature
vector, which may then be used as the input of a fully connected network (see Figure 1).

3.3. Change Detection Head Based on Fully Connected Network

After the above feature extraction stage, the above module can perform feature extrac-
tion on the input hyperspectral images of different phases, respectively. For an input image
patch of size 17× 17, a feature map pair of size 3× 3 can be obtained. The feature map with
a size of 3× 3 can be considered a high-dimensional semantic information, representing
the region in which the central pixel is located. Intuitively, we take the difference of the
two obtained feature maps and expand the obtained result into a vector, which serves as a
measure of the change value. Compared with the common CVA method, this method can
reduce the dimension of the vector and suppress the overfitting of the network. Differing
from the method based on pixel points, this method can better fuse the spatial information
and spectral information of the region.

Referring to the common neural network structure design, we used three cascaded
fully connected layers and ReLU as the activation function and the subsequent change
detection head. Since the dataset is a change detection task for two types of changes, the
last layer of the network contains only two neurons, representing the degree of activation
for the categories of change and no change, respectively. The overall fully connected layer
is used to classify the difference information and generate binary change detection results.
Due to the high efficiency of the feature-extraction module, the detection head can achieve
better changes without special design.

3.4. Unsupervised Sample Generation

Let X1, X2 be two hyperspectral images taken at time t1, t2, and the difference map Xd
can be calculated by the formula

Xd = X1 − X2. (6)

We aim to generate high-quality training samples to detect changes from Xd in an
unsupervised manner, dividing the set into two subsets, ωc and ωu, corresponding to
changed and unchanged samples, respectively. Since the input image is strictly registered,
the difference map can represent the intensity of changes in different positions. There-
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fore, we used the 2-norm of the spectral change vector to express the magnitude of the
corresponding regional change, i.e.,

ρ =

√√√√ C

∑
c=1

(
Xc

d
)2, (7)

where C represents the number of spectral channels.
The traditional method uses the Otsu algorithm to automatically determine the thresh-

old for generating the difference map. According to the guidance for generating the
threshold, the ρ can easily be divided into two clusters, in which the part with a smaller
value is used as the unchanged area data sample, and the part with a larger value is used as
the changed area data sample. Using pseudo-label-based unsupervised learning methods
can enable the network to mine the deep structural information of the data, reduce the
interference of noisy samples, and generate better detection results.

However, the critical samples generated by the hard threshold will reduce the sample
quality, increase the proportion of false labels, and make the network difficult to optimize.
In the subsequent experiments, if low-quality training samples are used, the network will
exhibit poor convergence. The model’s detection accuracy is even worse than that of
traditional methods. In this paper, we first calculate the distribution parameters of positive
and negative samples, and set an overlap coefficient λ. The pseudo-labels’ generation
formula is as follows:

Label


Negative : ρi,j < Umean + Ustd × λ,
Ignore : others,
Positive : Cmean + Cstd × λ < ρi,j,

(8)

where the Umean, Ustd, Cmean, and Cstd are the mean and variance of the negative and
positive samples determined according to the hard threshold, respectively. Among them,
when λ < 0, we used the absolutely correct sample as the training sample, which can
ensure the correctness of the sample, but reduces the diversity of the sample. When the
λ > 0, we gradually used more types of samples as training samples, but introduced a
small number of wrong samples.

3.5. Network Overall Structure and Training Details

The overall structure of the network is shown in Table 1. The network structure is a
module constructed based on the pipeline form, in which the input is the neighborhood at
which the center point of the two image blocks is located, and the output is whether the
region has changed and the probability of the prediction. The network can also easily be
extended to multi-class changes.

We used a Linux workstation to complete the experiments. The computer has an
NVIDIA RTX 3090 with 24G GPU memory, and we used pytorch to implement the code
construction of the model. For the Hermiston dataset, we used 17× 17× 242 image pairs
as input, while setting the λ to 0.1, and used all pseudo-labeled samples for network
training. For the Bay and Santa Barbara datasets, we used 17× 17× 224 image pairs as the
input, and set the λ to 0.5. As the image sizes of above two datasets were larger and the
sample distribution was more uniform, among all the generated pseudo-label samples, we
randomly sampled 64,000 positive samples and 64,000 negative samples as training sample
sets. In training, all experiments used the same training parameters. Adam was used as the
network optimizer, and the learning rate of the network was set to 0.0003. The batch size
was set to 64, and the network was trained for 10 epochs before testing. In the test, for the
Hermiston dataset, all pixels were used to calculate the final accuracy and kappa coefficient.
For the Bay and Santa Barbara datasets, because the data contained an uncertain area mask,
we only calculated the precision and kappa coefficients of pixels outside the mask area.
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Table 1. The overall structure of the network.

Stage Module Parameter

Block1

Conv channel = 128

size = 1

ReLU

Conv
channel = 128

stride = 2

size = 3

ReLU

Block2

RNN channel = 32

Tanh

Conv
channel = 32

stride = 2

size = 3

ReLU

Block3

RNN channel = 8

Tanh

Conv
channel = 8

stride = 2

size = 3

ReLU

Flatten

Head

Linear channel = 32

ReLU

Linear channel = 8

ReLU

Linear channel = 2

4. Result

To validate the effectiveness of the proposed methods, we conducted an experimental
analysis on real hyperspectral change detection datasets. We selected several algorithms
based on CVA methods and several based on deep learning methods as comparison
algorithms. Finally, to demonstrate the effectiveness of the proposed feature extraction
structure, we conducted ablation experiments to illustrate the advantages of our algorithm.

4.1. Datasets and Evaluation Criteria

The first dataset is the Hermiston dataset. As shown in Figure 2, the two hyperspec-
tral images were acquired in 2004 and 2007 over the same area of Hermiston City Area,
Oregon [46]. The co-registered images have the same size of 390× 200 pixels, with the
spatial resolution of 30 m and 242 available bands, as acquired by the Hyperion satellite.
The reference image, shown in Figure 2, is a binary label representing whether the region
undergoes meaningful changes.
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Figure 2. The Hermiston City area dataset. (a) Image acquired in 2004. (b) Image acquired in 2007.
(c) Reference map.

The other two datasets were the Bay Area dataset and the Santa Barbara dataset. These
two datasets were collected from AVIRIS sensor with 224 spectral bands. As shown in
Figure 3, the Bay Area dataset was captured above the Bay Area of Patterson, California, in
2013 and 2015, respectively. Both hyperspectral images and reference images have a spatial
resolution of 984× 740. As shown in Figure 4, the Santa Barbara dataset was captured
above the Santa Barbara, California in 2013 and 2014, respectively, and the image size
was 600× 500. Differing from the previous dataset, these two datasets not only mark the
changed and unchanged areas, but also mark the areas without accurate labels. Thus, the
detection effect of different algorithms can be evaluated more accurately, and the influence
of the noise area can be reduced.

Figure 3. The Bay Area dataset. (a) Image acquired in 2013. (b) Image acquired in 2015.
(c) Reference map.
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Figure 4. The Santa Barbara dataset. (a) Image acquired in 2013. (b) Image acquired in 2014.
(c) Reference map.

To quantitatively evaluate the quality of the results of different algorithms, we use the
overall accuracy (OA) and kappa coefficients (KC) to calculate the results of each algorithm.
The OA is the proportion of correct samples to the total number of samples, which is
calculated as follows:

OA =
TP + TN

TP + TN + FP + FN
, (9)

where TP, TN, FP, and FN represent true positive, true negative, false positive, and false
negative, respectively. The KC is based on the confusion matrix and is used to indicate
the classification consistency with a large difference in the number of categories, which is
calculated as follows:

PTP = (TP + FP)× (TP + FN), (10)

PTN = (TN + FP)× (TN + FN), (11)

PE =
PTP + PTN

(TP + TN + FP + FN)2 , (12)

KC =
OA− PE

1− PE
. (13)

4.2. Comparison Results and Analysis

In this work, we compare the proposed algorithm with several representative change
detection methods to demonstrate the effectiveness and generality of the proposed frame-
works. Among them, CVA is a classical spectral-based change detection method that
utilizes spectral difference maps to get the final result. DNN takes paired spectral vectors
as input, and uses a multi-layer fully connected network to extract features and generate
results. CNN utilizes patch images as input, and the convolutional neural network is used
to extract features and then feed them to the classifier. GETNET uses the spectral vector to
construct a two-dimensional correlation matrix, and uses CNN to reduce the parameters of
the model.

Figure 5 shows the results of the compared and the proposed algorithms in Hermiston
dataset, and the corresponding quantitative evaluation values are available in Table 2. As
can be seen from Figure 5b, CVA can detect most of the change areas in the graph; however,
due to the influence of the threshold selection, some areas where the change amplitude is
at the critical value will lead to false detection, resulting in some small positive areas. As
can be seen in table, the deep-learning-based methods consistently achieve better results
than traditional methods. Although the DNN method achieves higher detection accuracy,
it has more noise points than the CNN-based method, which need to be filtered out using
additional pipelines. Compared with the GETNET method, the algorithm proposed in
this paper achieves higher detection accuracy. At the same time, since GETNET makes
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predictions based on pixels, it will face the same problem as DNN, that is, there will be
more noise in the results.

Figure 5. Comparison results of different algorithms on the Hermiston City Area dataset.
(a) Reference map. (b) CVA. (c) DNN. (d) CNN. (e) GETNET. (f) Our method.

Table 2. Quantitative evaluation of experimental results of different methods on Hermiston City
Area dataset.

Algorithm Negative Positive OA PE KC

CVA 0.99 0.90 97.94 77.30 90.93
DNN 0.99 0.96 98.40 78.20 92.68
CNN 0.99 0.91 98.22 77.22 92.20

GETNET 0.99 0.94 98.45 77.63 93.08

Ours (without RNN) 0.99 0.94 98.37 77.66 92.70
Ours (with RNN) 0.99 0.95 98.58 77.73 93.63

The test visualization results of the Bay Area dataset are shown in Figure 6, and
the corresponding detection accuracy indicators are listed in Table 3. As can be seen
from Figure 6b, the CVA method has a good performance in most positions in the graph.
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Although limited by the performance of the clustering method, this method inevitably has
noise. It is worth noting that since the scene contains many confounding changes, the pixel-
based method is more susceptible to noise, and the performance of the DNN and GETNET
is even slightly lower than that in the traditional method. Although CNN methods can
utilize more neighborhood information, the performance improvements compared to DNN
are still limited. Compared with all other algorithms, the CD model proposed in this paper
can better suppress noise and fully mine the depth information of pseudo-labels. The
proposed method achieves better results in both qualitative and quantitative evaluations.

Figure 6. Comparison results of different algorithms on the Bay Area dataset. (a) Reference map.
(b) CVA. (c) DNN. (d) CNN. (e) GETNET. (f) Our method.

Table 3. Quantitative evaluation of experimental results of different methods on Bay Area data set.

Algorithm Negative Positive OA PE KC

CVA 0.78 0.95 85.37 49.55 71.00
DNN 0.78 0.94 82.73 49.54 69.73
CNN 0.79 0.94 85.84 49.60 71.91

GETNET 0.78 0.94 84.80 49.57 69.85

Ours 0.79 0.95 86.08 59.55 72.41

Similar to the experimental results on Bay Area data set, the Santa Barbara dataset
achieves consistent performance gains on the test procedure. As shown in Figure 7 and
Table 4, both GETNET and the method proposed in this paper have achieved encouraging
detection results; however, due to the use of convolutional structure, the network proposed
in this paper obtained slightly higher change detection accuracy. There was no change
in a mountain area above the dataset; however, due to the influence of shadows and
sensor noise, the results of different algorithms in this area are quite different. Likewise,
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CNN methods always outperform DNN methods due to their ability to integrate spatial
information. Benefiting from the use of RNN to extract spectral information, the proposed
method showed a a significant improvement in results compared with the CNN method.

Figure 7. Comparison results of different algorithms on the Santa Barbara dataset. (a) Reference map.
(b) CVA. (c) DNN. (d) CNN. (e) GETNET. (f) Our method.

Table 4. Quantitative evaluation of experimental results of different methods on Santa Barbara dataset.

Algorithm Negative Positive OA PE KC

CVA 0.88 0.79 84.74 51.96 68.23
DNN 0.88 0.79 84.06 51.94 66.83
CNN 0.92 0.79 86.59 51.28 72.47

GETNET 0.93 0.80 87.03 51.24 73.39

Ours 0.92 0.81 87.25 51.46 73.72

4.3. Ablation Study

To demonstrate that RNN can effectively extract spectral information from hyper-
spectral image data, we designed a contrastive network with the same structure as the
network used in this paper, but without RNN. Table 2 shows that the network structure
without RNN does not produce competitive results. Observing Figure 8, in the annular
farmland area, using the RNN method can obtain a relatively more complete farmland area
and, compared with the benchmark algorithm, the RNN method produces purer detection
results in the boundary area between farmlands. The benchmark method can still produce
relatively clean detection results, which also proves that the feature extraction structure of
CNN can fully exploit the spatial information in hyperspectral images.
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For hyperspectral image patch pairs with input dimensions 242× 17× 17, Table 5
explains the effectiveness of the proposed structure from another perspective. The feature
extraction network using RNN has fewer parameters and less computational complexity.
Fewer parameters mean that the network is less prone to overfitting, which explains why
better detection results and higher detection accuracy can be achieved with RNNs.

Figure 8. Visualization of detection results with and without RNN. (a) Without RNN. (b) With RNN.

Table 5. Comparison of network parameters and flops.

Network Structure Parameters FLOPs

Without RNN 0.221M 43.679M
With RNN 0.192M 42.277M

5. Discussion
5.1. Effectiveness of RNN on Spectra

To investigate the effectiveness of the RNN structure mentioned in the paper for the
feature extraction of hyperspectral data, we construct an encoding–decoding structure
using the feature-extraction module proposed in this paper, using the structure proposed
in this paper as an encoder. The features of the hyperspectral data are extracted by the
proposed module and, subsequently, a deconvolution is applied as a decoder to build an
unsupervised end-to-end self-encoder. We extracted the feature layers behind the RNN
in the generated feature map (the outputs of block 2 in Table 1), and we concatenated the
feature values at corresponding positions in each layer as a pseudo-spectral sequence. The
band of the generated spectral sequence is 32. To perform feature alignment, we used
linear interpolation to upsample the extracted sequences. For comparison, we extracted the
corresponding layer in the CNN structure for the analysis. We used Pearson correlation
coefficients to analyze the input raw spectral sequences and the spectral sequences obtained
by sampling in the corresponding feature maps. The experimental results are shown in
Table 6. As expected, CNNs generate information that does not maintain the sequence
characteristics of the original data due to their disordered connectivity over the spectral
domain. Our proposed RNN structure does not explicitly constrain the regression mode
of the model, but the generated information still has some correlation with the original
data, proving that the proposed module helps to extract the spectral information from the
input data.
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Table 6. Pearson correlation coefficients of CNN-based feature extractor and RNN-based feature extractor.

Method Pearson Correlation Coefficients

CNN-based −0.398
RNN-based 0.275

5.2. Selection of Hyperparameters in Sample Generation

As shown in Figure 9, we show the histogram of the intensity distribution of the CD
maps on the Bay Area dataset and the Santa Barbara dataset. The red line segment in
the figure indicates the hard threshold value obtained using the threshold segmentation
algorithm, where the part that is less than the threshold value is determined as the changed
region (the region on the left of the red line segment) and the part greater than this threshold
value is determined as the unchanged region (the region to the right of the red line segment).
The blue line in the left region indicates the mean value of the unchanged region, and the
orange line in the right region indicates the mean value of the changed region. The positive
and negative samples selected using the sample selection strategy proposed in this paper
are shown in the blue region and the orange region in the figure, respectively.
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Figure 9. The Sample Distribution on the Bay Area dataset and the Santa Barbara dataset. (a) The
Bay Area dataset. (b) The Santa Barbara dataset.

Since the neural network’s learning is affected by sample generation, for the pseudo-
labels generated by unsupervised learning, in order to balance the selection of sample
diversity and label feasibility, this part conducts sufficient experiments on the hyperparam-
eter λ used in sample generation. In order to qualitatively evaluate the effect of different λ
values, we trained the model with different sample sets. We conducted experiments on the
Bay Area and Santa Barbara datasets. In this experiment, we set the number of positive
and negative samples to 32,000, that is, a total of 64,000 training samples, and the other
parameter settings remained unchanged.

The results are shown in Figure 10. Figure 10a,b, respectively, represent the detection
results under different λ parameter settings, where the red line represents the KC of the
model, and the green line represents the OA of the model. As can be seen from the figure,
the performance of the network is directly related to the selected sample generation, and
it is difficult to obtain a good model with a low-quality sample set. The left area in the
figure represents selecting the correct samples as best as possible without considering
the diversity, and the right area in the figure represents the selection of as many types of
samples as possible, ignoring reliability. Setting the λ to 0.5 on the Bay Area dataset and
the Santa Barbara dataset gives a good pseudo-labeled training sample set. This value is
also consistent with our hypothesis, that is, the value of λ needs to balance the diversity of
samples and the confidence rate of sample labels.
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Figure 10. The influence of parameter λ on the Bay Area dataset and the Santa Barbara dataset.
(a) The influence of λ on the Bay Area dataset. (b) The influence of λ on the Santa Barbara dataset.

We also compared the curves of the training loss and accuracy of the network with
lambda of 0.5, 1, and 2, respectively. As shown in Figure 11, for the λ parameter of 0.5 (the
optimal parameter), the network converges to a better position at 10,000 iterations, which
is faster compared to the other sample sets.
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Figure 11. The network training accuracy and loss curves for the Bay Area and Santa Barbara datasets.
(a) The Bay Area dataset. (b) The Santa Barbara dataset.

5.3. Compare the Performance of the Algorithm

The proposed method implements the two-class change detection task end-to-end in an
unsupervised manner, and the above three experiments also demonstrate the adaptability
and robustness of the proposed method. In Figure 12, we compare the performance of
the five methods on five performance metrics, the correct rate of negative samples, the
correct rate of positive samples, average precision, PE parameters and kappa coefficient,
and each vertex represents the corresponding performance metric in the radar plot. As
shown in Figure 12a, our method outperforms the other methods in all five performance
metrics. Figure 12b,c also demonstrate that our method is more comprehensive in the five
performance metrics.
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Figure 12. Metrics comparison of different algorithms on the three datasets. (a) Metrics comparison
of the Hermiston City Area dataset. (b) Metrics comparison on the Bay Area dataset. (c) Metrics
comparison of the Santa Barbara dataset.

5.4. Shortcomings of This Paper and Future Work

In this paper, we used RNN to mine the spectral information of input images and
combined CNN to fuse the spatial information of hyperspectral data and complete the HSI-
CD task. RNN has lower theoretical computational complexity floating point operations
(FLOPs). Due to parallel implementation and code optimization, the actual running time of
RNN on GPU is still not superior to that of CNN. Future work will focus on how to use
more efficient feature extraction structures to mine both spectral and spatial information, as
well as extend existing feature extraction structures to other tasks with hyperspectral data.

6. Conclusions

This paper proposes a hybrid CNN and RNN feature-extraction network for the
hyperspectral change detection task. The network employs an RNN structure to extract
spectral data while using the CNN structure to extract spatial information. Compared with
other algorithms, the method proposed in this paper achieves better results in real HSI-CD
datasets. Simultaneously, we perform ablation experiments on the proposed structure,
which proves that the proposed structure has a more vital representation ability for spec-
tral information. Extensive experiments incorporating both qualitative and quantitative
evaluations demonstrate that our method produces consistent and substantial gains.
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