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Abstract: The maximum cross-coefficient (MCC) algorithm based on the template matching technique
is a typical algorithm for obtaining the sea-surface currents (SSCs) in marginal seas. However, this
algorithm has mismatches between images in highly turbid water. In this study, we implemented the
MCC algorithm to Geostationary Ocean Color Imager-derived total suspended matter to obtain the
SSCs in the Yellow Sea and the East China Sea. We propose a novel vector optimization algorithm,
which is combined with the accurate estimate of tidal ellipses from the OSU tidal model. This
method considers the three greatest candidate acquisitions from multi-correlation coefficients as
potential vectors. The rotation direction of the vector within the tidal oscillation is used to identify
and substitute for the spurious vector. The obtained average speed of SSC reached 0.60 m/s, which
was close to the buoy-measured average speed of 0.58 m/s. Compared with the existing spurious
vector eliminating method, the average angular error was improved by 20%, and the average relative
amplitude error was improved by 4% in our case study. On the basis of ensuring data integrity, the
inversion accuracy was improved.

Keywords: geostationary ocean color imager (GOCI); OSU tidal model; multi-candidate multi-
correlation coefficient algorithm; sea-surface current inversion

1. Introduction

Sea-surface current (SSC) is one of the most important physical properties in ocean dy-
namics, and is critical for understanding ocean physical and biogeochemical processes [1].
High-frequency and high-spatial-resolution current observations in nearshore water pro-
vide essential data for navigation, maritime rescue operations and environmental monitor-
ing (such as harmful algal blooms, harmful substances and sediment transport) [2].

To monitor and forecast short-time-scale SSC change in real-time, it is necessary
to use high-spatial-temporal resolution satellite data to estimate the SSC field. Some
studies have shown that the high-frequency dynamic characteristics of the SSC field in a
region can be obtained by using the continuous observation data of a fixed sea area from a
geostationary satellite and an inversion algorithm [3–6]. As a successful pioneer, the world’s
first stationary ocean and water color satellite communication ocean and meteorological
satellite (COMS) was launched by South Korea on June 27, 2010, carrying the geostationary
ocean color imager (GOCI) [7]. Its continuous satellite optical images in Northeast Asia have
been successfully applied to the inversion of SSCs in its observed sea area [8]. Choi et al. [9]
used the GOCI data to estimate suspended sediment movement along the west coast of
Korea; Yang et al. [10] used the GOCI data to retrieve high-frequency SSCs around the
Korean Peninsula. Compared to polar-orbiting satellites, GOCI’s unprecedented high
spatiotemporal observations greatly improve our ability to monitor changes in the ocean’s
highly dynamic environment [11–13].
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Different types of satellite remote sensing technologies have allowed many practical
methods for monitoring SSCs. Among them, two have been most widely used: one is
an algorithm based on the heat flow or tracer conservation equation [14–16], and the
other is an algorithm based on the tracer feature (i.e., the maximum cross-correlation
algorithm, MCC) [11,17–20]. After Emrey et al. [18] proposed that the MCC algorithm can
be used to estimate the SSC field, many scholars have successfully inverted the SSC field
in different sea areas by using thermal infrared remote sensing images [11,19,21] or water
color remote sensing images on the basis of their algorithm [10,22]. Furthermore, recent
studies have shown that water color data can better track the movement of water masses [8].
Zhu et al. [23] used the Himawari-8 data to estimate the coastal currents in Hangzhou Bay
using the generalized Hough transform (GHT) method and the MCC method, respectively.
The results showed that the Himawari-8 data can be used to effectively estimate the currents,
and the error in the current measured using the GHT method is smaller than MCC method
in the Yangtze estuary and offshore areas. Sun et al. [24] used the MCC method and robust
optical flow method to process GOCI images for quantifying high-resolution, near real-time
SSCs and current features. Yang et al. [10] showed that the MCC method can be applied to
GOCI-derived total suspended matter (TSM) and chlorophyll-a (Chl-a) to estimate the fast
tidal currents along the west coast of Korea. Lang et al. [25] used Level-1B data measured
by the GOCI to identify ice pixels in the northernmost part of the Bohai Sea (Liaodong
Bay), and then used the MCC method to estimate ice drift. Lou et al. [4] applied the MCC
method to Rayleigh-corrected reflectance from the GOCI measurements to derive SSCs
along the Zhejiang coast of the East China Sea, but they did not provide validation results.

Although these studies have shown that the use of the GOCI data and the MCC
algorithm can better invert the variation characteristics of the SSC field in the target area,
there are still some spurious currents in these inversion results. The MCC method has been
applied to improve the accuracy of GOCI-derived SSCs in recent studies. Chen et al. [26]
used the MCC method to invert the SSCs in the East China Sea and then proposed a current
field vector data-processing method based on angular limitation. The average angular
error (AAE) value of the processed SSC field data decreased by 28–38%. Jiang et al. [27]
derived the Bohai SSCs from the GOCI data using the MCC method, and evaluated the
results using the Oregon State University (OSU) tidal model and high frequency (HF) radar
observations, showing that for a time difference of 1 h, a template window size of 10–15 km,
and a search range of 4–8 km give the optimal results. Hu et al. [28] integrated multivariate
optimum interpolation (MOI) with the MCC, and the average absolute differences between
the “actual” velocity of the derived model and the velocity derived from sea-surface
temperature (SST) were reduced by 19% in relative magnitude and by 22% in direction.
Previous studies lacked consideration of the method itself, and the MCC method is a
template-based matching technique. The reason for this method to derive spurious SSCs is
that the nonlinear deformation and movement of water masses and the small-scale dynamic
process in the template window may cause the image mismatch in the MCC method in high-
turbidity water [29]. Furthermore, the rapid settlement and resuspension of suspended
solids in high turbidity water will also affect the precision of SSC field inversion results [10].

SSCs can also be calculated by using ocean models. OSU developed the China Sea
Regional Tidal Model TPXO-CSI2016 (China Seas & Indonesia 2016), which covers the South
China Sea, East China Sea, Yellow Sea, Bohai Sea, and Northwest Pacific, and assimilates a
large amount of satellite remote sensing data and tide gauge data with a spatial resolution
of 1/30◦ [30,31]. This model can be used for tidal prediction or tidal current calculation
in specific regions. Hu et al. [32] calculated the M2 tidal current using the OSU regional
tidal model, and the overall OSU-derived, GOCI-derived, and measured results exhibited
better consistency. Zhao et al. [33] evaluated the accuracy of seven global/regional tidal
models by using the harmonic constants and tidal heights of eight main tidal components
of 33 tidal stations in the coastal area of Zhejiang, and considered the model to have high
accuracy in the study area. Cui et al. [34] studied the applicability of GOCI inversion
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SSCs and OSU model SSCs in the Yellow Sea and concluded that the OSU model had high
accuracy in simulating the current direction of offshore high-turbidity water.

We combine the GOCI data with in situ data to study the accuracy of GOCI-derived
SSC field in this paper. To improve the MCC algorithm, we propose a novel multi-
correlation coefficient optimization algorithm for GOCI inversion of SSC field vectors
based on the tidal ellipse and OSU tidal model. We determined the rotation direction using
the tidal vector to identify the spurious vector and substituted it with the appropriate vector
to improve the inversion precision. The remainder of this article is arranged as follows.
Dataset and methodology used are described in Sections 2 and 3, respectively. Main results
and discussion are given in Sections 4 and 5, respectively. Conclusions are provided in
Section 6.

2. Data Set
2.1. In-Situ Data

The data collected by the drifting buoys used cover the periods from 3 June to 20
August 2012 and from 28 July to 26 August 2013. The longitude range of buoys movement
was from 120◦E to 127◦E, and the latitude range was from 29◦N to 39◦N. The trajectories
of the drifting buoys illustrated in Figure 1 show they are mainly concentrated in the East
China Sea, the west part of the southern Yellow Sea and the west coast off the Korean
Peninsula. The position data measurement interval was approximately half an hour, and in
approximately 77 days of the battery life cycle, 6505 profiles were obtained.
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Figure 1. The study area and its bathymetry. From light blue to dark blue, the water depth ranges
from 10 to 200 m. The color lines show the tracks of three drifting buoys. Red dots represent the buoy
locations of selected cases, which are distributed in the northern Yellow Sea, southern Yellow Sea,
and East China Sea from north to south.
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The drifting buoy moves with the current on the sea surface or at a certain depth,
which is one of the convenient and effective tools for ocean observation. It is affected by
wind and currents. The principle of measuring current is to use the Lagrange method
to describe the movement of sea water. The accuracy of measurement is mainly related
to the ratio of the area of drifting buoy above and below the sea surface. Figure 2 is a
diagram showing a working drifting buoy. The drifting buoy was similar to Davis’s drogue
drifter [35]. The area of the buoy on the sea surface is 0.031 m2, and the area of the buoy
under the sea surface is (0.031 + 0.7) m2. The ratio of the upper and lower areas was as
low as 0.04. The center point of the sail below the sea surface was 3 m underwater. The
structure of the drifting buoy shows that the movements of the drifting buoy are mainly
controlled by SSC.
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Figure 2. A drifting buoy at work.

2.2. GOCI Data

The GOCI data used in this study cover a total of eight bands of visible and near-
infrared wavelengths from 402 to 885 nm. The satellite can perform hourly observation
from 8:30 a.m. to 3:30 p.m. (Beijing time). Its temporal resolution (1 h) and spatial
resolution (500 m) are the advantages that can be used for coastal marine environmental
monitoring. GOCI level-1B (L1B) data can be downloaded from the Korea Ocean Satellite
Center (http://kosc.kiost.ac.kr/, accessed on 13 July 2021) [36]. Eight groups of data can be
obtained every day. There are many GOCI products, such as TSM, Chl-a, and normalized
water-leaving radiance, which can be taken as tracers. Among them, in coastal areas,
the current inversion using TSM as a tracer can capture the changes in tidal phases [10],
and are used to compare with other bio-optical remote sensing products. The inversion
results using suspended matter products are more accurate and reliable [4,29]. We use the
GOCI-derived TSM as the tracer in this study.

2.3. OSU Tidal Current Model Data

The tide model driver (TMD) is used to run the OSU tidal current model ( http:
//www.tpxo.net, accessed on 13 July 2021) to obtain the u and v components of the tidal
current at a specific latitude, longitude, and time, thus producing the corresponding tidal
current data [37]. Using the tidal current model, we extract the tidal current data at the
same observation time as the GOCI (composite tidal current data superimposed by eight
main tidal components), and match them to the same 0.15◦ × 0.15◦ grid as the GOCI
inversion results for comparison.

http://kosc.kiost.ac.kr/
http://www.tpxo.net
http://www.tpxo.net
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3. Methodology
3.1. GOCI Data Processing

Supported by GOCI Data Processing System software (GDPS), the GOCI-L1B original
data were preprocessed in terms of atmospheric correction and masking. Then, we used the
built-in TSM inversion algorithm provided by GDPS processing software to process data
into an L2-level TSM product [38]. Figure 3 shows the MCC method based on the image
matching method. By performing this operation, hourly SSC can be obtained from two
consecutive GOCI images on the same day. The former image used to estimate the present
position is called the “template window,” and the latter is called the “search window.”
The MCC method uses correlation relationship based on template matching technique to
track change in the tracer structure. Template matching is a technique for finding the most
similar part of an image to another template image [39]. The template is a small image, and
template matching is a search for a target in a large image, where the target is known to be
in the image and has the same size, orientation and image elements as the template, and a
certain algorithm can find the target in the image and determine its coordinate position.
Equation (1) is used to calculate the correlation coefficient between the “template window”
and the “matching window.”

ρ
(

Si
sub, Ti+1

sub

)
=

cov(Si
sub − Ti+1

sub )√
var(Si

sub)× var(Ti+1
sub

) (1)

where i is the time scale of GOCI observations, its value of 0 to 7 representing Beijing time
from 8:30 to 15:30 (1-hr interval), and Si

sub and Ti+1
sub are the two-dimensional matrix data of

“template window” and the search sub-window with the same size in “Search window,”
respectively.ρ is the cross-correlation coefficient, and its variation range is [–1,1]. The closer
the correlation coefficient is to 1, the more accurate the matching of the two remote sensing
images is, and the more accurate the retrieved current is. Using Equations (2) and (3), the
speed and direction of the current can be calculated.

V =

√
(xi+1 − xi)

2+(yi+1 − yi

)2

h
(2)

D = arctan2(yi+1 − yi, xi+1 − xi) (3)

where xi and yi are the central coordinates of the template window, and xi+1 and yi+1 are
the central coordinates of the matching window.h is the observation time interval between
Si

sub and Ti+1
sub , which is 1 h.
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Figure 3. A schematic diagram of the MCC algorithm for estimating SSC field. Taking the first
invertible current field as an example, the images on the left and right represent satellite remote
sensing images observed in the same sea area and on the same day at 8:30 and 9:30, respectively. The
solid box in the left panel is the template window, the solid box in the right panel is the matching
window, and the dashed box is the same template window as that in the left panel.
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The template window size selected here is 20 × 20 pixels, the search window size is
36 × 36 pixels, and the fitting threshold is set to 0.9 to obtain more accurate vectors [9,29].
The appropriate matching window is determined by calculating the correlation coefficient
between the template window and the moving search window. If the calculated value is
greater than the threshold value, the position that the template window moves to in unit
time is considered as the matching window. Then, the above steps are repeated to obtain a
relatively complete SSC field.

3.2. Drifting Buoy Data Processing

The information contained in the drifting buoy data is the specific time, latitude and
longitude of each station. First, we calculate the distance between two continuous stations
in the time series data of drifting buoys. Then the speed of the vector formed by the two
points is calculated by using the time difference between the two points. For the calculation
of the angle, any point is taken so that its projection with the remaining two points in the
plane forms a right triangle, as shown in Figure 4. According to the distance formula, the
distance between any two points can be calculated, and finally, the magnitude of the angle
can be calculated according to the cosine theorem. The specific formula is as follows:

C= arccos(cos(90− Blat)×cos(90−Alat)+sin(90− Blat)× sin(90−Alat)×cos(Blon − Alon)) (4)

L = R× C× π/180
◦

(5)

where R is the radius of the Earth, Alat and Alon represent latitude and longitude of point A,
respectively, and Blat and Blon represent the latitude and longitude of point B, respectively.
C represents the radian corresponding to the angle formed by points A and B. L is the arc
length corresponding to the radian C, which is the distance between points A and B.
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Figure 4. (a) A vector diagram formed by calculating the buoy points (A, B, and C represent the three
points on the projection surface of the sphere, and the angle of the “arc” on the sphere at that point,
respectively; a, b, and c represent the arc of the ABC three-point pair, O is the center of the sphere).
(b) A right triangle composed of three points A, B, and C and the coordinates of each point.

3.3. Multi-Candidate Multi-Correlation Coefficient Optimization Algorithm

The prevailing tidal current is one of the important hydrodynamic processes in the
Chinese seas. The precision of SSC field inversion using the remote sensing technique
largely determines the accuracy of the SSC field, so it is necessary to improve the inversion
precision. The OSU model current field is consistent with the in situ SSC field in terms
of the current direction and can well reflect the vector rotation direction in a tidal current
elliptic period. Therefore, combining the GOCI inversion SSC field and OSU model current
field, we propose a multi-correlation coefficient optimization algorithm for the remote
sensing inversion SSC vector based on the OSU tidal model (Figure 5). The goal is to
identify and substitute the spurious vector in the GOCI inversion current field and improve
the SSC precision. The main step is to obtain the three largest candidate SSC vectors
under the first three correlation coefficients for seven consecutive periods of the GOCI
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day by the MCC method. Figure 6a shows a schematic diagram for estimating the SSC
field by the multi-correlation coefficient inversion algorithm. Based on template matching
technique, this algorithm takes into account the mismatch phenomenon of this technique
in high-turbidity sea areas; that is, the highest correlation coefficient does not necessarily
correspond to the optimal matching and obtains the SSC vectors under the first three
correlation coefficients to improve the optional rate. Then, the OSU tidal model is used
to obtain corresponding tidal current vectors, and the two current field vectors are sorted
according to the time order. For the sorted tidal current vectors, the rotation angle of the
adjacent tidal current vectors is calculated, and the direction of the rotation angle is taken
as the rotation direction. As shown in Figure 6b, the angle an−1 is the rotation for vectors
Vn and Vn−1, and the angle an is the rotation for vectors Vn and Vn+1. The direction from
vector Vn−1 to Vn is clockwise, and that from vector Vn−1 to Vn is counterclockwise. Then,
the rotation direction of the GOCI SSC vector obtained by the 1st correlation coefficient
is taken as the main rotation direction, the rotation direction and rotation angle of the
two adjacent vectors are calculated, and the spurious vector is determined by comparing
with the tidal current vector. As shown in Figure 6c(I), Vn−1, Vn and Vn+1 are the SSC
vectors of three adjacent time periods in the main rotation direction, and vn−1, vn and
vn+1 are the corresponding tidal current vectors. To facilitate the calculation of rotation
angle and direction, the starting points of all vectors are placed at the same point. As
illustrated in Figure 6c(II), a is the rotation angle of Vn and Vn+1, and a′ is the rotation
angle of vn and vn+1. The corresponding rotation directions of the two are opposite. It
can be determined that vector Vn+1 is the spurious vector. Finally, the spurious vectors
are substituted by the candidate vectors of the 2nd and 3rd correlation coefficients of the
corresponding time period; and the rotation angle between the substituted vector and its
adjacent vector is calculated. The vector closest to the rotation angle of the tidal current
vector in the corresponding time period is selected as the optimal substituted vector to
obtain the final SSC vector in the main rotation direction and improve the precision of the
inversion SSC field.
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Figure 6. (a) An illustration of SSC vector estimation by multi-correlation coefficient inversion
algorithm. T is the matching template, T′ is the mapping of the matching template at the same
position in the search area, I1, I2 and I3 are the regions searched by the matching template, and a1, a2

and a3 are the current field vectors under the corresponding correlation coefficients; (b) an illustration
of vector direction judgment. (c) An illustration of spurious vector judgment.

3.4. Evaluation Method

To quantitatively evaluate the difference in magnitude and that in direction between
the GOCI inversion SSC and measured SSC, we use the average angular error (AAE)
and average relative magnitude error (AME) by Chen [40] to verify the inversion results.
Herein, the direction and velocity of the SSC default to two-dimensional s = (u, v), without
considering the current in the vertical direction. The angle error and relative amplitude
error between the measured velocity vbuoy and satellite inverted velocity vinv can be written
as follows:

{
∆θ, ∆V/V

}
=

1
N ∑i,j

arccos

〈
vinv.vbuoy

|vinv|
∣∣∣vbuoy

∣∣∣
〉

,

∣∣∣vinv − vbuoy

∣∣∣∣∣∣vbuoy

∣∣∣
 (6)

The relative magnitude error is a dimensionless quantity. If vbuoy = 0, then ∆V/V = 1;
and if vinv = vbuoy = 0, then ∆V/V = 0. The AAE (AAE = ∆θ) and AME (AME = ∆V/V)
are used to quantitatively evaluate the results of satellite inversion and model calculation.

4. Results
4.1. Vector Processing Results Based on the Multi-Correlation Coefficient Algorithm

Figure 7 shows a group of daily surface vectors obtained by the multi-correlation
coefficient algorithm with TSM as the background on 13 August 2013; the rotation direction
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is clockwise. In the period of 11:30–12:30 local time, the vector under the first correlation
coefficient had inversion error, and there was no significant difference in the three vectors
obtained in the remaining period, which confirms the existence of the mismatch.
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Figure 7. A group of daily surface vectors obtained by the multi-correlation coefficient algorithm
with TSM as the background on 13 August 2013. The three colored vector arrows and boxes in (a–g)
correspond to the SSC vectors and matching windows obtained under the first three correlation
coefficients, respectively. The red box in (h) is where subplots (a–g) are located.

We selected 35 sets of case data, as shown in Figure 8b. Our method eliminates the
spurious vectors in seven daily vectors (black dashed arrows in Figure 8b). As illustrated
in Figure 8b, the GOCI vectors under the first three correlation coefficients obtained by
the MCC algorithm are different in some time periods, and the spurious vectors under the
1st correlation coefficient can be identified by the established vector rotation direction in
the OSU model. However, the case data used for evaluation should meet the following
requirements: the selection of measured data should meet the corresponding GOCI data
to obtain good satellite images within eight hours of each day. During the life cycle of the
drifting buoys, we found that GOCI images on 10–11,13 August 2013, in the East China
Sea and those on 27 June and 11,16 July 2012, and on 4–6 August 2012, in the Yellow Sea
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were of high quality due to the relatively small cloud cover extent (Figure 1). Due to the
complexity of the current system in the East China Sea, the current speed and direction will
be quite different at different locations at the same time. Therefore, the selection of case
data should meet the selected case consistent with the measured data, and should be as
close as possible to the measured point position. In summary, we selected nine sets of case
data in different sea areas to evaluate the new method. Figure 8a shows the distribution of
measured data points and case data points. The case data that can be used for evaluation
are close to the corresponding buoy points. The processing results of vectors are shown in
Figure 9a–c), corresponding to the cases of the East China Sea, southern Yellow Sea, and
northern Yellow Sea, respectively; there are differences among the results of each case. For
example, in the East China Sea (Figure 9a) and the southern Yellow Sea (Figure 9b), the
rotational direction of the fitted tidal ellipse was clockwise in the GOCI matching day and
counterclockwise in the northern Yellow Sea (Figure 9c); the angle deviation between the
buoy vector and GOCI vector in the northern Yellow Sea area was large, and the current
direction shows reversing current characteristics. Furthermore, there are also differences in
the number of error vectors identified. The number of error vectors identified on 16 July
and 6 August was the 5th, 7th vector and the 1st, 6th vector, respectively; one vector was
identified on the other days. Reflected from the statistics of average speed, the average
speed of the SSC derived from the GOCI is 0.60 m/s, and the measured average speed of
the drifting buoy is 0.58 m/s.
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Figure 8. (a) Distribution of measured data and case data, where the red dots are the selected
measured data points, the red crosses are the selected data case points, and the blue crosses are the
remaining case points. (b) Comparison results of GOCI vectors under different correlation coefficients.
Black represents the first vector, blue represents the second vector, red represents the third vector,
and the dotted arrow represents the spurious vector.
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Figure 9. (a)-I showing the observed SSC vectors from the drifting buoy (BUOY; black arrows)
and estimated from the satellite (GOCI; blue arrows) in the East China Sea. The blue dashed
arrows represent the spurious vectors, and the red dashed arrows represent the substitution vectors.
(a)-II showing the corresponding OSU tidal current vectors. The rotation direction can be determined.
(b) Observed SSC vectors from drifting buoy and estimated from GOCI in the southern Yellow Sea.
(c) Observed SSC vectors from drifting buoy and estimated from GOCI in the northern Yellow Sea.

4.2. Average Magnitude and Angular Error

To evaluate the results of the new method, we compared the method to the statistical
data processing “angular limitation filter.” Based on the rotation law of the tidal current
ellipse, the angular limitation method considers the rotation direction and appropriate
angle constraint, and then identifies and eliminates spurious vectors. Table 1 shows the
AAE and AME values of the original 9-day data and the method after processing values
during drifting buoy observations. The 9-day-average AAE value is 37.82◦, and the AME
value is 0.57 in the original data. In Chen [26] et al., the AAE and AME values are 51.76◦

and 0.50, respectively. Both methods have improved the results. The improvement of
“multi-correlation coefficient optimization” for the AME value is better than that of the
“angle limitation filter,” and the averaged AAE value decreased to 30.28◦, which means that
the improvement is approximately 20%. The average AAE value obtained by the angular
limitation filter has decreased to 34.56◦, which means the improvement is approximately
9%. Comparison of the two filtering methods shows that the multi-correlation coefficient
optimization method is better than the angular limitation filter method. Using the T-test
method, we take the AME value and AAE values in Table 1 as samples to test whether the
results of the two methods are statistically different from the original data. It is found that
there is no significant difference between the data processed by the two methods and the
original data, which may be due to the small proportion of spurious vectors. However,
compared with the “angular limitation filter”, the difference between the data processed by
the new method and the original data is slightly larger, indicating that the new method
contributes a further improvement. The AAE and AME results of the multi-correlation
coefficient optimization method show that the direction and speed of the GOCI data are
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similar to those of the measured buoy trajectory. Therefore, the MCC method is reliable for
inverting tracer concentration to obtain the SSCs offshore of China.

Table 1. Results of different methods and original data for AAE and AME at different times.

Area Time
Original Data Angular Limitation Filter Multi-Correlation Coefficient Optimization

AME AAE (◦) AME AAE (◦) AME AAE (◦)

ECS
10 August 0.27 18.83 0.26 13.35 0.23 13.43
11 August 0.34 55.01 0.25 49.42 0.26 49.84
13 August 0.78 33.16 0.86 19.42 0.75 18.92

SYS
27 June 0.34 40.46 0.37 40.08 0.33 38.14
11 July 0.61 34.89 0.62 26.93 0.61 25.84
16 July 1.61 42.87 1.50 46.99 1.45 30.39

NYS
5 August 0.40 16.66 0.40 11.26 0.41 14.08
6 August 0.47 66.88 0.47 72.31 0.52 54.83
7 August 0.35 31.59 0.40 31.25 0.38 27.06

Average 0.57 37.82 0.57 34.56 0.55 30.28

Note: AAE: average angular error; AME: average relative magnitude error; ECS: East China Sea; SYS: southern
Yellow Sea; NYS: northern Yellow Sea.

4.3. OSU Tidal Model Data Evaluation

Both the SSC obtained by GOCI inversion and that obtained from field measurements
include periodic tidal currents and mean currents (residual currents), but the OSU tidal
model can only give tidal currents. Note that tidal currents are an important part of dynamic
processes in the East China Sea. Some previous studies have also shown that wind-driven
velocities play a very limited role in the total SSCs in the Chinese seas, where tidal currents
significantly dominate [32,41]. Therefore, we conjecture that tidal currents are the main
factor driving changes in SSC during consecutive hours. Figure 10a compares continuously
measured data and OSU mode data; the two have good consistency in the rotation direction.
Figure 10b compares the measured current field and its corresponding OSU model current
field during the active GOCI period; these are distributed at four different locations in the
study area. In a few consecutive hours, the direction of each time period and the rotation
direction of the OSU current vector were basically consistent with the measured current
vector. In order to further verify and analyze the calculation results of OSU tidal model,
the measured buoy data are selected to compare the calculated tidal currents value with
the measured data. Table 2 shows the comparison between the measured results and the
OSU model results. The measured average current speed is 0.39 m/s, which is close to
the average current speed obtained by the OSU model of 0.38 m/s; and the average angle
deviation is 43.96◦. The current speeds of the two data samples were statistically tested, and
the p value was less than 0.05, indicating that the two groups of data come from different
distributions, and there are significant differences between them, which is consistent with
the fact that they belong to the measured data and the OSU model data, respectively. In
summary, considering the measurement error, we can confirm our conjecture that in a few
consecutive hours, the tidal current is the main factor driving the change in SSC. The tidal
current results derived from the OSU model can be used to determine the rotation direction
of the sea surface current and the direction of current in each period for several consecutive
hours in the GOCI period.
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Figure 10. (a) Comparison results of partial continuous measured data and OSU model data in this
study. (b) Comparison of buoy vectors and OSU vectors for some case data during the GOCI active
period, which is 8:30–15:30 local time.

Table 2. Comparison of OSU mode calculation results and actual measured values.

Buoy Number Number of
Sites

BUOY-ACS
(m/s)

OSU-ACS
(m/s) AAE (◦)

1132711 1759 0.43 0.41 44.16
1131901 1787 0.28 0.34 49.90
1227890 320 0.45 0.38 37.82
Average 1289 0.39 0.38 43.96

Note: AAE: average angular error; ACV: average current speed.

4.4. SSC Mapping from GOCI and OSU

By using the MCC method and OSU tidal current model, we can obtain seven SSC
maps each day. Figures 11 and 12 show the SSCs in the Yellow Sea obtained by the GOCI
inversion (blue arrows) and the OSU model (red arrows) on 5 August 2012. The current field
vectors obtained by the OSU model are relatively regular. There are spurious vectors in the
current field retrieved by the GOCI inversion. The blank areas in the current field are due
to the change in cloud amount or tracer concentration. The average speed obtained by the
GOCI inversion is 0.63 m/s, and that obtained by the OSU model is 0.65 m/s. Comparing
the current field maps obtained by the two methods, we find that the vector velocity of the
current field decreases in central the Yellow Sea, presenting the characteristics of a weak
current region; the current direction presents the characteristics of a north–south reversing
current [42]. The currents derived by the MCC algorithm are compared with those in Ma
et al. [43] and Hu et al. [5]; the currents calculated by the OSU tidal model are compared
with those in Hu et al. [32] and Zhu et al. [44] The current field information is similar, and
the current field is greatly affected by the counterclockwise tidal wave system in the Yellow
Sea [45,46].
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5. Discussion
5.1. The Proportion of Accurate Vectors

Aiming at the mismatch phenomenon of the MCC algorithm in the SSC inversion in
high turbidity areas, we propose to use the greatest three candidate vectors obtained by the
multi-correlation coefficient algorithm as potential vectors. The rotation direction of the
vectors within the tidal oscillation is used to identify and substitute the spurious vector, to
improve the accuracy of SSC inversion. The method was verified using drifting buoy data.
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Figure 13a shows the vector proportion obtained under each correlation coefficient after
the algorithm processing. We can see that the vector proportion under the 1st correlation
coefficient is the largest, reaching 82.54%, indicating that the MCC algorithm has strong
applicability for SSC field inversion in the research area. The proportions of vectors under
the 2nd and 3rd correlation coefficients are 11.11% and 6.35%, respectively, which are
smaller and show a decreasing trend compared with the 1st correlation coefficient. On
the one hand, the multi-correlation coefficient algorithm can identify and substitute the
spurious vector of SSC inversion; at the same time, it also shows that when using this
algorithm, considering the effect of computational efficiency and accuracy improvement,
it is better to obtain the greatest three candidate vectors as a potential vector. The vectors
under the 2nd and 3rd correlation coefficients are smaller than the replacement vectors. The
distributions of the two in each period are shown in Figure 13b. It can be seen that the first
and last period vectors account for a large proportion, indicating that the GOCI inversion
had more error vectors in these two periods. The reason may be that the solar zenith angle
during dawn and dusk is larger and less water color information is obtained by satellite
sensors, resulting in poor inversion results [47]. In this study, since the spurious vectors
are distributed in the study area with the case data (red and blue crosses in Figure 8a), the
spatial distribution of the corresponding replacement vector is the same as the case data. It
can be seen that there are more case data distributed in offshore areas, indicating that there
are more wrong inversion results in the offshore areas.
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Figure 13. (a) The vector proportion obtained under each correlation coefficient after algorithm
processing. MCC 1st, MCC 2cd, and MCC 3rd represent the vectors obtained under the first, second
and third correlation coefficients, respectively. (b) The proportion of replacement vectors in each
period after multi-correlation coefficient algorithm processing.
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5.2. Window Size Selection

When using the MCC method to invert the SSC field, the selection of window size
will affect the SSC inversion. The selection of the window should not only satisfy the
requirement that “template window” should include enough spatial structure information
of feature quantity (TSM), and that “search window” must cover the maximum moving
distance of feature quantity, but also ensure that the obtained SSC field possesses better
spatial consistency [20,48]. In this study, we used the area of 122.5◦–125.5◦E, 34.5◦–37.5◦N at
10:30–11:30 am on 5 August 2012 (less cloud cover, better inversion effect). For the case study,
different window sizes were selected to compare and analyze the inversion results of the
respective current fields. As shown in Table 3, W1-W7 are the different parameter settings of
the seven window sizes used in the MCC method. For example, W1 represents the template
window size of 10× 10 pixels and the search window size of 24× 24 pixels. Figure 14 shows
the SSC vector diagram obtained under each parameter. Parameters W1, W2 and W4 have
better inversion effects, but the current speed obtained by W2 is too large, and the current
field obtained by W3 has obvious inversion error. Table 4 shows the SSC characteristics
and vector coverage of the current field obtained under each parameter, where the vector
coverage is the ratio of the actually obtained vector number to the theoretically obtained
vector number. We can see that the average speeds obtained by W1, W4 and W7 are close to
the measured average speed of 0.45 m/s, but the coverage rate of W7 is lower. Although the
results obtained by W2 have a large coverage rate, the average current speed is relatively
large, the maximum current speed reaches 2.95 m/s, and the error is relatively large. For
the spatial consistency test of the obtained vectors, we use the method of neighborhood
requirements [27]; that is, to compare the current speed difference and angle deviation
between the target vector and its adjacent vector (up to eight, each direction includes an
adjacent vector of the diagonal), and use the method mentioned in Section 3.4 for evaluation.
Here, we stipulate that the number of adjacent vectors around the target vector should
not be smaller than 5. As shown in Figure 14h), I-III are the positions of the three target
vectors selected from south to north in order. Table 5 shows the AME and AAE values of the
three target vectors and their adjacent vectors under each parameter. The AME and AAE
values of the target vectors obtained by W1, W2, W4 and W5 are smaller than those of the
adjacent vectors and have better spatial consistency. In summary, the current field obtained
by selecting the window with the parameter size of W1 or W4 is better. Taking all the factors
into account, we decided that W4 should be used as the standard setup for application of
the MCC on GOCI-derived image pairs with T = 1 h.

Table 3. Different parameter settings of seven window sizes.

MCC W (=H) W1 W2 W3 W4 W5 W6 W7

Tsub pixels 10 10 20 20 28 20 28
Ssub pixels 24 36 24 36 36 48 48

Note: W(=H): width(=height); Tsub: template window; Ssub: search window.

Table 4. SSC characteristics and vector coverage of SSC field under different window sizes.

W1 W2 W3 W4 W5 W6 W7

Max-speed (m/s) 1.11 2.95 1.57 1.39 1.18 2.95 1.46

Min-speed (m/s) 0.23 0.36 0.79 0.22 0.01 0.15 0.05

Ave-speed (m/s) 0.60 1.09 1.00 0.68 0.28 0.74 0.51

PCV (%) 86.54 97.65 56.20 96.58 70.09 87.61 77.56
Note: Ave-speed: average speed; PCV: percentage coverage values.
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Table 5. AME and AAE values of the three target vectors and their adjacent vectors under each
window size.

Target
Vector

W1 W2 W3 W4

AME AAE(◦) AME AAE(◦) AME AAE(◦) AME AAE(◦)

I 0.07 10.43 0.10 9.70 0.09 2.08 0.09 13.63
II 0.24 54.72 0.36 42.48 —— —— 0.76 39.24
III 0.07 16.70 0.26 29.73 —— —— 0.45 29.94

Average 0.13 27.28 0.24 27.31 —— —— 0.43 27.60

Target
Vector

W5 W6 W7

AME AAE(◦) AME AAE(◦) AME AAE(◦)

I 0.20 5.21 0.10 13.18 0.13 11.76
II 6.61 59.76 0.69 56.20 0.38 20.41
III 0.46 23.16 0.49 32.10 —— ——

Average 2.42 29.37 0.43 33.83 —— ——

5.3. Condition Analysis of Current Detection

The GOCI-derived current field is affected by conditions such as cloudiness and tracers.
For the analysis of the conditions for effective detection of SSC, we attempted to change
the types of tracers and compare the differences in the GOCI current field derived from
different tracers. Table 6 and Figure 15 show the statistical and comparative results of the
SSC field derived by the GOCI inversion using TSM, Chl-a, and remote sensing reflectance
(Rrs) at 555 nm as tracers at noon in the central Yellow Sea with a better inversion effect.
The currents derived from different tracers are different from each other. The table shows
that TSM gives the best effect in selected cases and obtains the largest number of current
field vectors.
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Table 6. Statistics of the GOCI current field inversion results of three different tracers.

Date Time

Chl-a Rrs TSM

Number
of Vectors AME AAE

(◦)
Number

of Vectors AME AAE
(◦)

Number
of Vectors AME AAE

(◦)

27 June
11:30–12:30 1010 1.13 21.83 955 1.22 27.04 1005 0.67 13.62
12:30–13:30 976 1.90 27.15 952 0.54 16.17 981 1.59 18.31

11 July 11:30–12:30 472 0.30 13.99 448 0.62 13.51 476 0.53 15.34
12:30–13:30 580 0.25 6.44 487 0.50 16.10 553 0.52 12.54

16 July 11:30–12:30 467 0.32 24.74 464 0.76 39.16 484 0.32 29.59
12:30–13:30 534 0.73 15.95 503 1.42 24.14 541 0.99 12.34

Average 673 0.77 18.35 634 0.84 22.69 673 0.77 16.96
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6. Conclusions

In this study, we used the MCC algorithm to obtain the SSC field in the East China Sea
and the Yellow Sea, with the TSM concentration data retrieved by GOCI remote sensing
as the tracer. Comparison with the drifting buoy data shows that the method is suitable
for SSC inversion offshore of China. The OSU model current field was consistent with the
in situ measurement data current field in terms of the current direction and considered
the image mismatch in the MCC method in the high turbidity water. We developed a
new method, named the “multi-correlation coefficient optimization algorithm based on the
OSU tidal current model” to improve the accuracy of the GOCI-derived time series data.
This method considers the three greatest candidate acquisitions from multi-correlation
coefficients as potential vectors. The rotation direction of the vectors within the tidal
oscillation is used to identify and substitute for the spurious vector, which improves the
inversion accuracy.

Compared with the existing spurious vector elimination methods, the AAE of the
new method is reduced from 37.82◦ to 30.28◦, with an improvement of approximately
20% and the AME, approximately 4%. The angle limitation method AAE decreased from
37.82◦ to 34.56◦, with an improvement of approximately 9%, with no significant change
in AME. Based on visual and quantitative results, our new method improves the accu-
racy and ensures the integrity of the data compared with other state-of-the-art vector
filtering methods.

In addition, we also count the proportion of accurate vectors after the algorithm
processing and conclude that it is better to obtain the three maximum three candidate
vectors as potential vectors. For the selection of window size in the MCC method, we
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evaluated the current characteristics derived under various parameters, and selected the
optimal window size. For the selection of tracers, the TSM-derived current field gave
higher accuracy and more vectors than the other two products.
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