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Abstract: Global Navigation Satellite System (GNSS)-Reflectometry (GNSS-R) technology has opened
a new window for ocean remote sensing because of its unique advantages, including short revisit
period, low observation cost, and high spatial-temporal resolution. In this article, we investigated the
potential of estimating swell height from delay-Doppler maps (DDMs) data generated by spaceborne
GNSS-R. Three observables extracted from the DDM are introduced for swell height estimation,
including delay-Doppler map average (DDMA), the leading edge slope (LES) of the integrated delay
waveform (IDW), and trailing edge slope (TES) of the IDW. We propose one modeling scheme for
each observable. To improve the swell height estimation performance of a single observable-based
method, we present a data fusion approach based on particle swarm optimization (PSO). Furthermore,
a simulated annealing aided PSO (SA-PSO) algorithm is proposed to handle the problem of local
optimal solution for the PSO algorithm. Extensive testing has been performed and the results show
that the swell height estimated by the proposed methods is highly consistent with reference data, i.e.,
the ERA5 swell height. The correlation coefficient (CC) is 0.86 and the root mean square error (RMSE)
is 0.56 m. Particularly, the SA-PSO method achieved the best performance, with RMSE, CC, and
mean absolute percentage error (MAPE) being 0.39 m, 0.92, and 18.98%, respectively. Compared with
the DDMA, LES, TES, and PSO methods, the RMSE of the SA-PSO method is improved by 23.53%,
26.42%, 30.36%, and 7.14%, respectively.

Keywords: Global Navigation Satellite System-Reflectometry (GNSS-R); Cyclone Global Navigation
Satellite System (CYGNSS); delay-Doppler maps (DDMs); swell height; particle swarm optimization
(PSO); simulated annealing (SA)

1. Introduction

Swell height information is of much concern in the design of coastal structures and
ocean platforms, navigation safety, and offshore engineering [1]. The traditional method
for swell height in situ measurement is to place buoys on the sea surface to collect the
surrounding information, which has the advantages of being fixed, long-term, and timely.
However, it has limited coverage, involves high cost, and is easily affected by environmental
factors. A second way to obtain swell height is using a satellite altimeter. This technique
has been widely investigated in previous studies [2–4], and it can provide swell height data
at global coverage and climate scales; however, the spatial resolution of the existing satellite
altimeter is limited. Synthetic aperture radar (SAR) altimetry data have become a new
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source for swell monitoring [5,6], as well as for swell heigh measurement [7–9]. However,
this kind of observation is sparse in both time and space. Numerical models compensate
for these limitations eventually at the expense of additional errors imparted by inaccurate
physical processes, such as dissipation [10], and by forcing uncertainties.

High-frequency radar (HFR) offers another way to monitor ocean swell [11–14]. These
HFRs are land-based ground-wave radars. They collect ocean surface information contin-
uously in near-real time over a large area (~100 km) and with high spatial (~1 km) and
temporal (~1 h) resolutions. Swell height measurement by HFR technique was investigated
in recent years [15,16]. Since the wind wave and swell patterns can be presented on X-band
radar images, X-band radar is also an effective tool for obtaining swell height informa-
tion [17,18]. However, wind waves and swell cannot be imaged well by X-band radar under
nononshore wind conditions [19]. Additionally, unlike HFR and satellite measurements,
which can monitor up to several hundred square kilometers or even almost global areas,
the effective measuring area for ocean swell by the X-band radar is limited to dozens of
square kilometers [20].

In recent years, with the launch of many satellites, GNSS technology has developed
rapidly. GNSS satellites can provide all-weather, all-day, uninterrupted L-band microwave
signal sources, which can offer navigation, positioning, and accurate timing information to
users on the earth. As a new remote sensing technology, Global Navigation Satellite System-
Reflectometry (GNSS-R) has been intensively investigated in marine remote sensing in
recent years because of its unique advantages of short revisit period, low observation cost,
and high spatial-temporal resolution, for example, sea surface wind speed retrieval [21,22],
sea surface height retrieval [23], sea ice detection [24], tsunami detection [25], and rainfall
detection and intensity retrieval [26–29]. In the past eight years, several GNSS-R mission
satellites have been launched, such as the TechDemosat-1 (TDS-1) satellite [30] from the
United Kingdom, Cyclone GNSS (CYGNSS) satellites [31] from the United States and
BuFeng-1 A/B satellites [32] from China, ESA’s FSSCat satellites (3Cat-5/A and 3Cat-5/B
satellites) [33] and the FY-3E satellite of the China Meteorological Administration [34].
Accordingly, spaceborne GNSS-R data have also been used for significant wave height
(SWH) (Hs) retrieval, although only a few results are reported [35–40]. Unfortunately, there
is no research on estimating swell height by using spaceborne GNSS-R data.

This paper aims to study the potential of GNSS-R in swell height estimation by
using the observables obtained from the GNSS-R delay-Doppler map (DDM). The main
contributions in this article are summarized as follows:

(1) Three GNSS-R observables extracted from DDM were introduced and used for swell
height estimation, i.e., delay-Doppler map average (DDMA), the leading edge slope
(LES) of the integrated delay waveform (IDW), and the trailing edge slope (TES) of
the IDW.

(2) Based on these three GNSS-R observables, empirical models were developed for
retrieving swell height.

(3) Particle swarm optimization (PSO) was exploited to establish a combined model to
enhance the swell height estimation performance.

(4) The problem of local optimal solutions often occurs in the PSO algorithm. To overcome
the problem and further increase the measurement accuracy, we proposed a SA-PSO
algorithm that combines simulated annealing and PSO.

The structure of this paper is described as follows: Section 2 describes the data sets
and data processing strategy. Section 3 introduces the swell height estimation model in
detail, and Section 4 shows the evaluation results with the ERA5 swell height product as a
reference and gives the discussions. Finally, Section 5 draws the conclusion in this paper.

2. Dataset Description and Data Processing
2.1. Data

To develop the swell height retrieval model and test the performance of the model,
two data sets were used, which are GNSS-R data from CYGNSS L1 V3.0 product and
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reanalysis swell height datasets from the ECMWF (European Center for Medium-Range
Weather Forecasts).

(1) CYGNSS GNSS-R data
CYGNSS consists of eight micro-satellites, each with four delay-Doppler mapping

instruments (DDMI) that generate DDM data. The original DDM size (i.e., number of
pixels) of CYGNSS is 20 × 128 (20 Doppler shifts and 128 time delays). To facilitate data
transmission, the size of DDM is compressed to 11× 17. At the moment, NASA’s PODAAC
(Physical Oceanography Distributed Active Archive Center) mainly open three levels (i.e.,
level 1, level 2, and level 3) of CYGNSS GNSS-R data to users for free. In this article, we
use L1 V3.0 data product downloaded from the website https://podaac-tools.jpl.nasa.gov/
drive/files/allData/cygnss/L3/v3.0 (accessed on 1 January 2022), which includes DDM,
specular reflection point positions, and transmitter positions of eight CYGNSS satellites.
The current version mainly contains GNSS-R data for the period from 1 August 2018 (day
of year (DOY) is 213) to 2021. Considering the large amount of data, we only downloaded
the CYGNSS data from 1 April 2019 to 31 July 2019 for our study, corresponding to DOY of
091~212.

(2) ECMWF reanalysis swell height datasets
The Copernicus Climate Change Service (C3S) Climate Database provides users with

free access to the ECMWF reanalysis data product (https://www.ecmwf.int/en/forecasts/
datasets/browse-reanalysis-datasets (accessed on 1 January 2022)). The ECMWF ERA5
data are the latest product, which provide waves height data with a spatial resolution
of 0.5◦ × 0.5◦ and a time resolution of 1 h. The ERA5 reanalysis product provides three
types of waves height data, i.e., wind waves height, swell height, and height of combined
wind waves and swell. The wind wave and swell components are separated by means of
spectral analysis [41]. In this study, the swell height data was chosen for model design and
validation. Considering the spatial–temporal resolution difference between the CYGNSS
GNSS-R data and the ERA5 swell height data, the ERA5 swell height data had to be
collocated with the CYGNSS data. A linear interpolation in time and a bilinear interpolation
in space were used to obtain the co-located swell height.

2.2. Data Quality Control

The CYGNSS L1 version 3.0 measurements are quality controlled before model con-
struction and verification based on the following criteria [42–44]:

(a) The observables must be positive, while the Nan values need to be discarded.
(b) When the star tracker is unable to track due to solar contamination, the measurements

taken are discarded.
(c) The uncertainty of the bistatic radar cross section (BRCS) is below 1.
(d) The nano star tracker attitude status is set to 0; it shows that the nano star tracker

attitude status is “OK”.
(e) When the absolute value of spacecraft roll is greater than 30 degrees, the yaw is greater

than 5 degrees, and the pitch is greater than 10 degrees, the measurement values
are discarded.

(f) The observables from GPS IIF satellites are removed, because accurate information on
the transmitter antenna gain pattern of GPS satellites was not available.

(g) The DDM data with the range corrected gain (RCG) figure of merit (FOM) for the
DDM (prn_fig_of_merit) less than 0 are discarded.

(h) The observation data with the receive antenna gain (sp_rx_gain) in the direction of
the specular reflection point less than 0 dBi are discarded.

(i) In order to reduce land effects and modeling error, observations with specular reflec-
tion points greater than 25 km from land were selected.

(j) Observable data range is defined as 38◦N–38◦S in the latitude.
(k) For more descriptions, see the CYGNSS L1 V3.0 users’ guide and data dictionary,

which can be found on the Web site (https://podaac-tools.jpl.nasa.gov/drive/files/

https://podaac-tools.jpl.nasa.gov/drive/files/allData/cygnss/L3/v3.0
https://podaac-tools.jpl.nasa.gov/drive/files/allData/cygnss/L3/v3.0
https://www.ecmwf.int/en/forecasts/datasets/browse-reanalysis-datasets
https://www.ecmwf.int/en/forecasts/datasets/browse-reanalysis-datasets
https://podaac-tools.jpl.nasa.gov/drive/files/allData/cygnss/L1/docs/148-0346-8_L1_v3.0_netCDF_Data_Dictionary.xlsx
https://podaac-tools.jpl.nasa.gov/drive/files/allData/cygnss/L1/docs/148-0346-8_L1_v3.0_netCDF_Data_Dictionary.xlsx
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allData/cygnss/L1/docs/148-0346-8_L1_v3.0_netCDF_Data_Dictionary.xlsx (accessed
on 1 January 2022)).

2.3. Spaceborne GNSS-R DDM and Integral Delay Waveforms

The power model of the GNSS scattered signal is proposed by Zavorotny and Voronovich
based on the KA-GO (Kirchhoff approximation to geometric optics) [45]; it describes scat-
tered GNSS signal power as a function of geometrical, environmental, and system parame-
ters. The model can be used to generate the DDM, which has since been widely studied. In
this study, DDMs were also used for swell height retrieval.

When the time-delay waveforms corresponding to Doppler frequency within a certain
range are accumulated and averaged, the integral delay waveform (IDW) is generated
as [46]:

ωIDW(τ) =
1
N

N

∑
l=1

〈∣∣Y′(τ, fl)
∣∣2〉 (1)

where ωIDW(τ) is the IDW; N is the number of Doppler frequency shifts, and it is set to
5;
〈
|Y′(τ, fl)|

2
〉

is the power of the reflected signal after removing the average noise level
when the time delay and Doppler shift are τ and fl , respectively.

To clearly explain the calculation method of the IDW, Figure 1 shows two examples
of DDM pixels from selected Doppler shifts and time delays used to calculate IDW. The
IDW is generated by summing the five-pixel values of five different Doppler shifts (i.e.,
[−1000 1000] Hz) for each time delay.

Figure 1. The DDM pixels of 17 delays and 5 Doppler shifts used to obtain IDW. The DDM data were
collected on 30 April 2019 by the receiver onboard the CY08 satellite. The swell heights are 0.75 m
(left) and 5.02 m (right), respectively.

2.4. Definition of GNSS-R Observables

In previous studies, several DDM-related observables such as SNR, delay-Doppler
map average (DDMA), Woodward ambiguity function (WAF) matched filter (MF), trailing
edge slope (TES), and normalized bistatic radar scattering cross section (NBRCS) have been
proposed for different GNSS-R applications, e.g., sea surface wind speed retrieval [31],

https://podaac-tools.jpl.nasa.gov/drive/files/allData/cygnss/L1/docs/148-0346-8_L1_v3.0_netCDF_Data_Dictionary.xlsx
https://podaac-tools.jpl.nasa.gov/drive/files/allData/cygnss/L1/docs/148-0346-8_L1_v3.0_netCDF_Data_Dictionary.xlsx
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sea ice monitoring [47], and soil moisture retrieval [48]. In this study, the DDMA and two
observables (leading edge slope (LES) and TES) derived from the integral delay waveforms
are used for swell height estimation. These three observables are defined as follows:

(1) DDMA: DDMA is the average scattering power of a specific time-delay Doppler
window of DDM near the specular reflection point, expressed as:

DDMA =
1

k× j

10

∑
p=8

8

∑
q=4

DDM(τp, fq) (2)

where DDM(τp, fq) is the power (pixel value or DDM value) after denoising when time
delay and Doppler shift are τp and fq, respectively. Pixel values of k time delays and j
Doppler shifts centered at the peak DDM are used to determine the DDMA. In this work,
k = 3 and j = 5.

(2) Leading Edge Slope (LES) of Integrated Delay Waveforms (LES-IDW): Taking the
time delay as the 0 chips dividing point, we selected a certain number of integral delay
waveform values in the time delay window of the leading edge part and calculated the
leading edge slope of IDW by least square fitting, expressed as follows:

LES =

n
n
∑

i=1
τL

i ωL
IDW,i −

n
∑

i=1
τL

i

n
∑

i=1
ωL

IDW,i

n
n
∑

i=1
(τL

i )
2 − (

n
∑

i=1
τL

i )
2 (3)

where IDW represents the integrated delay waveform, ωL
IDW,i is the leading waveform

value of IDW, τL
i is the time delay value of the leading edge, n is the number of delay bins

for curve fitting, IDW is calculated as described in Section 2.3.
(3) Trailing Edge Slope (TES) of Integrated Delay Waveforms (TES-IDW): Taking the

time delay as the 0 chips dividing point, we selected a certain number of integral delay
waveform values in the time delay window of the trailing edge part and calculated the
trailing edge slope of IDW by least square fitting, that is:

TES =

n
n
∑

i=1
τT

i ωT
IDW,i −

n
∑

i=1
τT

i

n
∑

i=1
ωT

IDW,i

n
n
∑

i=1
(τT

i )
2 − (

n
∑

i=1
τT

i )
2 (4)

where ωT
IDW,i is the trailing edge value of IDW, τT

i is the time delay of the trailing edge.
The definitions of other symbols are the same as (3).

Note that an important aspect of calculating DDMA, TES, and LES observables from
DDMs is to calculate the delay and Doppler range of the observables. DDMA, LES, and
TES observables were calculated using the same Doppler and delay window, and the
Doppler and delay ranges were determined to be [−1000 1000] Hz and [−0.25 0.25] chips,
respectively, corresponding to a 5 × 3 window around the specular point in DDM (as
shown in the magenta box in Figure 2). This choice is based on the consideration that
averaging more diffuse scattering signals will improve SNR without reducing the spatial
resolution incurred using a larger integration region [31].
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Figure 2. DDMs with different SNR. The swell heights corresponding to each DDM are 0.316 m (a),
0.881 m (b), 1.633 m (c), 2.686 m (d), 3.408 m (e), and 5.218 m (f), respectively.

For the convenience of illustration and calculation, the zero time-delay point is used as the
demarcation point of the leading edge (LE) part and trailing edge (TE) part. Figures 2 and 3,
respectively, show the DDM and NIDW of different swell heights with different SNR values.
The CYGNSS DDM data used were collected on the ocean on 30 April 2019. As shown in
the figure, the integrated delay waveforms of the reflected signals have different character-
istics under different swell heights, which provides a new opportunity for remote sensing
technology to retrieve swell height.
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position of the X axis. This error may be caused by the typesetter. 
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Figure 3. NIDW with different swell height (Hswell). The red dotted line divided the waveform into
two parts, leading edge and trailing edge.

3. Model Construction
3.1. Basic Description

First, the CYGNSS data are preprocessed and selected as mentioned previously. Then,
the three DDM-based observables are calculated, and a linear interpolation in time and
a bilinear interpolation in space are applied to the ERA5 swell height products to match
the DDM data acquisition time and the positions of specular points. The data are further
randomly divided into two parts of equal size, one for the training data set and the other
for the test data set. One of the three observables and swell height are treated as input and
output variables, respectively, of one individual model established by least-squares fitting.
To enhance the swell height retrieval performance, two different data fusion schemes are
proposed to combine the estimates based on the three individual observables. The two
fusion schemes are particle swarm optimization (PSO) and simulated annealing aided PSO
(SA-PSO). The swell height retrieval results based on the five schemes (i.e., DDMA method,
LES method, TES method, PSO method, and SA-PSO method) are compared with the ERA5
swell height product data for performance evaluation. Figure 4 depicts the algorithm of the
model development and testing process.
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Please revise the following questions, thank you! 

 

1. As shown in the screenshot, is an extra space entered in the red box mark? 

 

 

2. Figure 4 has low resolution, please replace with the following figure. 

 

 

3. The position of symbol “*” in Equation (7) is wrong. The correct Equation 7 is revised as 

follows: 

 

 

The correct Equation (7) is revised as follows: 

 ( ) ( )1 2
1 1 2

rand rand i i i ii i i i
k k c k c k+ =  +  − +  −pbest gbest   (1) 

 

4. As shown in the screenshot, ERA revised to ERA5. 

Figure 4. Flowchart of the GNSS-R based swell height estimation method. The first stage is data
preparation, the second stage is DDM processing, the third stage is extraction of three GNSS-R
observables, the fourth stage is the modeling process, the fifth stage is model performance verification
and evaluation. Details of the stages are provided in the remainder of this section.

3.2. Modeling Based on Individual Observables

In this section, we used the DDMA, LES, and TES observables to develop the swell
height estimation models. To deal with the effect of incident angle, the training data are
divided into groups, each of which corresponds to a bin of incident angles with a bin width
of 5 degrees. Accordingly, each group of data generates a swell height estimation model for
each scheme. After processing extensive experimental data and studying the relationship
between the three observables and swell height, we proposed the following model:

Hswell ,ob = a1 exp(b1xob,i) + a2 exp(b2xob,i) (5)

where Hswell ,ob is the swell height estimated by the model, xob,i denotes any of the three
observables, the other symbols are the fitting parameters of the retrieval model to be
determined by the nonlinear least-squares fitting method.

To consider the dependence of the swell height retrieval on incident angle, it is very
important to study the swell height modeling under different incident angles. Figure 5
shows some examples of the training dataset for the DDMA, LES, and TES observables at
four different incidence angles (θ). In the figure, the scattering density points represent the
corresponding relationship between GNSS-R observations and ERA5 swell height values,
and the magenta solid line is the swell height retrieval empirical model fitted by the training
data. The general trend is that the swell height decreases as the observable increases.

DDMA, LES, and TES observables were used to develop GMFs. Figure 6 shows the
GMFs of DDMA, LES, and TES for some incidence angle bins. It can be seen that the three
observables decreased rapidly with the increase in swell height. This is because with the
increase in swell height, the sea surface becomes rougher, resulting in the reduction in the
power of GNSS-reflected signal flatter trailing and leading edges. If the training sample
is small or the DDM noise is large, the modeling error can be easily transferred to the
GMF, which will inevitably amplify the observation error of the final swell height retrieval.
However, in the low swell height range, the incident angle has little effect on the retrieval
model, but this effect becomes significant when swell height is higher than a certain value
around 4 m.
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Figure 5. Scatter density plots of DDMA (top), LES (middle), and TES (bottom) calculated by DDM
compared to ground truth ERA5 swell height at incidence angles of 30◦, 40◦, 50◦, and 55◦ (left to
right). Magenta solid line represents swell height fitting model. The colors indicate data density
related to the distribution peak.

Figure 6. Cont.
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Figure 6. GMFs constructed by DDMA (top left), LES (top right), and TES (bottom) in log10 scale
with ERA5 swell height product at incidence angle bins of 15◦, 20◦, 30◦, 40◦, 50◦, and 55◦. Using
ERA5 swell height as the ground truth swell height.

3.3. Modeling Based on PSO Method

Inspired by the wind retrievals method incorporating PSO presented in [42], a new
method that combines swell height retrievals from GNSS-R observables and PSO was
first introduced. The single feature value retrieval results ŵ = (wDDMA, wLES, wLES)

T

are linearly combined, where wDDMA, wLES, and wTES are the swell height estimations
based on DDMA, LES, and TES, respectively; and the combination coefficient vector to be

optimized is
→
k = (kDDMA, kLES, kTES), where kDDMA, kLES, and kTES are the combination

coefficients of DDMA, LES and TES, respectively.
The objective function of the combined swell height estimation is set as the mean

square error between the combined estimation result and the reference true value wTrue.
The optimization objective of the particle swarm is to find a set of combined coefficients
that make the objective function take a very small value in the search space, and its specific
form is as follows:

F(
→
k ) =

〈(→
k · ŵ− wTrue

)2
〉

(6)

The specific implementation steps of the PSO algorithm are as follows:
(a) In the given parameter search space, a set of particles is produced randomly

according to Equation (6); the individual and global optimal points are obtained.
(b) Update the combination coefficient and the combination coefficient correction

value; the specific functional form of the combination coefficient correction value is as
follows;

→
∆ki+1 = κ∗

→
∆ki + c1∗rand 1

i

(
pbesti −

→
k i

)
+ c2∗rand 2

i

(
gbesti −

→
k i

)
(7)

where
→
ki is the current particle combination coefficient,

−−→
∆ki and

−−−→
∆ki+1 are the current

combination coefficient correction value and the updated combination coefficient correction
value, respectively. κ is the inertia factors, c1 and c2 are the learning factors, rand1

i and
rand2

i are the generated random numbers.

(c) The current particle combination coefficients
→
ki are corrected according to the

updated combination coefficient correction value as:

→
k i+1 =

→
k i +

−−−→
∆ki+1 (8)
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(d) The individual and global optima are updated.
(e) Determine whether the termination condition of particle swarm optimization is

satisfied, and if not, repeat steps (b) and (c) until the termination condition is satisfied.

(f) The optimal combination coefficient
→
k is taken as the one that minimizes F(

→
k ) in

Equation (6) and it is used for swell height estimation via:

ŴPSO =
→
k · ŵ (9)

The advantage of the PSO algorithm is that it can use a large number of particles in a
certain search space to quickly and accurately find the best set of combination coefficients
that satisfy the final conditions, thus, minimizing the objective function (i.e., MSE) of the
combination result relative to the true value of the swell height.

3.4. Modeling Based on Combination of Simulated Annealing and Particle Swarm Optimization
(SA-PSO) Algorithm

To overcome the problem of local optimal solution of the PSO algorithm, a simulated-
annealing (SA)-based particle swarm optimization (PSO) algorithm (SA-PSO) is proposed.
This algorithm makes the flight of particles memoryless and enhances the global search
capability by using the simulated annealing algorithm to regenerate the positions of the
stopped evolving particles. At the same time, a double population search mechanism is
adopted. That is, one population keeps particles with feasible solutions, and the particles
are searched for the optimal feasible solution step by step by the SA-PSO algorithm;
the other population keeps particles with infeasible solutions, and the feasible solution
population accepts particles with infeasible solutions with a certain probability, which
not only improves the search capability and search efficiency of the algorithm, but also
effectively keeps the population diversity and improves the local search ability of the
PSO algorithm.

The specific implementation steps of the SA-PSO algorithm are as follows:
(a) Each particle in the population is given a random starting position and velocity.
(b) The fitness of each particle is calculated. The current position and fitness value of

each particle are stored in the corresponding pi, and the position and fitness value of the
individual with the best fitness value in all pbest are stored in pg.

(c) The initial temperature is determined according to the following equation:

t0 = f
(

pg
)
/ ln 5 (10)

(d) At current temperature, the fitness value of each pi is calculated using the
following equation:

TF(pi) =
e−[ f (pi)− f (pg)]/t

N
∑

i=1
e−[ f (pi)− f (pg)]/t

(11)

(e) A roulette strategy is used to determine the global optimum of some alternative
from all, and then the velocity and position of each particle are updated according to the
following formula:{

vi,j(t + 1) = ϕ
{

vi,j(t) + c1r1
[
pi,j − xi,j(t)

]
+ c2r2

[
p′g,j − xi,j(t)

]}
xi,j(t + 1) = xi,j(t) + vi,j(t + 1)

(12)

where ϕ = 2/
∣∣∣2− C−

√
C2 − 4C

∣∣∣, C = c1 + c2.
(f) Calculate the new target value for each particle and update the value pi for each

particle and the value for the population pg.
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(g) Perform the annealing operation according to the following equation:

tk+1 = λtk (13)

where λ is the annealing constant.
(h) If the stop condition is satisfied, the search stops, and the results are output;

otherwise, turn to step (d).

4. Model Performance Evaluation
4.1. Performance Evaluation Index

To evaluate the estimation performance of the models, this section compares the
swell height estimated by the model with the ERA5 swell height data. RMSE, Pearson
correlation coefficient (CC), mean absolute error (MAE), and mean absolute percentage
error (MAPE) [27,49] are adopted to evaluate the swell height estimation performance of
the models, and they are expressed as follows:

RMSE =

√
1
m

m

∑
i=1

(hi,E − hi,T)
2 (14)

MAE =
1
m

m

∑
i=1
|hi,E − hi,T | (15)

CC =

m
∑

i=1
(hi,E − hE)(hi,T − hT)√

m
∑

i=1
(hi,E − hE)

2 m
∑

i=1
(hi,T − hT)

2
(16)

MAPE =
1
m

m

∑
i=1

∣∣∣∣hi,E − hi,T

hi,T

∣∣∣∣× 100% (17)

where m is the number of data samples, hi,E and hi,T are, respectively, the swell height
estimated by the model and that obtained from ERA5 reanalysis data, and hE and hT are
the average of hi,E and hi,T . The details of the performance evaluation are described below.

4.2. Results for PSO, SA-PSO, and Other Three Estimates

In this section, we evaluate the swell height estimation performance of five modeling
methods. Figure 7 shows the scatter density plots of ERA5 swell height data and that
estimated by GNSS-R retrieval model. In the figure, the red dotted line is a 1:1 reference
line, the magenta solid line is a linear fitting line (Y = aX + b) between GNSS-R results
and ERA5 data, and the fitting line equation is also shown in the figure. Table 1 lists
the four retrieval performance evaluation metrics for the five retrieval methods. It can
be found from Figure 7 and Table 1 that the swell height retrieved by the five modeling
schemes in this study has a good correlation with ERA5 swell height data, and the CC
value is better than 0.86. In terms of RMSE, MAE, CC, and MAPE, the retrieval results
of the PSO and SA-PSO methods were the best, and the TES observable was the worst.
Moreover, compared with DDMA, LES, TES, and PSO, the RMSE of the SA-PSO method
was improved by 23.53%, 26.42%, 30.36%, and 7.14%, respectively, the MAE of the SA-PSO
method was improved by 25.00%, 25.00%, 28.57%, and 6.25%, respectively, and the MAPE
of the SA-PSO method was improved by 27.11%, 18.96, 17.44%, and 7.55%, respectively. In
general, the SA-PSO method performed very well.
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Figure 7. Scatter density plots of swell height estimates and ERA5 swell height data. The color
bars indicate data density relative to the distribution peak (from cool to warm). The red dotted line
represents the 1:1 reference line, while the magenta solid line represents the linear fitting results of
swell height estimates by the GNSS-R method and ERA5 swell height data. (a) DDMA observable,
(b) LES observable, (c) TES observable, (d) PSO method, and (e) SA-PSO method.

Table 1. RMSE, MAE, CC, and MAPE statistics of swell height results retrieved by five schemes.

Methods RMSE (m) MAE (m) CC MAPE (%)

DDMA 0.51 0.40 0.87 26.04
LES 0.53 0.40 0.87 23.42
TES 0.56 0.42 0.86 22.99
PSO 0.42 0.32 0.91 20.53

SA-PSO 0.39 0.30 0.92 18.98

The error of swell height retrieval is mainly due to two aspects: one is geophysical, the
other is the diversity and complexity of the whole CYGNSS system. In order to characterize
the deviation between each CYGNSS satellite, we evaluated the swell height estimation
performance of each CYGNSS satellite. Due to limited space, Figure 8 only shows the scatter
density plots of CY01 and CY02 (from top to bottom) swell height estimates and ERA5
data, respectively (the scatter density plots of CY03-CY08 swell height estimates and ERA5
swell height data are shown in Figures S1–S6 in the Supplementary Materials). Figure 9
shows the statistics of the five retrieval methods for eight CYGNSS satellites. Table 2 also
illustrates the improvement of the average RMSE, MAE, CC, and MAPE estimated by the
PSO and SA-PSO methods for eight CYGNSS satellites compared with the DDMA, LES,
and TES observable-based results.
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Figure 8. Scatter density plots of CY01 and CY02 swell height estimates and ERA5 swell height data.
The color bars show data density in relation to the distribution peak (from cool to warm). The dotted
line in red represents the 1:1 reference line, whereas the magenta solid line represents the linear fitting
results of GNSS-R swell height estimations and ERA5 swell height data. The results of CY01 based
on (a) DDMA, (b) LES, (c) TES, (d) PSO, and (e) SA-PSO. The results of CY02 based on (f) DDMA,
(g) LES, (h) TES, (i) PSO, and (j) SA-PSO.

that of Figure. 9 (a) and Figure. 9 (b). 
 
Correct Figure 9 is revised as follows. Please replace them. Thank you. 

 

 

 

3. In the red box marked in the following screenshot, 2021 is revised to 2022. 

 

(a)

DDMA LES TES PSO SA-PSO
Schemes

0

0.2

0.4

0.6

0.8

1
CY01
CY02
CY03
CY04
CY05
CY06
CY07
CY08

(b)

DDMA LES TES PSO SA-PSO
Schemes

0

0.2

0.4

0.6

0.8

1
CY01
CY02
CY03
CY04
CY05
CY06
CY07
CY08

(c)

DDMA LES TES PSO SA-PSO
Schemes

0

0.2

0.4

0.6

0.8

1

1.2
CY01
CY02
CY03
CY04

CY05
CY06
CY07
CY08

(d)

DDMA LES TES PSO SA-PSO
Schemes

0

10

20

30

40
CY01
CY02
CY03
CY04
CY05
CY06
CY07
CY08

Figure 9. (a) RMSE, (b) MAE, (c) CC, and (d) MAPE statistics of the swell height retrieval results of
eight CYGNSS satellites compared with ERA5 swell height data.
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Table 2. The improvement rates (Unit:%) of the average RMSE, MAE, CC, and MAPE estimated PSO
and SA-PSO methods for the swell height of eight CYGNSS satellites compared with DDMA, LES,
and TES observables.

RMSE MAE CC MAPE

Methods DDMA LES TES DDMA LES TES DDMA LES TES DDMA LES TES

PSO 19.57 19.73 24.02 16.80 16.64 20.44 6.25 6.43 8.49 18.70 16.92 17.65

SA-PSO 26.73 26.87 30.78 25.42 25.28 28.68 8.06 8.24 10.34 24.15 22.49 23.17

The estimate results for different CYGNSS satellite are approximately the same, as
shown in Figures 8 and 9 and Table 2. However, the SA-PSO method outperforms DDMA,
LES, TES, and PSO for each CYGNSS satellite. Furthermore, the SA-PSO method is used
to retrieve swell height for eight CYGNSS satellites and compared with DDMA, LES, and
TES. In terms of the average RMSE, the average improvement rates are 26.73%, 26.87%,
and 30.78%, respectively; the average improvement rates of the average MAE are 25.42%,
25.28%, and 28.68%, respectively; the average improvement rates of the average CC are
8.06%, 8.24%, and 10.34%, respectively; and those of the average MAPE are 24.15%, 22.49%,
and 23.17%, respectively. The above analysis shows that the SA-PSO method has satis-
factory performance for swell height estimation using spaceborne GNSS-R data. Such
improvements also highlight that the SA-PSO method has significant potential to improve
the retrieval accuracy obtained using a single observable.

4.3. Discussion

It is necessary to evaluate the applicability of each model to estimate swell height
under different sea states. Figure 10 shows the RMSE and MAE of swell height estimates
by the DDMA, LES, TES, PSO, and SA-PSO methods under different sea states. The
results show that the retrieval error of a single observable-based method is large under
the condition of high swell height. However, the retrieval performances of the PSO and
SA-PSO methods are both better than that of a single observable-based method under
different sea conditions. In addition, we can see that the retrieval accuracy decreases when
swell height increases. Therefore, the swell height estimation performance for a high sea
state needs to be further improved.

1 
 

 

Figure 10. (a) RMSE and (b) MAE for different ranges of the GNSS-R swell height.

We also evaluated the global performance of swell height estimated by different
retrieval methods. Figure 11 shows the global distribution of the GNSS-R swell height and
ERA5 data in June and July 2019. It can be seen that the CYGNSS result is consistent with
ERA5 in general. Large swell height values are seen mostly in high latitudes, particularly in
the South. This indicates that swell is dominant in high latitudes and there is a phenomenon
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of swell intensification. Usually, swell is transmitted from other sea areas on the sea surface,
or the local wind force rapidly decreases and subsides, or the wave left on the sea surface
after the wind direction changes. The wave surface of a swell is relatively flat and smooth,
with a long wave peak line and large period and wavelength. As mentioned previously,
the coverage of the CYGNSS tracks is limited, current CYGNSS observation data cannot
be used to estimate the swell height around the Arctic Ocean or Antarctica. For future
research, we can consider combining TDS-1 or other satellite observation data to obtain
swell height results around the Arctic Ocean or Antarctica. Figure 12 shows the PDFs of
swell height retrieved by different methods and ERA5 swell height. Table 3 shows the
mean and standard deviation of swell height estimated by different methods. It can be seen
from Figure 12 and Table 3 that the mean swell height of ERA5 data is 2.61 m; the mean
swell heights by DDMA, LES, TES, PSO, and SA-PSO are 2.60 m, 2.69 m, 2.68 m, 2.68 m,
and 2.63 m, respectively. The standard deviation of ERA5 swell height data is 0.88 m; the
standard deviations obtained by DDMA, LES, TES, PSO, and SA-PSO are 0.85 m, 0.87 m,
0.87 m, 0.86 m, 0.82 m, respectively. In general, the swell heights estimated by the five
methods are in good agreement with the ERA5 data.
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Figure 11. The distribution of the ERA5 swell height data and those calculated by GNSS-R. (a) ERA5,
(b) DDMA, (c) LES, (d) TES, (e) PSO, and (f) SA-PSO.

Figure 12. The PDFs of swell height retrieved by different methods and ERA5 swell height.

Table 3. Mean and standard deviation of swell height estimated by different methods.

ERA5 DDMA LES TES PSO SA-PSO

Mean swell height (m) 2.61 2.60 2.68 2.69 2.68 2.63

Standard deviation (m) 0.88 0.85 0.87 0.87 0.86 0.82

To compare the global error distribution of different methods, Figure 13 depicts the
deviation distribution histogram between GNSS-R retrieved swell height and ERA5 data
on a global scale for June and July 2019. In the figure, the mean deviation (µ), standard
deviation (σ), and mean absolute error (MAE) are also given. The light blue bar graph
indicates the error distribution, and the red dotted line represents the PDFs fitting curve
of the error. It is found that the deviation of swell height retrieved by the GNSS-R based
methods are approximately normally distributed. The mean deviation, standard deviation,
and mean absolute error between swell height retrieved by the five methods and ERA5
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swell height are better than −0.08 m, 0.61 m, and 0.48 m, respectively. Among the five
methods, the LES method is worse than other methods. Furthermore, the positive deviation
mainly occurs in high latitudes of the northern and southern hemispheres, particularly
in the southern hemisphere. When the latitude exceeds 30◦S, the deviation is obvious.
Overall, the swell height results observed by CYGNSS measurements are fundamentally
consistent with those of the ERA5 products. The accuracy of swell height retrieval is
basically satisfactory, which shows the feasibility of the proposed method.

Figure 13. The deviation distribution histogram between the swell height calculated by GNSS-R and
the reference data, ERA5 data. (a) DDMA, (b) LES, (c) TES, (d) PSO, and (e) SA-PSO.

As described in [50], swell has a significant input of more than 75% into SWH for
mixed waves. Therefore, it is interesting to calculate CC, RMSE, MAE, and MAPE for the
following two cases: (a) swell height estimated from spaceborne CNSS-R (i.e., the SA-PSO
method) vs. ERA5 swell height; (b) swell height estimated from spaceborne CNSS-R (i.e.,
the SA-PSO method) vs. ERA5 SWH (Hs). Table 4 shows the RMSE, MAE, CC, and MAPE
statistics by comparing the swell height results retrieved from CYGNSS satellite data using
the SA-PSO method with ERA5 swell height and ERA5 SWH (Hs). It can be seen from
Table 4 that although the swell height estimated by the proposed SA-PSO method has a
certain correlation with the mixed waves, it is more consistent with the ERA5 swell height.
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The performed comparison suggests that global swell height can be estimated from GNSS-R
data with the use of the proposed method.

Table 4. RMSE, MAE, CC, and MAPE statistics by comparing the swell height results retrieved using
the SA-PSO method with ERA5 swell height and ERA5 SWH (Hs).

SA-PSO Method Swell Height vs. ERA5 Swell Height SA-PSO Method Swell Height vs. ERA5 SWH (Hs)

RMSE (m) MAE (m) CC MAPE (%) RMSE (m) MAE (m) CC MAPE (%)

CY01 0.45 0.35 0.89 17.57 0.70 0.51 0.72 30.97
CY02 0.45 0.35 0.90 17.44 0.71 0.52 0.72 31.54
CY03 0.45 0.35 0.90 17.43 0.67 0.51 0.73 31.11
CY04 0.45 0.35 0.90 17.44 0.69 0.52 0.72 31.48
CY05 0.41 0.32 0.91 17.56 0.67 0.51 0.73 31.33
CY06 0.46 0.35 0.90 17.58 0.72 0.53 0.70 31.76
CY07 0.45 0.34 0.90 17.72 0.69 0.51 0.73 31.14
CY08 0.45 0.35 0.89 17.57 0.68 0.51 0.72 30.68

Eight CYGNSS 0.39 0.30 0.92 18.98 0.58 0.40 0.81 25.17

It is worth mentioning that other wave parameters are also important. This research is
an early attempt with the spaceborne GNSS-R technology for swell parameters retrieval
although the experiments were not dedicated for this research. The focus of this study
is to propose an empirical model for retrieving swell height from spaceborne GNSS-R
data. In addition, it is very challenging to consider so many sea state parameters based on
the empirical model method. One possible solution is to use machine- or deep-learning-
based methods. This will be an important topic of future spaceborne GNSS-R sea state
monitoring research.

5. Conclusions

This research developed an empirical model for swell height retrieval utilizing three
GNSS-R observables (i.e., DDMA, LES, and TES) derived from spaceborne GNSS-R data.
To improve the retrieval performance of individual observables, the PSO method is first
introduced. Moreover, to solve the local optimal solution of the PSO algorithm, a SA-PSO
algorithm is proposed. To demonstrate the validation of the proposed models, the ERA5
swell height data are employed to compare and verify the swell height estimation results
based on the proposed five schemes. Among them, the best performance was obtained
based on the SA-PSO method, and compared with DDMA, LES, TES, and PSO, the RMSE of
the SA-PSO method was improved by 23.53%, 26.42%, 30.36%, and 7.14%, respectively; the
MAE of SA-PSO method was improved by 25.00%, 25.00%, 28.57%, and 6.25%, respectively,
and the MAPE of SA-PSO method was improved by 27.11%, 18.96, 17.44%, and 7.55%,
respectively. In general, the SA-PSO method achieved a good performance. Furthermore,
the global swell height estimation results also showed that the CYGNSS swell height
estimation and the ERA5 data were consistent. It further confirmed the validation of the
proposed method in this study.

In the future, more data will be exploited to show the feasibility of swell height
estimation. Meanwhile, we will investigate swell height estimation under high sea states.
Additionally, multi-frequency and multi-GNSS reflected signals will be exploited for swell
height estimation to further improve the retrieval performance. Finally, we also encourage
estimating as many ocean parameters (e.g., wave period and wave direction) as possible,
which is very useful for oceanographic applications. For example, Reinking et al. [51]
used cut-off elevation to estimate wave direction based on terrestrial GNSS-R data, and
Wang et al. [52] used GNSS interferometry reflectometry (GNSS-IR) to estimate the wave
peak period. However, for most spaceborne cases, this technology is not yet mature. This
study is an early attempt with the spaceborne GNSS-R technology for swell parameter
(here swell height) retrieval. Whether the spaceborne GNSS-R technology can be used to
estimate the wave direction and wave period needs further investigation, which will also
be an important topic of future spaceborne GNSS-R sea state monitoring research.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs14184634/s1, Figure S1: Scatter density plots of CY03 swell height
estimates and ERA5 swell height data; Figure S2: Scatter density plots of CY04 swell height estimates
and ERA5 swell height data; Figure S3: Scatter density plots of CY05 swell height estimates and ERA5
swell height data; Figure S4: Scatter density plots of CY06 swell height estimates and ERA5 swell
height data; Figure S5: Scatter density plots of CY07 swell height estimates and ERA5 swell height
data; Figure S6: Scatter density plots of CY08 swell height estimates and ERA5 swell height data.
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