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Abstract: Obtaining high-spatial–high-temporal (HTHS) resolution remote sensing images from a
single sensor remains a great challenge due to the cost and technical limitations. Spatiotemporal
fusion (STF) technology breaks through the technical limitations of existing sensors and provides a
convenient and economical solution for obtaining HTHS resolution images. At present, most STF
methods use stacked convolutional layers to extract image features and then obtain fusion images by
using a summation strategy. However, these convolution operations may lead to the loss of feature
information, and the summation strategy results in poorly fused images due to a lack of consideration
of global spatial feature information. To address these issues, this article proposes a STF network
architecture based on multiscale and attention mechanisms (MANet). The multiscale mechanism
module composed of dilated convolutions is used to extract the detailed features of low-spatial
resolution remote sensing images at multiple scales. The channel attention mechanism adaptively
adjusts the weights of the feature map channels to retain more temporal and spatial information in
the upsampling process, while the non-local attention mechanism adjusts the initial fusion images
to obtain more accurate predicted images by calculating the correlation between pixels. We use
two datasets with different characteristics to conduct the experiments, and the results prove that
the proposed MANet method with fewer parameters obtains better fusion results than the existing
machine learning-based and deep learning-based fusion methods.

Keywords: multiscale mechanism; STF; non-local attention; dilated convolution

1. Introduction

HTHS resolution remote sensing images are significant for remote sensing applica-
tion fields such as urban land cover mapping [1], disaster warning [2], surface change
detection [3], assessment of the area affected by an earthquake [4], and urban heat island
monitoring [5]. The temporal and spatial resolutions of remote sensing images acquired
by different sensors are mutually limited, and these sensors are broadly divided into two
main types. One type is equipped on the Landsat series, Gaofen series, Sentinel, and other
satellites, and the other is the Moderate-resolution Imaging Spectroradiometer (MODIS).
The Landsat series contains a diverse range of advanced thermal infrared sensors and
mappers for mapping, which have different sensitivities to different bands. Remote sensing
images required by the American Landsat series have a high-spatial resolution of 15–30 m
and a revisit cycle of approximately 16 days. In contrast, remote sensing images obtained
by MODIS on Terra/Aqua have a low-spatial resolution of 250 m–1 km and a revisit cycle
of one day. However, it is difficult to obtain cloud-free image data for some months in
many areas because of the interference of cloudy weather, which reduces the temporal
resolution of the images to some extent. As sensor technology and deep learning improve
by leaps and bounds, the research that uses STF methods to obtain HTHS resolution images
has also attracted increasing attention [6]. STF is an effective method that can combine
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high-temporal–low-spatial (HTLS) remote sensing images with low-temporal–high-spatial
(LTHS) remote sensing images to generate HTHS remote sensing images [7]. Although un-
manned aerial vehicles (UAVs) can easily obtain HTHS resolution images, they do not
apply to practical remote sensing applications for monitoring large surface areas because
the image size they obtain is relatively small. In addition, it is difficult for UAVs to obtain
images of depopulated zones, and most of the images obtained by UAVs are not publicly
available, while remote sensing images obtained by satellites not only cover a wide area,
but also most of them are free. Therefore, the major way to obtain HTHS images is through
STF methods.

2. Related Work

In recent years, a large number of studies have been performed on STF methods for
remote sensing images. According to different optimization strategies, STF methods can be
roughly classified into four categories: transform-based STF methods, image reconstruction-
based STF methods, hybrid pixel decomposition-based STF methods, and learning-based
STF methods [8].

Transform-based STF methods involve wavelet transform and principal component
analysis methods. STF methods based on wavelet transforms use wavelet transform
technology to perform wavelet decomposition on remote sensing images and then fuse
each decomposed layer, and the fusion results are ultimately acquired by the inverse
wavelet transform [9–11]. In addition, methods based on principal component analysis first
use a principal component method to separate the first principal component of high-spatial
resolution remote sensing images and then extract the brightness component, and finally
merge the extracted brightness image with the resampled low-spatial resolution remote
sensing images to obtain fusion images [12].

The principle of the STF method based on image reconstruction is to calculate the
weights of the similar adjacent pixels in input images and then obtain the target fusion
images through interpolation according to the synthesis weights, including time and space.
For example, Gao et al. [13] proposed a STF method STARFM, which is a new model that
estimates adjacent pixels’ contribution to the reflectance of central pixels by calculating
the weights of spectral difference, temporal difference, and pixel location distance. It is a
relatively effective method for a study area where the reflectance of adjacent pixels varies
little. To boost the pixel reconstruction of STARFM for nonuniform areas, Zhu et al. [14]
proposed a STF method ESTARFM, which is an enhanced version of STARFM, that also
searches for similar pixels first and calculates the weights of candidate pixels. The difference
is that the ESTARFM calculates the weights of similar image pixels and transformation
coefficients fully considering the internal relationship of the hybrid image pixels, which
makes the experimental results of the algorithm in the region with high heterogeneity
perform well compared with the STARFM method. A new STF model based on image
reflectance changes (STAARCH) [15] proposed by Hilker et al., which is also inspired
by STARFM, detects reflectance changes and denotes disturbances using Tasseled Cap
transformations [16,17] of both Landsat images and MODIS image reflectance data.

The essence of the STF method based on unmixing is to unmix the spectral details
of high-spatial resolution images at the prior time, and then predict the corresponding
HTHS resolution remote sensing images [18]. For example, Zhukov et al. [19] proposed
UMMF in 1999, which is a new STF model that first decomposes the spectrum of low-spatial
resolution images and then fuses them with high-spatial resolution images to generate
HTHS resolution remote sensing images. Based on UMMF, Wu et al. [20] proposed a new
STF method STDFA, which considers the spatial and temporal variations in the calculation
of the model and finally achieves good fusion results. These two methods require multiple
high-spatial resolution images to guarantee fusion accuracy. However, the number of
high-spatial resolution images obtained by sensors is limited due to cloud pollution in
practical remote sensing applications. To solve this problem, Zhu et al. [21] proposed a
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flexible STF method FSDAF in 2016, which performs well in heterogeneous regions with a
high speed by inputting a cloud-free and high-spatial resolution image.

Learning-based fusion methods can be roughly divided into dictionary-pair learning-
based methods [8,22–24] and deep learning-based fusion methods. The algorithms based
on dictionary-pair learning predict images by establishing the correspondence mainly
according to the structural similarity between low- and high-spatial resolution images.
For example, Huang et al. [22] proposed a STF network, SPSTFM, in 2012, a new model
based on sparse representation, which is the first time to train dictionary pairs between high-
spatial resolution residual images and low-spatial resolution residual images. However,
this method is not practical in remote sensing applications because this STF method predicts
HTHS images by using multiple high-spatial resolution images. Therefore, Wei et al. [23]
proposed an optimization STF model in 2016, which predicts images based on semi-coupled
dictionary-pair learning and structural sparsity. In 2021, Peng et al. [25] proposed a STF
method, SCDNTSR, based on dictionary learning, which first considers the spectral correla-
tion of image bands and further improves the accuracy of fusion results.

In recent years, deep learning has demonstrated its particular strengths in various
fields. Inspired by the super-resolution structure of SRCNN [26] proposed by Dong et al.,
Tan et al. [27] proposed a STF model, DCSTFN, to predict images by using two branches
dealing with spatial and temporal variation information separately. As the convolutional
operation in feature extraction leads to the loss of details, EDCSTFN [28] was proposed
based on DCSTFN, which added residual coding blocks and designed a compound loss
function to improve the ability of extracted features. Considering the nonlinear mapping
and super-resolution mapping between the input images, Song et al. [29] proposed the
STFDCNN network, which designs two convolutional network branches to learn these two
mappings separately and finally obtains the fused images through a weighting strategy.
In addition, Liu et al. [30] proposed a fusion approach, StfNet, in 2019, which establishes
the temporal dependence between low-spatial resolution images and predicts high-spatial
resolution images according to the temporal consistency and the super-resolution technol-
ogy. Tan et al. [31] proposed a STF model, GAN-STFM, based on unsupervised learning
and obtained HTHS resolution images through only two images.

At present, there are still some problems with deep learning-based STF methods.
First, the temporal change information and spatial features extracted from low-spatial
resolution images by stacked convolutional layers are insufficient [18,27], and some details
are lost during the upsampling process [32,33]. Second, a summation fusion strategy
may result in poorly fused images due to a lack of consideration of global spatial feature
information. To address the above issues, we propose a STF network architecture MANet
based on multiscale and attention mechanisms. In MANet, we adopt three images for
fusion. First, we obtained a residual image by performing a subtraction operation on
two low-spatial resolution images, and then we input it into the whole network with
a high-spatial resolution image. Our main contributions in this article are summarized
as follows:

1. A multiscale mechanism is used to extract temporal and spatial change information
from low-spatial resolution images at multiple scales, which is to provide more
detailed information for the subsequent fusion process.

2. A residual channel attention upsampling (RCAU) module is designed to upsample
the low-spatial resolution image. Inspired by DenseNet [34] and FPN [35] structures,
the rich spatial details of high-spatial resolution images are used to complement the
spatial loss of low-spatial resolution images during the upsampling process. This
collaborative network structure makes the spatial and spectral information of the
reconstructed images more accurate.

3. A non-local attention mechanism is proposed to reconstruct the fused image by
learning the global contextual information, which can improve the accuracy of the
temporal and spatial information of the fused image.
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The rest of the manuscript is organized as follows. Section 3 introduces the overall
structure and internal modules of the MANet method. Section 4 describes the experimental
part of the model, including the introduction of the datasets, the display of experimental
results, and comparisons with other classical STF methods. Section 5 is our discussion,
and Section 6 is the conclusion.

3. Materials and Methods
3.1. MANet Architecture

Figure 1 shows the overall architecture of MANet, in which cubes with different colors
represent different convolution operations, ReLU activation functions and other specific
operations. The MODIS image at time ti (i = 1, 2) is represented by Mi, and the Landsat
image at time ti is represented by Li. The MANet architecture contains three main parts:

• A sub-network is used to process residual low-spatial resolution images, extracting
the temporal and spatial variation information.

• A sub-network is used to process high-spatial resolution images, extracting spatial
and spectral information.

• To obtain more accurate fused images, a new fusion strategy is introduced to further
learn the global temporal and spatial change information of the fused image.

Figure 1. The overall architecture of MANet.

We first obtain residual image M12 by subtracting M1 from M2, which contains tem-
poral and spatial variation information from time t1 to time t2. We then send this residual
image to a multiscale mechanism to extract temporal and spatial change information at
multiple scales. Since the size of the MODIS images we input is one-sixteenth that of
Landsat images, we need to upsample them to the same size as the Landsat images for sub-
sequent feature fusion. In addition, MODIS images contain fewer spatial details and may
lose temporal and spatial information during upsampling. We design a new upsampling
module named RCAU, which maintains more temporal and spatial detail information in
useful channels during upsampling. Since MODIS images contain less spatial information
than Landsat images, we use the rich spatial information of Landsat images to compensate
for the loss of spatial feature information during the upsampling operation of MODIS
images. We downsample Landsat images and then add the feature maps after downsam-
pling with those of the upsampled MODIS images, and this operation helps to extract the
spatial information of MODIS images in the upsampling process. We obtain high-spatial
resolution images upsampled by 16 times with four RCAU modules. Meanwhile, we input
the Landsat image at a prior time into three 5× 5 convolution kernel sequences to extract
spatial details. Then, we fuse the upsampled feature maps containing temporal and spatial
variation information with the feature map extracted from the Landsat image and obtain
preliminary feature maps containing temporal and spatial information. In the process of
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feature fusion, the local temporal and spatial information of the feature map may be wrong.
Therefore, we use an asymmetrical pyramid non-local block (APNB) [36] module to learn
the global temporal and spatial information from the preliminary feature map and obtain
the enhanced feature map. Finally, the feature maps obtained by the APNB module are
sent to the two fully connected layers to obtain the final fusion image L2, which integrates
all the temporal and spatial information.

3.2. Multiscale Mechanism

The spatial structures of remote sensing images are very complex. In addition, convo-
lution layers with a single receptive field are directly used to extract information, which
may result in the loss of detailed information due to the limitation of the receptive field of
convolutional layers. To address this issue, we use a multiscale mechanism [37] composed
of convolutional kernels with different receptive fields to simultaneously extract temporal
and spatial change features, which can improve the fusion accuracy. We input the resid-
ual feature maps obtained by subtracting MODIS images into this multiscale mechanism
and then concatenate the obtained feature maps at different scales to acquire a feature
map containing temporal and spatial variation information, as shown in Figure 2. This
multiscale mechanism is composed of three 3× 3 convolution kernels, and their dilation
rates are 1, 2, and 3, respectively. The larger the dilation rate is, the larger the receptive
field of convolution layers, and the spatial and temporal change information may be more
comprehensive. We extract features using three convolution layers with different dilation
rates in parallel and then obtain the detailed feature information at different scales. In this
article, the feature maps obtained by these three convolutional layers contain 12 channels,
respectively, and then these feature maps are concatenated to acquire a feature map with
36 channels.

Figure 2. Network architecture of the multiscale mechanism.

3.3. Attentional Mechanism
3.3.1. RCAU Module

Some spatial and temporal variation information in remote sensing images may be
lost during the upsampling process. To retain more feature information in the upsampling
process, we design an RCAU module to upsample remote sensing images and input the
upsampled feature maps to a channel attention mechanism to adaptively assign weight to
each channel according to the importance of channel details. This RCAU module is similar
to the RCAB module [38], except that RCAU changes this first convolution layer to a decon-
volution layer, which is to achieve the upsampling operation of MODIS images. The RCAB
module integrates the channel attention mechanism and a residual block. The channel
attention mechanism (CA) can adaptively assign weight to each channel according to the
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importance of channel details [39]. The residual block is used to combine deep features
with shallow features in the network structure to reduce feature loss. The RCAB module
has been proven to have a good effect on the application of single RGB image super-
resolution [38]. Since the upsampling operation of remote sensing images is different from
the super-resolution of natural images, the resolution difference of remote sensing images is
approximately 16 times. In the RCAU module, a deconvolution layer is first used to double
the spatial resolution, and the resulting feature maps are then sent to the ReLU activation
and a convolution layer to further extract features. To reduce the spatial feature loss during
upsampling, we use the channel attention mechanism to extract details more efficiently by
acquiring dependencies between channels and restraining unnecessary information [40],
as shown in Figure 3. Finally, we use a residual structure to add the feature map after the
deconvolution operation to the feature map after the channel attention mechanism to fuse
the information from shallow and deep network layers. To achieve the 16-times resolution
scale fusion of remote sensing images, we need to use four RCAU modules in the MANet
structure. For the layer nth (n = 1, 2, 3, 4) RCAU module, we have:

Fn,b = Dn,b(Fn,b−1) + Cn,b(Xn,b)× Xn,b (1)

where Cn,b denotes the channel attention function, Fn,b and Fn,b−1 are the input and output
of the RCAU module, respectively, Dn,b is the function that acts on the input feature map
in the RCAU module, which contains the deconvolution and ReLU operations, and the
RCAU learns the residual component Xn,b from the input feature map. Xn,b is composed of
a Conv layer, which can be defined as:

Xn,b = W1
n,b × Dn,b (2)

where W1
n,b represents the weight of the the Conv layer. Dn,b is multiplied by the weight to

obtain the residual component Xn,b. Therefore, the RCAU module not only increases the
size of low-spatial resolution images by two times, but also the detailed texture information
of low-spatial resolution images can be restored by using the rich spatial details of Landsat
images, which is achieved by adding the feature maps of Landsat images that have been
downsampled to the low-spatial resolution images. We then input the feature maps
obtained after the four RCAU modules into the next convolutional layer to further extract
detailed features.

Figure 3. The architecture of RCAU module.

3.3.2. APNB Architecture

The initial fused image was obtained by a simple addition operation, containing
unitary information of spatial details and temporal changes, and the pixels of the image are
independent of each other, which may produce jagged edges and noise. If we directly send
it to a fully connected layer, the fusion image will contain more noise, and the fusion effect
will be worse. Therefore, we used the non-local autocorrelation of the image to restore
the non-local information of fusion image and improve the fusion result. This refers to
an asymmetrical pyramid non-local block (APNB) module used in the MANet structure,
which is an improved non-local model [41]. It realizes remote dependence by calculating
the relationship between each query pixel and all the other pixels and aggregating the
features of all pixels in the image. Thus, the relationship between pixels in the initial fusion



Remote Sens. 2022, 14, 4600 7 of 21

image can be considered from the perspective of global details, making the fusion result
close to the real image. It has been proven that APNB can be used to improve segmentation
performance in semantic segmentation [42]. Figure 4 shows the network architecture of
APNB module, where X is the input initial fusion image. The channels of this image are
halved by three 1× 1 convolution layers, and the feature vectors Key, Value and Query
are separately generated by flattening. Key and Query are used to calculate the similarity
of pixels. Value represents the feature vector directly input to the network. To exploit
multiscale correlations, the pyramid pooling layer structure was used for Key and Value
to handle correlations at different scales. The adaptive average pooling layer was used to
generate 1× 1, 3× 3, 6× 6, and 8× 8 matrices, which were flattened and connected into a
vector. This vector was multiplied by the transposed Query to obtain a matrix containing
correlations between different pixels. Afterward, the similarity weight was obtained by the
softmax operation of this matrix, and then we multiplied the similarity weight by Value to
obtain the feature map with global attention. Finally, to add the relationship between global
pixels to the fused image, we sent the feature map to a reshape layer and a convolution
layer, and then, the feature map was added to the initial fused image X. The latest fused
image Y with a global relationship was obtained through two fully connected layers.

Figure 4. The architecture of APNB module.

3.4. Loss Function

The MSE loss function is often used to evaluate the error between a predicted image
and a real image in a STF model, which ignores the global quality of an image during the
training process, we designed a compound loss function, which includes content loss and
vision loss. The formula is:

LMANet = Lcontent + α× Lvision (3)

where α represents the weighting coefficient of vision loss. After many experiments, setting
α to 0.8 worked best. The content loss is often used to ensure the pixel-level supervision
of an image in a STF model, we use a Charbonnier loss [43] to calculate the content loss
by calculating the pixel error between two images in this experiment. In content loss,
the similarity between the real image and the predicted image is enforced by enhancing
pixel-wise reconstruction, which can better process the outliers in the predicted image that
are very different from the pixels in the real image. It can be defined as:

Lcontent =
√
(y− x)2 + ε2 (4)

where x and y are the predicted value and the real observed value, respectively. The ε is
used to prevent the error backpropagation, which is empirically set to 1× 10−3. In the
compound loss function, the content loss is to improve the similarity of the texture details
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between the predicted image and the real image, while the vision loss is to measure the
visual similarity between images [44]. In the STF model, the multiscale structural similarity
(MS-SSIM) [28,45] is used to calculate the vision loss, which is the multiscale version of
SSIM. The SSIM index is used to comprehensively evaluate the similarity of images based
on three parts: structure, contrast, and luminance, and it can also evaluate the structural
similarity of images by calculating the mean, variance, and covariance between the real
image and the predicted image. MS-SSIM is used to calculate the structural similarity of
multiple levels after reducing the image to different scales, which reduces noise and blur
around edges to obtain more accurate predicted images. Vision loss can be obtained by
MS-SSIM, which can be defined as:

Lvision = 1−
M

∏
m=1

(
2µxµy + c1

µ2
x + µ2

y + c1

)βm( 2σxy + c2

σ2
x + σ2

y + c2

)γm

(5)

where M represents the highest scale, βm and γm represent the proportion of the two
fractions, µx and µy represent the mean of the predicted image x and the real image y,
respectively. σ2

x and σ2
y represent the variance of the predicted image x and the real image

y, respectively. σxy represents the covariance of the predicted image x and the real image y.
c1 and c2 are two constants to ensure the stability of the formula.

The experimental results show that MS-SSIM can effectively restore the high-frequency
characteristics of the predicted image [32]. Therefore, adding a vision loss function to the
compound loss function can obtain more accurate prediction results.

4. Experiments
4.1. Datasets

To verify the effect of the proposed fusion model, we use two datasets to conduct the
experiment. Figure 5a shows the Lower Gwydir Catchment (LGC) [46], which is located in
northern New South Wales, Australia (NSW, 149.2815◦E, 29.0855◦S). This dataset contains
14 pairs of cloud-free MODIS-Landsat images from 16 April 2004 to 3 April 2005. MODIS
images were obtained from MODIS Terra MOD09GA Collection 5 Data, and Landsat
images were obtained from Landsat-5 TM and were atmospherically corrected using the
algorithm [47] proposed by Li et al. The LGC dataset mainly takes the land cover area as
the experimental area, including arid farmland, irrigated paddy fields, and forest land,
and the spectral information in the area is more variable; thus, we mainly observe spectral
changes [18]. The original LGC dataset image size is 3200 × 2720 and consists of six bands.

Figure 5b shows the Coleambally Irrigation Area (CIA) study cite [46], which is lo-
cated in southern New South Wales, Australia (NSW, 34.0034◦E, 145.0675◦S). This dataset
contains 17 pairs of cloud-free MODIS-Landsat images from 7 October 2001 to 17 May 2002.
The MODIS images were obtained by MODIS Terra MOD09GA Collection 5 data, and the
Landsat images were obtained by Landsat-7 ETM+ and were atmospherically corrected
using MODTRAN4 [48] as outlined inVan Niel and McVicar [49]. On the CIA dataset,
farmlands are mainly selected as the experimental area, and the phenological changes on
different dates were obvious; thus, we take it as the dataset with high-spatial heterogene-
ity [18]. The original CIA dataset size is 1720 × 2040 and contains a total of six bands.

Before training the network, we first cropped all these images from the center to a
size of 1200× 1200. The resolution difference between the original Landsat and MODIS
images is 16 times, and we scale all the MODIS images to a size of 75× 75 for reducing
training parameters. From Figures 6 and 7, we can see the changes in the MODIS-Landsat
image pairs of the CIA and LGC datasets on different dates, and the two datasets were
input into the MANet structure for training. In these two datasets, we arranged the MODIS-
Landsat image pairs in chronological order, and the temporally closest two image pairs
were grouped in a data group according to the temporal distance. The time of the reference
image is always before, and the time of the predicted image is always after. Finally, there are
16 data groups available in the CIA dataset and 13 data groups available in the LGC dataset.
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The grouped data is then randomly assigned to 60% of the dataset as the training dataset,
20% as the validation dataset, and the remaining 20% as the test dataset. In the whole
experiment, the three parts of the datasets were selected assuming there was no intersection.

Figure 5. Location of the Coleambally Irrigation Area (CIA) and the Lower Gwydir Catchment (LGC).

Figure 6. Comparison of CIA image pairs on 7 October 2001, 24 November 2001, and 9 March 2002.
(a,d) are the MODIS and Landsat images on 7 October 2001, respectively. (b,e) are the MODIS and
Landsat images on 24 November 2001, respectively. (c,f) are the MODIS and Landsat images on
9 March 2002, respectively.
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Figure 7. Comparison of LGC image pairs on 22 August 2004, 28 December 2004 and 13 January
2005. (a,d) are the MODIS and Landsat images on 22 August 2004, respectively. (b,e) are the MODIS
and Landsat images on 28 December 2004, respectively. (c,f) are the MODIS and Landsat images on
13 January 2005, respectively.

4.2. Evaluation Indicators

To make quantitative evaluations of our proposed STF model, we compared MANet
with STARFM [13], FSDAF [21], DCSTFN [27], and DMNet [18] under the same conditions.
We performed the same experiment on both datasets for all methods because these methods
all use two low-spatial resolution images and one high-spatial resolution image for STF.

Firstly, we used the structural similarity (SSIM) index [50] to evaluate the similarity of
two images from multiple perspectives. It can be defined as:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(6)

where µx and µy represent the mean of the predicted image x and the real image y, re-
spectively. σ2

x and σ2
y represent the variance of the predicted image x and the real image

y, respectively. σxy represents the covariance of the predicted image x and the true image
y. c1 and c2 are two constants to avoid system errors. The range of SSIM value is [−1, 1].
The larger the value of SSIM is, the smaller the difference between the predicted image and
the real image; that is, the predicted image quality is better.

The second indicator is the peak signal-to-noise ratio (PSNR) [51], which is used to
assess the loss of signal recovery. It can be indirectly defined by the mean square error
(MSE), which refers to the mean of the sum of the squared differences between the predicted
and the real image pixel values. MSE can be defined as:

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0
||y(i, j)− x(i, j)||2 (7)

where m and n represent the height and width of the image, respectively. y and x are the
real observed image and the predicted image. PSNR can be defined as:

PSNR = 20× log10

(
MAXy√

MSE

)
(8)
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where MAXy represents the maximum possible pixel value of the real image y. The higher
the value of PSNR is, the less distortion between the predicted image and the real image;
that is, the predicted image quality is better.

The third index we used is the spatial correlation coefficient (CC) [52], which measures
the spatial information similarity between the predicted image x and the real observed
image y. It can be defined as:

CC =
∑n

i=1(xi − x)(yi − y)√
∑n

i=1(xi − x)2 ∑n
i=1(yi − y)2

(9)

The range of CC value is [−1, 1]. The closer the CC is to 1, the larger the positive
correlation between the real observed image and the predicted image.

Finally, we used the root mean square error (RMSE) [27] index to measure the deviation
between the predicted value x and the real observed value y. Specifically, it is the square
root of MSE. It can be defined as:

RMSE =

√√√√ 1
mn

m

∑
i=1

n

∑
j=1

(y(i, j)− x(i, j))2 (10)

where m and n represent the height and width of the image, respectively. y and x are the
real observed value and the predicted value. The closer the RMSE is to 0, the closer the
predicted image is to the real image.

4.3. Parameter Setting

STARFM [13] and FSDAF [21] are machine learning-based models that use 20% of the
datasets to test directly in experiments without training. DCSTFN [27], DMNet [18] and
MANet are all deep learning-based frameworks. MANet is a PyTorch-based framework that
uses the Adam optimizer to optimize network training parameters. The weight attenuation
is set to 1× 10−6, the initial learning rate is set to 0.0008, and the training epoch is set to 30.
We trained MANet for 6 h in a Windows 10 professional environment, equipped with 16 GB
RAM, an Intel Core I5-10400 CPU @2.90 GHz, and a NVIDIA GeForce RTX 3060 GPU.

4.4. Experiment Results
4.4.1. Subjective Evaluation

Figure 8 shows the prediction results of various fusion methods on the CIA dataset
on 26 April 2002. “GT” represents the real image, and “Proposed” is our MANet method.
As Figure 8 shows, the field of the CIA dataset is relatively small, and it has strong spatial
heterogeneity. For better visual comparison, we extracted and enlarged the sharp contrast
part. The figure shows that all the fusion methods can improve the spatial resolution of the
predicted images to a certain extent, indicating that these fusion methods can roughly re-
cover the temporal changes, spatial variations, and spectral change of the predicted images.
However, in some heterogeneous regions, the fusion results of different fusion methods
are different. As shown in the figure, the fusion results of the STARFM fusion method and
FSDAF fusion method have been seriously distorted in spectral details. The “GT” image
shows a white area, while the STARFM predicted image shows obvious purple patches
and loses texture details. This may be because the STF method is heavily affected by the
search window during the process of image pixel prediction and performs poorly when
the image has high-spatial heterogeneity. In the FSDAF predicted image, there are also
some purple patches, and the edge of the farmland is fuzzy. This may be because the fusion
method uses a TPS algorithm to predict high-spatial resolution images from low-spatial
resolution images. As the figure shows, the spectral information of the white area of
the DCSTFN predicted result experienced an error, and the fuzzy effect also appeared
at the edge of farmland, which may be caused by the loss of spatial information after
using multiple convolution layers. Although the results predicted by the DMNet fusion
method show good texture details and the spatial information was retained relatively
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completely, the spectral distortion was relatively serious, which might be related to the
use of a simple addition method for fusion. For our proposed method, the farmland edge
information is well processed. Although the spectral information is not accurately reflected,
the color difference is relatively small, and the white area is partially restored, making it
relatively similar to that of the real image. This shows that our proposed method has a
better effect on the high-spatial heterogeneity dataset than the other fusion methods. This
is because we paid more attention to extracting spatial and temporal details by introducing
a multiscale mechanism.

Figure 8. Predicted results of the high-spatial resolution image (26 April 2002) on the CIA [46]
dataset. Additionally, the comparison methods include STARFM [13], FSDAF [21], DCSTFN [27] and
DMNet [18], which were represented by (b–e) in the figure, respectively. Moreover, the GT is the
ground truth represented by (a), and (f) is our proposed STF method.

Figure 9 shows the prediction results of various fusion methods on the LGC dataset on
2 March 2005. “GT” represents the real image, and “Proposed” is our MANet method. Since
the variation of spectral information on the LGC dataset is large, we mainly compared the
spectral changes and boundary information of the fusion results. For visual comparison, we
also extracted and enlarged the sharp-contrast part. As the figure shows, all fusion methods
can achieve good prediction of spatial details in most areas. However, in some regions
where the spectral information changes greatly, the prediction results of each fusion method
are different. As shown in the figure, the predicted images of the STARFM fusion method
and FSDAF fusion method exhibit spectral distortion. A red line is shown in the “GT”
image, but there are red patches in the STARFM predicted image, which is a serious spectral
distortion. This is because STARFM uses surrounding pixels to reconstruct the central pixel,
which results in spectral distortion because it is not conducive to the restoration of boundary
details. Some black patches in the red area of the “GT” image disappeared in the STARFM
predicted image, indicating that spectral changes and boundary information of the STARFM
fusion method were lost, which may be caused by the settings of the search window.
As shown by the FSDAF prediction results, although the red patches are reduced, there is
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still spectral distortion, which may also be due to partial information lost in the prediction
process and the TPS interpolation operation. The methods based on machine learning
performed poorly in processing boundary details in the region where spectral information
varies greatly. The DCSTFN and DMNet STF approaches still have some fuzzy phenomena
in processing boundary information. In the DCSTFN prediction results, the red line is not
smooth enough, and the texture details are not well processed. This may be caused by the
loss of detailed information during the process of using multiple convolutional layers in
this method. DCSTFN and DMNet can recover the spectral information of the image to
some extent. The predicted result of our method is smoother than that of others methods in
processing the red line, and the spectral information and boundary information can be well
predicted. In general, compared with other fusion methods, our proposed method not only
achieves accurate prediction of texture details, but also processes the spectral details well.

Figure 9. Predicted results of the high-spatial resolution image (2 March 2005) on the LGC [46]
dataset. Additionally, comparison methods include STARFM [13], FSDAF [21], DCSTFN [27] and
DMNet [18], which were represented by (b–e) in the figure, respectively. Moreover, the GT is the
ground truth represented by (a), and (f) is our proposed STF method.

4.4.2. Objective Evaluation

Table 1 shows the quantitative evaluation results of various fusion methods on the
CIA dataset with high-spatial heterogeneity. The best values of the index are marked in
bold. As the table shows, the prediction results of our proposed MANet fusion method are
improved in terms of most indicators compared with those of other algorithms. For exam-
ple, in terms of the SSIM index related to spatial information, the result of our proposed
method is approximately 2.9% higher than that of the FSDAF fusion method based on
machine learning. Compared with the DMNet method based on deep learning, the SSIM
values of our method are improved by about 1% on multiple bands. These show that our
proposed method can handle spatial variation information of the dataset with high-spatial
heterogeneity well. The quantitative evaluation results obtained by the STARFM fusion
method are the worst, which may be because the surrounding pixels are used for pixel
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reconstruction, which is not applicable in a region where spatial information changes
greatly. The poor quantitative evaluation result of the FSDAF fusion method may be due
to the limitation of the TPS interpolation algorithm. The spectral information is related to
RMSE and CC values, and the value of RMSE represents the pixel-level error between the
predicted image and the real image in particular. In the quantitative evaluation results of
the DCSTFN STF method, the indices of some bands are the best, which shows that DC-
STFN can predict the spectral information of these bands well. The SSIM value of DMNet
method is better than that of DCSTFN method, which indicates that DMNet can better
handle spatial variation information. The values of CC and RMSE of DMNet method are
both worse than those of the DCSTFN method, which indicates that DCSTFN method can
predict spectral information well. This may be because the DMNet method uses a simple
addition strategy for fusion and ignores some useful information. The MANet method
acquired the best results on other indexes, such as RMSE and CC values, which indicates
that our proposed method can better predict spectral change information. The experimental
results indicate that the spatial details and spectral change information of remote sensing
images can be better captured by adding multiscale and attentional mechanisms to the
network structure.

Table 1. Quantitative assessment of different STF methods on the CIA [46] dataset.

Evaluation Band
Method

STARFM FSDAF DCSTFN DMNet Proposed

SSIM

Band1 0.8731 0.9037 0.9355 0.9368 0.9455
Band2 0.8527 0.9172 0.9304 0.9304 0.9351
Band3 0.7938 0.8578 0.8915 0.8905 0.8989
Band4 0.7329 0.8210 0.8231 0.8271 0.8319
Band5 0.7197 0.8109 0.8165 0.8187 0.8274
Band6 0.7260 0.8194 0.8383 0.8379 0.8432

Average 0.7830 0.8550 0.8726 0.8736 0.8803

PSNR

Band1 27.4332 37.2104 38.3779 38.3696 39.2152
Band2 24.3359 36.0368 36.4337 36.3136 36.8910
Band3 24.5396 31.3339 33.2257 32.8116 33.2862
Band4 19.6533 26.9470 28.7492 28.5944 28.8370
Band5 20.8408 28.0493 28.4029 28.1894 28.5474
Band6 22.1580 25.0635 29.8863 29.7228 29.9921

Average 23.1601 30.7735 32.5126 32.3336 32.7948

CC

Band1 0.3898 0.8014 0.8374 0.8382 0.8547
Badn2 0.3965 0.7988 0.8603 0.8581 0.8658
Band3 0.5883 0.8302 0.8912 0.8854 0.8882
Band4 0.5039 0.8161 0.8265 0.8195 0.8272
Band5 0.6855 0.8977 0.9015 0.8989 0.9060
Band6 0.6927 0.9060 0.9153 0.9126 0.9162

Average 0.5428 0.8417 0.8720 0.8688 0.8764

RMSE

Band1 0.0124 0.0124 0.0123 0.0122 0.0112
Band2 0.0156 0.0162 0.0156 0.0158 0.0149
Band3 0.0227 0.0234 0.0226 0.0239 0.0229
Band4 0.0387 0.0408 0.0387 0.0395 0.0385
Band5 0.0386 0.0399 0.0386 0.0394 0.0382
Band6 0.0330 0.0329 0.0324 0.0330 0.0324

Average 0.0268 0.0276 0.0267 0.0273 0.0264

Table 2 shows the quantitative evaluation results of various fusion methods on the LGC
dataset with large spectral changes. The best values of the index are marked in bold. As the
table shows, the prediction results of our proposed MANet fusion method are improved in
terms of most indicators compared with those of other algorithms. For example, the result
of our proposed method is approximately 1% higher than those of other methods in
terms of the SSIM index, which indicates that our proposed method can handle spatial
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variation information. Spectral variation is related to RMSE and CC indexes, the result
of our proposed method is improved to a certain degree compared with other methods,
which indicates that our proposed method can better predict spectral change information.
The quantitative evaluation results of the STARFM fusion method are the worst and with
serious spectral distortion, because the method uses the surrounding pixels to predict
center pixels with the limits of the search window, so it cannot be applied to the area
with great spectral changes. The quantitative evaluation results of the FSDAF fusion
method are poor compared with those of the STF methods, which may be because this
method uses the TPS interpolation algorithm to predict high-resolution images and finally
uses the information of adjacent regions to obtain the predicted images, which leads
to spectral distortion due to information loss. In the quantitative evaluation results of
the DCSTFN fusion method, the RMSE index values of some bands are optimal, which
indicates that DCSTFN method can predict the spectral change information to some extent.
The quantitative evaluation results of the DMNet fusion method are inferior to those of
DCSTFN because it loses information through an additive fusion strategy. Table 2 shows
that our method achieves the best quantitative evaluation results on the SSIM, RMSE,
PSNR, and CC indexes. This is because we use high-spatial resolution image features to
help restore the spectral information and spatial details of the predicted image. Finally,
a non-local attention mechanism is used to pay more attention to the spatial and spectral
relations between pixels. This shows that our method can be better applied to regions with
large spectral changes.

Table 2. Quantitative assessment of different STF methods on the LGC [46] dataset.

Evaluation Band
Method

STARFM FSDAF DCSTFN DMNet Proposed

SSIM

Band1 0.8846 0.9264 0.9361 0.9368 0.9384
Band2 0.8837 0.9300 0.9489 0.9304 0.9488
Band3 0.8401 0.9241 0.9262 0.8905 0.9303
Band4 0.8071 0.8803 0.8901 0.8971 0.8975
Band5 0.7860 0.8693 0.8706 0.8687 0.8842
Band6 0.7908 0.8615 0.8714 0.8779 0.8804

Average 0.8321 0.8986 0.9072 0.9002 0.9133

PSNR

Band1 30.4687 38.5891 39.0567 39.5980 39.6168
Band2 23.3251 37.1057 38.0523 38.1447 38.2195
Band3 23.6144 35.0483 35.9674 35.7742 36.0948
Band4 17.4570 31.2650 31.5236 31.4327 31.8561
Band5 20.3062 30.2034 30.9916 30.8822 31.2151
Band6 21.9842 31.0435 32.1594 31.9054 32.2980

Average 22.8593 33.8758 34.6252 34.6229 34.8834

CC

Band1 0.7697 0.8802 0.8973 0.9012 0.9090
Band2 0.8775 0.8901 0.8943 0.8939 0.9003
Band3 0.8272 0.8969 0.9052 0.9067 0.9079
Band4 0.8993 0.9090 0.9198 0.9183 0.9209
Band5 0.7816 0.9216 0.9263 0.9242 0.9298
Band6 0.7270 0.9203 0.9228 0.9252 0.9264

Average 0.8137 0.9030 0.9110 0.9116 0.9157

RMSE

Band1 0.0122 0.0139 0.0122 0.0119 0.0117
Band2 0.0134 0.0132 0.0130 0.0130 0.0131
Band3 0.0164 0.0167 0.0162 0.0166 0.0163
Band4 0.0268 0.0276 0.0268 0.0271 0.0259
Band5 0.0291 0.0297 0.0291 0.0298 0.0286
Band6 0.0277 0.0271 0.0257 0.0266 0.0254

Average 0.0209 0.0214 0.0205 0.0208 0.0202
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5. Discussion

The experimental results obtained on the CIA dataset show that our method acquired
the best result by introducing multiscale and attention mechanisms and a compound loss
function in heterogeneous regions. The subjective evaluation shows that the prediction
results of the STARFM fusion method and FSDAF fusion method both exhibit serious
spectral distortion, while the image predicted by our proposed STF method is relatively
closer to the real image. This shows that our method can predict the spectral variation,
temporal variation, and spatial features of images in heterogeneous regions. Second,
the experimental results obtained on the LGC dataset show that our method can better
predict the spectral changes in regions with great spectral changes because our method
pays more attention to extracting details and incorporates a new fusion method to retain
more detailed features. The following was achieved with the MANet method: (1) feature
extraction of low-spatial resolution remote sensing images is realized by using a multiscale
mechanism; (2) the upsampling of low-spatial resolution images is performed by using
the RCAU module; and (3) a new fusion strategy is introduced to further learn the global
temporal and spatial change information of the fused image, which can obtain a more
accurate fused image. We use the RCAU module to upsample low-spatial resolution
images, in which the channel attention mechanism captures the spatial and spectral details
during the upsampling process. Similarly, after the initial fusion image is generated, we
send it to the APNB module so that we can capture global information of the predicted
image according to the indexes of time and space. Thus, we can obtain more accurate
prediction results.

5.1. Ablation Experiments

Three experiments were designed to further describe the importance of the multiscale
mechanism, the RCAU module, and the APNB module. In the first experiment, we replaced
the multiscale mechanism with an ordinary convolution and retained the RCAU module
and the APNB module. In the second experiment, we removed the RCAU module and
retained the multiscale mechanism and the APNB module. In the third experiment, we
removed the APNB module and retained the multiscale mechanism and the RCAU module.
Table 3 shows the results of Experiment 1, Experiment 2, and Experiment 3, in which
“ANet” refers to the network structure with the multiscale mechanism removed, “MAPNet”
refers to the network structure with the RCAU module removed, and “MRNet” refers to
the network structure with the APNB module removed. The best values of the index are
marked in bold.

Table 3. The results of comparative experiments.

Dataset Index ANet MAPNet MRNet MANet

CIA SSIM 0.8794 0.8791 0.8788 0.8803
RMSE 0.0266 0.0267 0.0267 0.0264

LGC SSIM 0.9132 0.9131 0.9133 0.9133
RMSE 0.0203 0.0204 0.0203 0.0202

As the above table shows, on the CIA dataset, the SSIM value of ANet is greater than
that of MRNet and that of MAPNet, which indicates that ANet is better than MRNet and
MAPNet in predicting spatial change information. The RMSE value of ANet is less than that
of MRNet and that of MAPNet, which indicates that the predicted result of ANet is more
accurate than that of MRNet and that of MAPNet in predicting spectral change information.
These show that adding attention mechanisms is beneficial to feature extraction of the
spectral and spatial variation information. On the LGC dataset, the SSIM value of MRNet
is larger than that of MAPNet and that of ANet, which indicates that the predicted result of
MRNet is better than that of MAPNet and that of ANet in predicting the spatial change
information. The RMSE values of MRNet and ANet are smaller than that of MAPNet, which
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indicates that MRNet and ANet are better than MAPNet in predicting spectral change
information. These show that adding multiscale and attention mechanisms is beneficial to
feature extraction of the spectral and spatial variation information. The SSIM and RMSE
values of MANet on the CIA dataset and LGC dataset are optimal, which indicates the
MANet method can better extract spatial and spectral information compared with other
STF methods. Figure 10 shows the results on the CIA dataset of these three comparative
experimental methods and our proposed method with band 4 on 26 April 2002. Figure 11
shows the results on the LGC dataset of these three comparative experimental methods
and our proposed method with band 4 on 28 December 2004.

Figure 10. The results on the CIA dataset of these comparative experimental methods.

Figure 11. The results on the LGC dataset of these comparative experimental methods.

In Figures 10 and 11, (a) represents the real image, (b) represents the ANet predicted
image, (c) represents the MAPNet predicted image, (d) represents the MRNet predicted
image, and (e) represents the MANet predicted image. Figure 10 shows that the ANet
predicted image has obvious spectral distortion. The predicted images of MAPNet, MRNet,
and MANet are more similar to the real observed images, which indicates that adding a
multiscale mechanism can effectively extract the temporal changes and spectral details of
images. The ANet method performs well in terms of the quantitative evaluation results,
possibly because texture details are lost in the MAPNet and MRNet fusion methods.
MANet performs best in terms of quantitative evaluation results, which shows that adding
a multiscale mechanism can effectively extract the temporal changes and spectral details
and adding attention modules can effectively extract spatial details. As Figure 11 shows,
the predicted images of MAPNet and MRNet exhibit spatial and spectrum detail loss,
which shows that using the attention mechanisms to extract temporal and spatial details
for subsequent image recovery is important in regions with large spectrum variation.
Comparatively, the MANet predicted image is more similar to the real image, which
indicates that our method can deal well with spectral and spatial details. Although we
improved the method of extracting spatial information and spectral details, our study
still has deficiencies, such as the prediction accuracy of our method for areas with large
topographic variations. Once we have collected enough qualified datasets, we can design a
more suitable network structure for more advanced analysis.
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5.2. Loss Curves and the Number of Training Parameters

Table 4 shows the number of training parameters for various fusion methods. STARFM
and FSDAF are fusion methods based on machine learning, so they have no training process.
As the table shows, our fusion method has fewer training parameters than other deep
learning-based fusion methods. In training the network, the whole dataset is trained in
each epoch. As the number of training epochs increases, the accuracy of model training
increases. We input the dataset into the MANet structure according to the number of bands
to optimize the weights of the network. Figure 12 shows the evolution of the loss curves at
the training stage and validation stage for 30 epochs, where each color represents a different
band and the solid line and dotted line represent the loss curves at the training stage and
validation stage, respectively. Since the loss function is composed of content loss and vision
loss, the closer it is to zero, the better the training effect. We can see from Figure 12 that the
training loss value decreases rapidly at first and then stabilizes and no longer decreases
after 20 epochs, while the validation loss is not stable and fluctuates greatly in the early
stage. After more than 25 epochs, all the loss function curves show a relatively stable trend.
Therefore, the network tends to converge when the number of epochs is greater than or
equal to 30.

Table 4. The number of training parameters for various fusion methods.

Method STARFM FSDAF DCSTFN DMNet MANet

Training parameters - - 298,177 327,061 77,171

Figure 12. The loss curves of MANet for multiple bands on the training and test datasets.

6. Conclusions

We evaluated the effectiveness of our proposed STF method MANet by using two
datasets with different characteristics and acquired the best final experimental results.
The main contributions of our research are introducing a new STF architecture, which
includes the following:

1. The multiscale mechanism is used to extract the temporal and spatial variation of
a low-spatial resolution image. The final experimental results indicated that the
extraction of detail features at different scales can make the network retain more
useful temporal and spatial details, and the prediction result is closer to the real result.
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2. By designing the RCAU module, we not only realize the upsampling of feature maps
with low-spatial resolution, but also reduce the loss of detail information by the
weighting operation, which is more conducive to the reconstruction of low-spatial
resolution image pixels.

3. In the fusion process, we have designed a new fusion strategy. The APNB module
was added after the initial fusion image, which can effectively extract global spatial
and temporal information. Experimental results show that our method can better
capture the spatial details and spectral information of the predicted image.

The experimental results show that our method achieves the best prediction results on
both the CIA dataset with complex spatial information and the LGC dataset with variable
spectral information. From the perspective of the whole fusion framework, the feature
information of low-spatial resolution images and the rich spatial information of high-spatial
resolution images are both important for predicting HTHS resolution images. The low-
spatial resolution image easily loses details in the upsampling process, so we introduce
attention mechanisms to restore its spatial resolution and spectral information with the help
of channel weights, which is significant in solving temporal and spatial problems. In the
STF problems, due to the limitation of fewer available datasets, the predicted accuracy is
difficult to greatly improve. Therefore, future research must map low-spatial resolution
images to high-spatial resolution images without reference in the prediction stage. These
problems can be further discussed.
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