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Abstract: Monitoring sea level changes and exploring their causes are of great significance for future
climate change predictions and the sustainable development of mankind. This study uses multiple
sets of satellite altimetry, satellite gravity, and ocean temperature and salinity data to study the
basin-scale sea level budget (SLB) from 2005 to 2019. The basin-scale sea level rises significantly at
a rate of 2.48–4.31 mm/yr, for which the ocean mass component is a main and stable contributing
factor, with a rate of 1.77–2.39 mm/yr, while the steric component explains a ~1 mm/yr sea level rise
in most ocean basins, except for the Southern Ocean. Due to the drift in Argo salinity since 2016, the
residuals of basin-scale SLB are significant from 2016 to 2019. The worst-affected ocean is the Atlantic
Ocean, where the SLB is no longer closed from 2005 to 2019. If halosteric sea level change trends from
2005 to 2015 are used to revise salinity data after 2016, the SLB on the ocean basin scale can be kept
closed. However, the SLB on the global scale is still not closed and requires further study. Therefore,
we recommend that Argo salinity products after 2016 should be used with caution.

Keywords: sea level budget; salinity drift; GRACE; altimetry; Argo

1. Introduction

Sea level rise is one of the direct consequences of global warming. Monitoring sea level
change and analyzing its causes are essential for understanding climate change [1–5].
Altimetry-based sea level change can be divided into two parts. One is ocean mass
change, caused by the water transfer between ocean and land, and the other is steric
sea level change, caused by the temperature and salinity variabilities in sea water [6–11].
With the development of satellite altimetry, satellite gravity, i.e., Gravity Recovery and
Climate Experiment (GRACE), and the Argo oceanographic observation network, we
can directly and accurately obtain these three quantities related to the sea level budget
(SLB). Assuming the deep steric changes are negligible, the residual trend of global mean
“Alt.–GRACE–Argo” is often less than its uncertainty, which is called the closure of the
SLB [12–14]. The residual SLB can theoretically be used to explore the unknown deep
ocean change, especially in the regional ocean basin scale, and assess possible systematic
deviations between observations [15–18].

Previous studies have shown that the global- and basin-scale SLB are closed, with
tolerance over different periods. Llovel et al. (2014) found that the residual trend of the
SLB was −0.13 ± 0.72 mm/yr from 2005 to 2013 when considering the possible systematic
uncertainties of altimetry, GRACE, and Argo data [19]. Comparing the observed sea level
and the sum of its contributing factors since 1900, Frederikse et al. (2020) showed that
the residual trends of the global SLB were 0.04 ± 0.36 mm/yr, 0.26 ± 0.33 mm/yr, and
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0.19 ± 0.51 mm/yr for the periods of 1900–2018, 1957–2018, and 1993–2018, respectively.
Moreover, the SLB of each ocean basin from 1993 to 2018 was also closed [20].

However, some studies have found significant differences in the global mean SLB
since 2016. Royston et al. (2020) reported a significant discrepancy of about 1.2 mm/yr in
the Indian Ocean–South Pacific basin for the SLB from 2005 to 2015, even when observation
errors and systematic errors were considered [21]. Moreover, Chen et al. (2020) found that
the global ocean mass change calculated from “Alt.–Argo” does not match that observed
by GRACE and GRACE-FO since August 2016, which may be related to the abnormal
operation of the accelerometer in the later period of GRACE and GRACE-FO era and
the uncertainties of Argo and altimetry observations [22]. Barnoud et al. (2021) further
confirmed that the salinity drift of Argo can explain about 40% of the non-closure of the
global SLB from 2005 to 2019, while altimetry products have displayed good consistency
since 2016 [23].

Is the ocean-basin-scale SLB closed since 2016? How does Argo salinity drift affect the
regional SLB? To answer these questions, multiple sets of the latest altimetry, Argo, and
GRACE/GRACE-FO data were adopted to carry out basin-scale SLB.

2. Data and Methodology

The data used here mainly include GRACE/GRACE-FO, satellite altimetry, temperature-
salinity field products, and some auxiliary data.

Sea level anomaly grid datasets, retrieved from the Archiving, Validation, and Interpre-
tation of Satellite Oceanographic (AVISO) and the Commonwealth Scientific and Industrial
Research Organisation (CSIRO), are used to calculate the total sea level changes. Covering
multiple satellite altimetry missions, the two products were standardized before release.
In the joint calculation, the effects of glacial isostatic adjustment (GIA) and ocean bottom
deformation (OBD) should also be corrected [24,25]. Two GIA models are used to correct
gridded global sea level changes, while −0.3 mm/yr is subtracted for GIA correction on a
global scale [26–28]. OBD corrections are calculated from spherical harmonic coefficient
products released by GRACE/GRACE-FO [24,29].

To obtain the ocean mass change, the GRACE/GRACE-FO spherical harmonic solu-
tion and the mascon solution are considered in this study. Four sets of spherical harmonic
coefficient gravity field products are used, which were released by the Center for Space
Research (CSR) of the University of Texas at Austin, the German Research Centre for
Geosciences (GFZ), the Jet Propulsion Laboratory (JPL) from NASA, and the Institute of
Geodesy at Graz University of Technology (ITSG). We calculate the ocean bottom pressure
(OBP) from the GSM and GAD data of GRACE products and then deduct the inverse
barometer (IB) correction to invert ocean mass change [30]. During processing, low-order
item replacement [27,31–33], GIA correction [26], and 300 km Gaussian filtering [34] need
to be performed. In addition, CSR and JPL also provide grid-processed mascon products,
which directly estimate the Earth’s surface mass changes based on the inter-satellite vari-
abilities of gravity satellites without complicated post-processing strategies [35,36]. In this
paper, GRACE/GRACE-FO RL06 version data are used to calculate trend values, while the
RL05 version is additionally included for uncertainty estimations.

Nine gridded temperature-salinity datasets are used to calculate the upper 2000 m
steric sea level change, which is listed in Table 1 [11,37–44]. Most of them are based on the
Argo Buoy Observation Network, and some also incorporate other ocean observation data
such as CTD, XBT, and satellite remote sensing data. In addition to the discrepancy in the
data source, the interpolation methods of their mapping are also different, e.g., gradual
correction method in BOA, variational interpolation method in IPRC, and objective analysis
method in NCEI. Therefore, it is recommended to synthesize multiple datasets to obtain a
relatively reliable steric change [45,46].
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Table 1. The Argo temperature and salinity field data used in this study.

Index Dataset Horizontal
Resolution

Vertical
Resolution Data Source Reference

1 BOA 1◦ × 1◦ 0–1975 dbar,
58 layers Argo [37]

2 CORA 1/2◦ (Mercator) 1–2000 m,
152 layers Argo + others [38]

3 EN4_g10 1◦ × 1◦ 5–5350 m, 42 layers Argo + others [39,40]

4 EN4_L09 1◦ × 1◦ 5–5350 m, 42 layers Argo + others [39,41]

5 IAP 1◦ × 1◦ 0–2000 m, 41 layers Argo + others [42]

6 IPRC 1◦ × 1◦ 0–2000 m, 27 layers Argo + others http://apdrc.soest.hawaii.edu/
(accessed on 2 August 2022)

7 JAMSTEC 1◦ × 1◦ 10–2000 dbar,
25 layers Argo + others [43]

8 NCEI 1◦ × 1◦ 0–5500 m,
102 layers Argo + others [11]

9 SIO 1◦ × 1◦ 2.5–1975 dbar,
58 layers Argo [44]

We follow the previous assumption that uncertainties in sea level change and its
components are composed of mutually-independent observation errors and systematic
errors [21]. Observational errors are characterized by the ensemble spread of data products
released by different institutions, while systematic errors are bound by error laws combined
with known error sources, i.e., errors related to the altimetry orbital altitude, OBD, GIA,
and GRACE post-processing strategies [21,30,47]. Therefore, a final uncertainty estimate
can be defined as the square root of the summation of trend standard error (s.e.), the
observational error, and the systematic deviation. The final trend estimate is obtained from
the ensemble mean of multiple datasets mentioned above. As shown in Table 2, for the
uncertainty of altimetry, we mainly consider the uncertainties of the altimetry orbit and
OBD given by Royston et al. (2020) and the ensemble spread of the three sets of altimetry
products [21]. For the uncertainty of Argo, we only consider the uncertainty caused by
a subjective selection of multiple sets of products. For the uncertainties of GRACE and
GRACE-FO, we refer to the influence of the post-processing strategies recommended in
the RL05 and RL06 for ocean mass estimation, which include GIA correction, C20, degree1
replacement, and the various filtering methods, i.e., 300 km Gaussian filtering, 500 km
Gaussian filtering, Swenson de-striping, Chambers de-striping, and no filtering.

Considering that the Argo observation network did not have global coverage before
2005 and Argo products have not undergone strict post-processing since 2020, this study
focuses on the period of January 2005 to December 2019. Since the spatial resolutions of
each product varied, we interpolated these data linearly into 1◦ × 1◦ grids. Moreover, the
regions where strong earthquakes have occurred (Sumatra-Andaman, Maule, and Tohoku-
Oki earthquakes) are masked to avoid leakage effects from the possible co-seismic and
post-seismic gravity changes on ocean mass estimations [48–50]. The coastal regions with
500 km buffers are excluded because of possible GRACE leakage errors and insufficient
Argo sampling.

http://apdrc.soest.hawaii.edu/
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Table 2. Basin mean sea level trends and uncertainties from 2005 to 2019 (unit: mm/yr).

Indian Atlantic Pacific Southern
Ocean Global Ocean

Altimetry
Mean Trend ±s.e. 4.06 0.28 4.31 0.23 4.10 0.23 2.48 0.26 3.94 0.18

ensemble spread 0.67 0.03 0.03 0.05 0.12
orbital altitude 0.20 0.22 0.58 0.13 0.13

OBD 0.16 0.16 0.16 0.16 0.16
Quadratic sum
of uncertainties 0.77 0.36 0.64 0.34 0.3

Argo
Mean Trend ±s.e. 1.63 0.29 1.27 0.12 1.01 0.12 −0.03 0.13 1.05 0.08

ensemble spread 0.14 0.12 0.22 0.22 0.12
Quadratic sum
of uncertainties 0.32 0.17 0.25 0.26 0.14

GRACE
Mean Trend ±s.e. 1.77 0.19 2.05 0.16 2.39 0.20 2.06 0.24 2.14 0.12

ensemble spread 0.17 0.17 0.05 0.27 0.04
degree1 spread 0.60 0.22 0.06 1.05 0.2

C20 spread 0.11 0.08 0.13 0.37 0.06
GIA spread 0.16 0.03 0.05 0.30 0.02
filter spread 0.06 0.09 0.02 0.15 0.03

Quadratic sum
of uncertainties 0.68 0.34 0.26 1.22 0.25

Alt.–GRACE–Argo 0.66 1.08 0.99 0.52 0.7 0.74 0.45 1.29 0.75 0.41

3. Results
3.1. Global and Basin-Scale Sea Level Budget

Figure 1 depicts the time series of global mean sea level change from 2005 to 2019,
including the ocean mass change component SSHmass, steric change component SSL2000,
and SLB Residual. Although the sea level rose or fell rapidly during El Niño and La Niña
events, the global mean sea level showed an overall accelerated upward trend due to the
intensification of global warming [51,52]. Increasing ocean mass and warming seawater
are good explanations for current sea level rise. The SLB residual fluctuated around
“0 mm” before 2016, which means that the SLB budget was closed from 2005 to 2015 [15,18].
However, the residuals have "significantly" increased since 2016, which seems a significant
increasing trend. According to the statistics in Table 2, the rising rate of the global mean sea
level was 3.94 ± 0.30 mm/yr from 2005 to 2019, for which the steric change and ocean mass
change components contributed 1.05 ± 0.14 mm/yr and 2.14 ± 0.25 mm/yr, respectively.
The residual trend of “Alt.–Argo–GRACE” was 0.75 ± 0.41 mm/yr from 2005 to 2019,
which confirms that the global mean SLB was not closed [22].

Figure 2 shows the time series of basin mean sea level changes in the Indian Ocean,
Atlantic Ocean, Pacific Ocean, and Southern Ocean. Compared with the global mean
sea level (Figure 1), each basin sea level exhibits more short-term variability, particularly
in the Indian Ocean. In addition to short time-scale changes, the sea level of the Indian
Ocean rose at a relatively uniform rate from 2005 to 2019, while the sea level of the other
basins experienced similar acceleration or deceleration ascent processes to those of the
global average. The series of ocean mass changes in each basin is in line with the total sea
level change, which indicates that sea level changes are dominated by ocean mass change.
However, the steric components in each basin are quite different, especially the obvious
increase and decrease in the Indian Ocean sea level in 2006 and 2016, which may be related
to short-time-scale climate events such as ENSO [53]. Moreover, the sea level residuals in
each basin fluctuated around zero from 2005 to 2015 and were significantly increased by
varying degrees after 2016, similar to those of the global averages.
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Figure 1. Time series of global mean sea level from 2005 to 2019 for altimetry-derived SSH (black
line), Argo-derived SSL2000 (blue line), GRACE-derived SSHmass (dark green line), and residual (red
line) data. The solid curves are the average of multiple products, and the shadings are corresponding
standard deviations. Seasonal cycles were removed by least squares, and 3 months smoothing was
applied for each series. Time series are offset for clarity.
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Figure 2. Time series of basin mean sea level change for (a) Indian Ocean, (b) Atlantic, (c) Pacific
Ocean, and (d) Southern Ocean. The solid curves are averages of multiple products, and the shadings
are corresponding standard deviations. Seasonal cycles were removed by least squares, and 3 months
smoothing was applied for each series. Time series were offset for clarity.

Figure 3 depicts the statistics of the global mean and basin mean sea level trends
from 2005 to 2019, including the products of various institutions and ensemble means.
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The ensemble spreads of altimetry-derived sea surface height products in these basins are
relatively small, except for the Indian Ocean’s. The discrepancies between GRACE products
are mainly concentrated in the mascon and SHs solutions, especially in the Southern Ocean,
where the impact of land-to-sea leakage errors is significant. The Argo products appear
more discrete compared to the altimetry and GRACE products, so we should adopt as
much data as possible to reduce possible errors. If we only consider the observation error
between the datasets, the SLB in most oceans is unclosed, and the residual trends are not
negligible compared to sea level components (Figure 3d).
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Figure 3. Global mean and basin mean sea level changes from 2005 to 2019, including trends of each
dataset and ensemble averages. Trends of (a) total sea level changes derived from different altimetry
datasets, (b) ocean mass changes derived from different GRACE solutions, (c) steric changes from
different datasets, and (d) ensemble average trends. The error bar represents the error of the least
squares linear fit (95% confidence interval).

Considering multiple datasets and comprehensive errors, Table 2 lists the trends and
associated uncertainties of global- and basin-scale SLB. Except for the Southern Ocean,
sea level rise rates in other ocean basins are slightly higher than the global average of
3.94 ± 0.30 mm/yr. In these basins, the largest contributing components to sea level rise
are the ocean mass changes that are close to 2 mm/yr. However, the contribution of steric
components to sea level rise varies greatly in different ocean basins. The highest rate
of steric change is 1.63 ± 0.32 mm/yr in the Indian Ocean, the smallest is close to 0 in
the Southern Ocean, and those of the other ocean basins are close to the global average.
The SLB residual trends of the Indian Ocean, the Atlantic Ocean, the Pacific Ocean, and
the Southern Ocean are 0.66 ± 1.08 mm/yr, 0.99 ± 0.52 mm/yr, 0.70 ± 0.74 mm/yr, and
0.45 ± 1.29 mm/yr, respectively. The SLB of the Atlantic Ocean is significantly not closed
from 2005 to 2019, while that of the other basins is closed. Considering that the salinity drift
was reported by the Argo Program Office (https://argo.ucsd.edu/, accessed on 2 August
2022), it is likely to be caused by the Argo salinity drift after 2016.

https://argo.ucsd.edu/
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Recent basin-scale SLB results seem to be slightly different from the report of
Royston et al. (2020) [21]. It should be noted that the statistical results we show here
are based on the period of 2005–2019, which is different from their research period of
2005–2015. If our study period is restricted to the same span, we find that most basin-scale
SLB is closed, consistent with the findings by Royston et al. (2020) [21]. Since the residual
trend of the SLB is not uniform on a global scale, the closed state of the regional SLB also
depends on the division of the ocean basin scale. Royston et al. (2020) merged the South
Pacific and the North Indian Ocean together (Indian–South Pacific region) for analysis and
found that the SLB is not closed in this region [21]. The explanation for this phenomenon
is that the SLB is significantly unclosed in the North Indian Ocean and the South Pacific.
At the basin scale, the positive and negative signals of the SLB inside the ocean basin will
cancel each other out and eventually reach a balance. In addition, subtle differences in
numerical calculations, product selection, and uncertainty analyses will also have certain
impacts on the results.

3.2. The Impact of Salinity Drift to Regional SLB

The steric sea level anomalies (SSLA) are mainly composed of two parts: thermosteric
sea level anomalies (TSLA), caused by a thermal expansion or contraction of the ocean’s
volume, and the halosteric sea level anomalies (HSLA), derived from saline contraction
or expansion of the ocean’s volume [46,54–56]. We further studied the contribution of
temperature and salinity to basin mean sea level rise, trying to understand the location and
the impact of Argo salinity drift since 2016.

Figure 4 depicts the time series of HSLA, TSLA, and SSLA in each ocean basin. Tem-
perature changes dominated the SSLA before 2016, and the contribution of salinity to sea
level change was almost negligible. However, the Atlantic and Southern Oceans became
significantly saltier after 2016, which led to regional sea level drops of 15 mm and 10 mm,
respectively. This phenomenon conflicts with our general understanding that the ocean
should be desalinated by the accelerated melting of glaciers and ice sheets in Antarctica
and Greenland. This is most likely due to systematic deviation caused by the drift of
Argo salinity data [57,58], which has a great impact on the basin-scale sea level budget,
particularly in the Atlantic and Southern Oceans.
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Figure 5 illustrates the spatial distribution of SSLA, TSLA, and HSLA in the periods
of 2005–2019, 2005–2015, and 2016–2019. The spatial distribution characteristics of steric
change and its components in 2005–2019 are similar to those in 2005–2015. The steric sea
levels are decreasing significantly in the Northeast Atlantic Ocean and the Subtropical
Western Pacific Ocean while increasing in the Northwest Atlantic Ocean, the Equatorial
East Pacific Ocean, and the East Indian Ocean over the periods of 2005–2015 and 2005–2019.
Since ocean temperature changes contribute to most of the steric sea level changes, the
patterns of SSLA and TSLA are roughly the same [59]. In addition, HSLA changes are
relatively weak in most of the ocean, but we cannot ignore the compensatory effect of
salinity in the North Atlantic and the gaining effect in the East Indian Ocean [45,46,60].
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The trend signals for 2016–2019 significantly exceed those of 2005–2015 and 2005–2019,
which means that the short-time-scale changes may be more severe. In addition to the trend
amplitudes, we can find that the steric trends in some basins around 2016 are completely
opposite, especially in most of the North Atlantic basin. The SSLA trend signals of the
Northwest Atlantic change from positive to negative, while those of the Northeast Atlantic
change from negative to positive. The opposing changes of steric trends in the North
Atlantic around 2016 are caused by the combined effects of temperature and salinity. There
are positive and negative patterns of TSLA in the North Atlantic from 2005 to 2015, but
almost exclusively positive signals in 2016–2019. The spatial distribution of HSLA in the
North Atlantic shows a change from positive to negative signals.

In addition, the salinity changes from 2016 to 2019 in the eastern Indian Ocean, most
of the Pacific Ocean, and the southern Atlantic Ocean close to the westerly drift zone are
diametrically opposite to those of 2005–2015 (Figure 5f,i). Since the positive and negative
signals of salinity changes cancel each other out after the weighted average of the basin
scale, there are no clear trends for HSLA series of the Indian Ocean and the Pacific Ocean
(Figure 4a,c). Due to the influence of the drift of salinity data since 2016, we are temporarily
unable to determine whether Figure 5i is credible, unless there is definite confirmation from
third-party data.

Table 3 shows the basin mean trends of HSLA in two time periods. During 2005
to 2015, we can infer that the contribution of salinity to sea level rise was very weak, or
even negligible, even in regional oceans. Due to the Argo salinity drift, HSLA showed
a significant negative trend from 2005 to 2019, which had a great impact on the basin-
scale SLB, i.e., 0.76 mm/yr in the Atlantic Ocean and 0.3 mm/yr in the Southern Ocean.
Assuming the basin mean HSLA trends from 2005 to 2015 are correct, we adopted these



Remote Sens. 2022, 14, 4637 9 of 12

values in the current period to revise the SLB residual trends. The corrected residual trends
are 0.49 ± 1.08 mm/yr, 0.23 ± 0.52 mm/yr, 0.65 ± 0.74 mm/yr, and 0 ± 1.29 mm/yr for
the Indian, Atlantic, Pacific, and Southern Oceans, respectively. Obviously, this method is
simple and effective to close the basin-scale SLB.

Table 3. Basin mean trend of HSLA (unit: mm/yr).

Time Indian Atlantic Pacific Southern Ocean Global Ocean

HSLA (2005–2015) −0.13 ± 0.18 0.29 ± 0.17 −0.15 ± 0.06 −0.21 ± 0.21 −0.05 ± 0.07
HSLA (2005–2019) −0.30 ± 0.12 −0.47 ± 0.26 −0.10 ± 0.04 −0.51 ± 0.16 −0.25 ± 0.07

Salinity drift 0.17 0.76 0.05 0.3 0.2
Revised residual trends

from 2005 to 2019 0.49 ± 1.08 0.23 ± 0.52 0.65 ± 0.74 0.15 ± 1.29 0.55 ± 0.41

However, only considering the salinity drift is not enough to close the global SLB from
2005 to 2019 (0.55 ± 0.41 mm/yr), which has been reported by Barnoud et al. (2021) [23].
It seems to be in contradiction with the closure of the SLB at each basin. One possible
reason is that the global average conceals regional differences, which in turn leads to
an underestimation of uncertainty on a global scale. Another possibility is a potential
systematic deviation of ocean mass estimations from GRACE and GRACE-FO [23]. In
addition, the error of the numerical calculations cannot be ruled out because the global SLB
residual trend and the uncertainty after a salinity drift correction are very close.

4. Conclusions

Multiple sets of satellite altimetry, satellite gravity, and ocean temperature and salinity
data were used to study the global mean and basin mean SLB from 2005 to 2019. The
basin mean sea level rose significantly, with rates ranging from 2.48 ± 0.34 mm/yr to
4.31 ± 0.36 mm/yr, compared with a global mean rate of 3.94 ± 0.3 mm/yr. The increase
in ocean mass is the main contributor to sea level rise in all basins, with rates ranging from
1.77 ± 0.68 mm/yr to 2.39 ± 0.26 mm/yr. The increases in steric sea levels in the Indian
Ocean, the Atlantic Ocean, and the Pacific Ocean also contributed more to the sea level
rises, with rates of more than 1 mm/yr, while the steric change in the Southern Ocean was
not significant.

After comprehensively considering observational errors and systematic biases, we
found that the SLB in the Atlantic was significantly unclosed from 2005 to 2019, with a
trend of 0.99 ± 0.52 mm/yr. According to the time series and spatial distribution of HSLA,
the systematic deviation of the Argo salinity data since 2016 is the main reason for the
non-closure of the Atlantic SLB. Due to the salinity drift, HSLA of the ocean basins changed
drastically around 2016. The basins most affected by salinity drift are the Atlantic Ocean
and the Southern Ocean, both of which show systematic negative trends in HSLA after
2016. Given that the salinity drift has affected the global and basin scale SLB, we should be
cautious when using the salinity data after 2016.

A simple and effective hypothesis that the contribution of salinity to sea level change
after 2016 is consistent with that of 2005–2015 was adopted to revise the SLB. The revised
SLB of each ocean basin is closed and the residual trends are significantly reduced. However,
the global mean SLB still cannot be closed, which may be related to GRACE/GRACE-
FO data, numerical calculations, and the error estimation method. Two more rigorous
approaches are using ship-based high-precision salinity observations to calibrate Argo
observations and quantifying the salinity changes from the perspective of the global water
cycle, which will also be the focus of future work.
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