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Abstract: Previous wildfire risk assessments have problems such as subjectivity of weight allocation
and the linearization of statistical models, resulting in generally low robustness and low general-
ization ability of fire risk assessment models. Therefore, in this paper, we explored the potential of
integration machine learning algorithms to build wildfire risk assessment models. Based on ana-
lyzing fire data’s spatial and temporal distribution, we selected 10 triggering factors of topography,
meteorology, vegetation, and human activities, using frequency ratio (FR) to provide uniform data
representation of triggering factors. Next, we used the Bayesian optimization (BO) algorithm to
perform hyperparametric optimization solutions for various machine learning models: support
vector machine (SVM), random forest (RF), and extreme gradient boosting (XGBoost). Finally, we
constructed an integration machine learning algorithm to acquire a fire risk grading map and the
importance evaluation corresponding to each triggering factor. For validation purposes, we selected
Liangshan Prefecture in Sichuan Province as the specific study area and obtained MCD64A1 burned
area product to extract the extent of burned areas in Liangshan Prefecture from 2011 to 2020. The
accuracy, kappa coefficient, and area under curve (AUC) were then applied to assess the predictive
power and consistency of the fire risk classification maps. The experimental analysis showed that
among the three models, FR-BO-XGBoost had the best performance in wildfire risk assessment
in the Liangshan region (AUC = 0.887), followed by FR-BO-RF (AUC = 0.876) and FR-BO-SVM
(AUC = 0.820). The feature importance result indicated that the study area’s most significant effects
on wildfires were precipitation, NDVI, land cover, and maximum temperature. The proposed method
avoided the subjective weighting and model linearization problems. Compared with the previous
methods, it automatically acquired the importance of the triggering factors to the wildfire, which had
certain advantages in wildfire risk assessment, and was worthy of further promotion.

Keywords: frequency ratio; MCD64A1; Bayesian optimization; support vector machine; random
forest; extreme gradient boosting

1. Introduction

Forests are vulnerable to and damaged by pests, natural climatic hazards, fires, and
other disasters, with fire being the most significant disturbance to forest resources. Forest
fires can cause the degradation of vegetation, the death of animals in forest areas, jeopardize
people’s safety, lead to socio-economic losses, etc. Numerous forest fires occur worldwide
every year. Forest fires have become a focus of international attention [1]. China is one of
the countries where forest fires are frequent, with an annual average of 12,683 fires and an
annual average fire area of 6748 km2 from 1950 to 2010, and the damage rate is higher than
the world average [2]. Liangshan Prefecture is a high-risk area for forest fires in Sichuan
Province, and in recent years, several forest fires have occurred in the region. In March
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2019, 31 people were killed in a forest fire in Muli County [3], Liangshan Prefecture, due
to a lightning strike, and in March 2020, 19 people were lost in a forest fire in Xichang
City [4]. Frequent forest fires and severe loss of life and property have put Liangshan
Prefecture in the spotlight [5]. In general, analyzing the triggering factors of wildfires in
this region, constructing a wildfire risk assessment model, and scientifically conducting
wildfire risk assessment are essential for fighting and preventing fires and establishing a
wildfire prevention system.

Constructing a wildfire risk assessment model requires wildfire occurrence data and
wildfire triggering factor data. The satellite remote sensing technology uses multi-spectral,
microwave, and multi-source sensor systems to efficiently carry out space-based earth
observation and land surface information acquisition. It has the outstanding technical
advantages of a comprehensive monitoring range, high spatial and temporal resolution,
efficient response, and irreplaceable benefits in obtaining wildfire triggering factors and
wildfire occurrence data. Domestic and foreign scholars have conducted relevant research
on wildfire risk assessment, such as factor-weighted superposition, hierarchical analysis,
and machine learning algorithms. Yang Congrui et al. [6] took Shangri-La, the core area
of the three rivers (Jinsha, Lancang and Nujiang rivers), as the study area, and selected
vegetation type, topographic data and proximity to residential areas as the primary forest
fire triggering factors, and used the factor-weighted overlay method to classify forest fire
risk levels. Zhao Pengcheng et al. [7] took the Laoshan National Forest Park in Nanjing as
the study area, selected meteorological data, topographic data and proximity to residential
areas and roads as triggering factors, and used the analytic hierarchy process (AHP) to
classify forest fire occurrence levels. Deng O. et al. [8] constructed a logistic forest fire risk
model based on moderate resolution imaging spectroradiometer (MODIS) data and forest
fire triggering factors to study the forest fire risk zoning in Heilongjiang Province. Huang
Baohua et al. [9] analyzed the causes of forest fires in Shandong using MODIS remote
sensing images with topography, vegetation, and weather data, and established a binomial
logistic regression model based on 15 explanatory variables affecting the occurrence and
non-occurrence of forest fires to estimate the probability of explanatory variables and the
event of forest fires. Jaiswal et al. [10] combined India Remote-Sensing Satellite (IRS) 1D
LISS III remote sensing data with topographic and other statistical data to assign weights
to fire triggering factors and mapped forest fire risk distribution based on a geographic
information system (GIS) in Madhya Pradesh, India. Pourtaghi et al. [11] compared the
performance of boosted regression tree (BRT), generalized summation model (GAM),
and random forest (RF) in forest fire risk assessment in Minudasht County, Golestan
Province, Iran, and showed that BRT has better accuracy than GAM and RF. Ljubomir
Gigović et al. [12] used SVM, RF and integrated models to assess the forest fire risk in Tara
National Forest Park, Serbia, and the results showed that the integrated model has a good
prediction accuracy.

However, a simple factor overlay method cannot accurately reflect the influence of
fire triggering factors on fire occurrence and fails to calculate the probability of fire risk
accurately. A hierarchical analysis is more subjective and suffers from the deficiency of
uncertainty in evaluating the situation, and logistic regression only describes the linear
relationship between the triggering factors, which suffers from poor robustness and ac-
curacy. On the other hand, machine learning algorithms achieve better performance in
wildfire risk assessment. They can reasonably deal with the complex non-linear relationship
between fire occurrence and triggering factors. But the lack of proper representation of
input data for a single algorithm may lead to models that do not correctly represent the
actual spatial distribution of the sample set. Hybrid models are an effective solution to
this problem [13]. Their advantage is that the fire location and the weights of different
categories of fire triggering factors can be obtained through statistical model analysis. They
can also provide proper data representation for machine learning input. On this basis, the
complex non-linear relationship between the various triggering factors is revealed through
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the machine learning model, and an accurate wildfire risk assessment model is finally
obtained which can objectively reflect the influence degree and contribution of each factor.

In order to solve the problems of subjectivity of weight allocation and linearization of
statistical models in existing models, this paper proposed an integrated machine learning
algorithm and applied it to the Liangshan Prefecture in Sichuan Province. In this case,
machine learning algorithms were integrated through frequency ratios to obtain a wildfire
risk assessment model. To further reveal the influence of triggering factors on wildfires, the
main triggers of wildfires in the region were obtained based on the feature importance of
the optimal model. Meanwhile, to study the reliability of the models, the accuracy, kappa
coefficient, and AUC were used to evaluate the performance of the three models. The
related research results can guide wildfire prevention and control management and wildfire
genesis in the Liangshan region.

2. Materials and Methods
2.1. Study Area

Located in the southwest of Sichuan Province, Liangshan Prefecture is situated be-
tween 100◦15′~103◦53′ E and 26◦03′~29◦27′ N, with a total area of 60,400 km2 and a total
resident population of 4,874,000. The terrain is high in the northwest and low in the
southeast, with large surface undulations and rugged terrain. Liangshan Prefecture has a
subtropical monsoon climate with distinct dry and wet conditions. The dry season is from
November to April, when the territory has plenty of sunshine, and the rainy season is from
May to October, when the territory is cool, wet and rainy. The forest area of Liangshan
Prefecture is 31,557 km2, with 52.37% forest coverage and 340 million m3 of forest stock
volume in the territory. The vegetation types in the territory are diverse, mainly coniferous
and broad-leaved forests, with Yunnan pine widely distributed in the central and southern
dry-heat valleys, fir and spruce in the northwestern part at higher altitudes, and dense
complex, broad forests in the northeastern region.

Liangshan Prefecture belongs to a forest fire-prone area, which is highly susceptible to
forest fires due to high temperatures and low precipitation in winter and spring. Several
forest fires have occurred in recent years, including two forest fires in Muli (31 people lost
their lives and the burned area was about 20 hectares) and Xichang (19 people lost their
lives, 3 people were injured, the burned area was 3047.7805 hectares, 791.6 hectares of forest
area was damaged and the direct economic loss equaled 97.312 million yuan) that caused
significant casualties and economic losses. Therefore, conducting a wildfire risk prediction
and assessment in this area is vital. Figure 1 shows an overview of the study area.
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2.2. Data Source
2.2.1. Fire Database

The MCD64A1 burned area product is a monthly product of burned area mapping
with a spatial resolution of 500 m provided by MODIS, which has been proven to be highly
accurate [14]. This dataset records the location information, occurrence date, end date,
fire area, and confidence level of regional fires. The MCD64A1 burned area data of the
Liangshan region from 2011–2020 were obtained from NASA’s Terrestrial Data Distribution
Center (https://search.earthdata.nasa.gov/search (accessed on 22 April 2022)), and the ten
years of burned area data were overlaid. A total of 5951 fire points were extracted.

2.2.2. Selecting Fire Triggering Factors

Selecting fire triggering factors is the first step in fire risk assessment. Many factors,
mainly topography, meteorology, vegetation, human activities [5] and accessibility [15],
lead to wildfires. Based on the actual situation in Liangshan Prefecture and considering
the availability, accuracy, and scientificity of data, ten fire triggering factors were finally
selected and classified into four categories (Table A1). Four topographic triggering fac-
tors [16] (elevation, slope, aspect and topographic wetness index (TWI)) were acquired
from the GDEM DEMv3.0 data, respectively. Among them, the formula for calculating
TWI [17,18] is:

TWI = ln(
SCA

tan slope
) (1)

SCA (specific catchment area) represents the confluence area per unit contour length at
any point of the flow across the slope and the slope in the formula is measured in degrees.

Meteorological factors are important factors that trigger wildfires [19]. The meteorolog-
ical raw raster data were obtained from the National Centre for Atmospheric Sciences [20].
We used interpolation [21] to obtain the average temperature, maximum temperature, and
average precipitation data in the study area for the last ten years to get higher resolution
meteorological data.

Land cover data were obtained from GlobeLand30 data [22]. It is the first global
geographic information product provided by China to the United Nations. Normalized
difference vegetation index (NDVI) [23–26] data were obtained from the MOD13Q1 data
product [27,28] and synthesized using the maximum value composite method [29]. The
NDVI was calculated as follows:

NDVI =
NIR− RED
NIR + RED

(2)

where NIR is the near-infrared band and RED is the red band.
Human activities are also a causal factor and a significant evaluation component of

wildfires [30]. Population density reflects the level of human activities. The population
density data were obtained from the World pop population dataset [31] in Google Earth
Engine (GEE) [32].

To meet the modeling needs and ensure the accuracy of the data, we uniformly
converted the data to Albers isometric projection. The raster layers of each triggering factor
were uniformly resampled to 120 m resolution. They were then were reclassified with a
related literature study [33]. (A grading diagram of each fire triggering factor is provided
in Figure A1).

2.3. Technology Route

Figure 2 shows the workflow of this paper. Following the extraction of fire points for
the last decade, a buffer zone with a radius of 1 km was then established on the basis of
the fire points, centered on a single fire point. Outside the buffer zone, an equal amount
of non-fire point data was selected in combination with land use types. Calculating the
frequency ratio values of 10 triggering factors, we extracted the frequency ratio values of
different fire points and non-fire points using the extract muti values to point tool [34]. We

https://search.earthdata.nasa.gov/search
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analyzed the correlation between each triggering factor using multicollinearity analysis [35].
Subsequently, we used random selection and cross-validation methods to divide the entire
samples into a training data set (70%) and validation data set (30%). They were then
inputted into the SVM, RF, and XGBoost models, and the Bayesian optimization algorithm
was selected to optimize the hyperparameters of the three models. Finally, utilizing accu-
racy, kappa coefficient, and AUC [36] to evaluate the prediction performance of the model,
the trained model was used to predict and risk map the entire Liangshan region, and the
study area was classified into five classes using the natural breaks (Jenks) method [37]: very
low, low, medium, high, and very high. The importance of the triggering factors was then
ranked in conjunction with the optimal model.
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2.4. Multicollinearity Analysis

Tolerance level (TOL) and variance inflation factor (VIF) are now commonly used to
predetermine the relationship between the triggering factors. It is generally accepted that
the presence of multicollinearity is indicated when TOL < 0.2 and VIF > 4 [13,38]. Among
them, TOL and VIF are calculated as follows:

TOL = 1− R2 (3)

VIF =
1

1− R2 =
1

TOL
(4)

where R2 is the coefficient of complex determination.

2.5. Fire Risk Assessment Model Construction
2.5.1. Frequency Ratio

FR is a binary statistical model widely used to study the riskiness of various natural
hazards [13,39–42]. The main advantage of this model is its ease of implementation, which
allows the calculation of weights for each category based on the spatial relationship between
the location of the fire point and the fire triggering factors. The formula for FR is:

FR =

Np(LXi)
∑m

i=1 Np(LXi)

Np(Xj)
∑m

j=1 Np(Xj)

(5)

where, FR denotes the frequency of fires in category i of the triggering factor, Np(LXi) is
the number of fire points in classes i of the triggering factor X, and Np(Xj) is the number of
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pixels in classes j of the triggering factor X. M is the total number of classes in the triggering
factor Xi.

2.5.2. Bayesian Optimization Algorithm

The Bayesian optimization (BO) algorithm was proposed by Pelikan [43] in 2002,
which is a very effective global optimization algorithm to find the optimal global solution.
This study used the Bayesian optimization algorithm to determine the hyperparameters
of different fire risk models (SVM, RF, XGBoost). It uses the Gaussian process theory
model [44], which fully considers the previous parameter information and continuously
updates the prior knowledge. The algorithm process consists of three main steps. Step 1 is
selecting the next most “promising” evaluation point based on the maximized acquisition
function [45]. Step 2 is evaluating the objective function [45] value based on the evaluation
point chosen. Step 3 is adding the newly obtained input observation pairs to the historical
observation set and updating the probabilistic proxy model for the next iteration. The
algorithm flow is as follows (Algorithm 1):

Algorithm 1 Bayesian optimization process.

1. Initialize the hyperparameter vector X0
2. For t = 1, 2, . . . do
3. Maximize the acquisition function to obtain the next evaluation point:

xt = argmaxx∈χα(x|D1:t−1 )
4. Evaluate the value of the objective function yt = f (xt) + εt
5. Integrating Data: Dt = Dt−1 ∪ {xt, yt}, and update the probabilistic agent model
6. End for

2.5.3. Support Vector Machine

Support vector machine (SVM) is a supervised learning method based on statistical
learning theory. It solves non-linear and high-dimensional pattern recognition problems
relatively well with fewer samples and has been widely used in natural disaster assessment
studies [46–49]. The support vector machine aims to find a hyperplane in the n-dimensional
data space. It separates these two classes based on the maximum interval. In this case,
(0,1] was introduced to consider the issue of misclassification. In addition, Vapnik [50]
oriented kernel functions to account for non-linear decision boundaries. Chong Xu et al. [46]
found that the kernel function of the support vector machine model performs best in risk
assessment when a Gaussian kernel function is selected. Therefore, the kernel function was
chosen as the Gaussian function in this study.

2.5.4. Random Forest

Random forest (RF) is a nonparametric supervised learning method applied to clas-
sification and prediction, first proposed by Breiman [51] in 2001. It is one of the practical
algorithms of the Bagging integration strategy [52]. A random forest is a classifier that
contains multiple decision trees and trains each decision tree with mutually independent
data. The final prediction is then obtained by voting or taking the average.

Random forest uses the bootstrap self-service method for resampling, which generates
a new training set by randomly selecting n (generally 2/3 of the whole sample set) samples
from the entire collection with put-back. It constructs mutually independent decision
trees by training the new sample set and combines the trained n decision trees into a
forest. Each of these trees has the same distribution. The classification error depends on
the classification ability of each tree and the correlation between them. The remaining
unextracted data set called out of bag (OBB) error is an unbiased estimate that can verify
the model’s performance and prevent overfitting. The random forest generalization error is
defined as:

P∗ ≤
ρ
(
1− s2)

s2 (6)
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where ρ is the average correlation of the decision tree and s is the average intensity of the
decision tree.

2.5.5. eXtreme Gradient Boosting

eXtreme gradient boosting (XGBoost) is a novel gradient boosting decision tree (GBDT)
algorithm that was proposed by Chen and Guestrin in 2016 [53]. The XGBoost model
uses Taylor’s second-order expansion to optimize the loss function. It supports CPU
multi-threaded parallel computing and adds a regular term to the loss function, making
its computing efficiency and generalization ability significantly better than that of other
machine learning algorithms. The XGBoost model is expressed as follows:

∧
yi = ∑K

k=1 fk(xi), fk ∈ F (7)

where
∧
y denotes the predicted value of the ith sample, K is the number of decision trees, xi

denotes the input data of the ith sample, fk(xi) is the kth decision tree generated by the kth
iteration, and fk is a function in the tree collection space F. The objective function is:

Obj = ∑N
i=1 l

(
yi,
∧
yi

)
+ ∑K

K=1 Ω( fk) = ∑N
i=1 l

[
yi,
∧
y

t−1

i + ft(xi)

]
+ ∑K

K=1 Ω( fk) (8)

In Equation (8), the first part is the loss function, which is used to describe the error
between the predicted value and the actual value, and the second part is the standard term,
which can effectively control the complexity of the model to build a tree structure model
and prevent overfitting [54].

2.6. Model Performance Evaluation Methods

Accuracy is a metric used to evaluate classification models and is defined as the
percentage of outcomes that are correctly predicted by the model as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(9)

TP is the true positive rate, TN is the true negative rate, FP is the false positive rate,
and FN is the false-negative rate.

The kappa coefficient is a metric used for consistency testing. Its expression is
as follows:

Kappa =
P0 − Pe

1− Pe
(10)

where P0 is the consistency of prediction and Pe is the chance consistency. Kappa coef-
ficients can be divided into five groups to indicate different levels of consistency: 0.0 to
0.20 for very low consistency, 0.21 to 0.40 for average consistency, 0.41 to 0.60 for moderate
consistency, 0.61 to 0.80 for high consistency, and 0.81 to 1 for almost perfect consistency.

The receiver operating characteristic (ROC) is determined by plotting a set of thresh-
olds or critical values, with the true positive rate (sensitivity) as the vertical coordinate and
the false positive rate (1-specificity) as the horizontal coordinate of the curve. The area
measures the precision of the results under the curve (ROC). The expressions for the true
positive rate (sensitivity) and the false positive rate (1-specificity) are as follows:

Sensitivity =
TP

TP + FN
(11)

Speci f icity =
TN

FP + TN
(12)

AUC classifies the performance of prediction models into four categories: 0.5~0.7: low
effect, 0.7~0.85: average effect, 0.85~0.95: perfect effect, and 1 indicates an ideal classifier.
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2.7. Feature Importance

Feature importance [55] is a measure used to assess the usefulness of a feature in the
model classification prediction process. The higher the importance of a feature, the more
valuable the feature is for the model. The tree model-based machine learning algorithm
provides a “feature importance” toolkit, the principle of which is to calculate which feature
to select as a splitting point based on the gain of the structure score. The importance of a
feature is the sum of its occurrences in all trees, i.e., the more a feature attribute is used to
build a decision tree in the model, the higher its importance is. In this paper, the magnitude
of the effect of different triggering factors on fire is revealed by ranking the importance
of features.

3. Results
3.1. Results of Multicollinearity Analysis

Table 1 shows the result of multicollinearity analysis; all ten fire triggering factors
TOL are more significant than 0.2, and VIF are less than 4. It indicates no covariance in fire
triggering factors, which can be used for subsequent fire risk assessment.

Table 1. Results of multicollinearity analysis.

Num Factor TOL VIF

1 Elevation 0.681 1.468
2 Aspect 0.893 1.120
3 Slope 0.651 1.536
4 TWI 0.664 1.506
5 Landcover 0.678 1.476
6 NDVI 0.654 1.528
7 Precipitation 0.745 1.342
8 Average temperature 0.308 3.244
9 Maximum temperature 0.389 2.572
10 Population density 0.589 1.698

3.2. Fire Risk Model Construction

Since the fire and non-fire samples are in different categories of triggering factors, the
corresponding frequency ratios should be assigned according to their classes. The labels
of fire points are set as “1”, non-fire points are designated as “0”, and the final results are
used as the model’s input data. The input data are divided into a training data set (70%)
and a validation data set (30%) using random selection and cross-validation methods. The
frequency ratios of the categories of different triggering factors are shown in Table A2.

After assigning the sample points to frequency ratios, the data were trained and tested
on the Jupyter Notebook platform using SVM, RF, and XGBoost based on Python. Since the
fire risk assessment models’ performance depends mainly on the models’ hyperparameters,
the Bayesian optimization algorithm was used to find the optimal parameters of each
model. The optimal parameters of the three models are shown in Table A3.

3.3. Wildfire Risk Assessment Mapping

In this section, we trained three machine learning integration algorithms to fit the
relationship between each triggering factor and fire to predict the sensitivity index of each
image element in the study area. Finally, we acquired the fire risk raster map for the
whole study area and reclassified the raster maps by the natural breaks (Jenks) method.
The natural breaks method [56] is based on the univariate classification method in cluster
analysis. It minimizes the differences in classes while maximizing the differences between
classes by calculating the data breakpoints between classes under a certain hierarchy. Its
advantage is to make the most effective distinction between similar values in the data, so the
natural breaks method was chosen for classification in this study. The maps were reclassified
into five classes, namely very low, low, medium, high, and very high (Figure 3). The high
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incidence areas of wildfires identified by these three models are mostly concentrated in the
south, central and northwest of the region.
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In addition, the percentages of the different risk levels of the three machine learning
algorithms were calculated separately. Figure 4 shows that the five risk levels of SVM
account for 20.86% (very low), 29.62% (low), 12.82% (medium), 14.15% (high) and 22.54%
(very high) respectively, the five risk levels of RF account for 28.69% (very low), 23.80%
(low), 18.69% (medium), 16.23% (high), and 12.59% (very high), and the five risk classes
of XGBoost account for 34.52% (very low), 23.05% (low), 15.49% (medium), 14.55% (high),
and 12.40% (very high).
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3.4. Model Evaluation

After successfully constructing the three risk assessment models, the performance of
the three models was evaluated using accuracy, kappa coefficient, and area under the ROC
curve AUC. The evaluation results of each model are shown in Table 2 and Figure 5.

Table 2. Parameters for evaluating the predictive performance of the three models.

Training Data Set Test Data Set

Parameters FR-BO-
SVM FR-BO-RF FR-BO-

XGB
FR-BO-
SVM FR-BO-RF FR-BO-

XGB

TP 2701 3368 3383 1210 1402 1368
TN 3479 3708 3687 1415 1435 1520
FP 713 484 479 344 324 265
FN 1438 771 782 602 410 418

Sensitivity 0.653 0.814 0.812 0.668 0.774 0.766
Specificity 0.830 0.885 0.885 0.804 0.816 0.852
Accuracy 0.742 0.849 0.847 0.735 0.794 0.809

Kappa 0.483 0.699 0.697 0.471 0.589 0.617
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The training and testing results of wildfire occurrence probability are shown in Table 2
and Figure 5. From the training set, FR-BO-SVM has an average classification effect
(AUC = 0.831) and a kappa coefficient of 0.483, which has only moderate consistency,
while the other two models, FR-BO-RF and FR-BO-XGB, have perfect classification effects
(AUC values of 0.931 and 0.927, respectively) and they both achieve a high degree of
agreement with kappa coefficients of 0.699 and 0.697. In addition, the accuracy of FR-
BO-SVM (Accuracy = 0.742) is lower than that of the other two models (accuracy = 0.849
and 0.847, respectively). From the test set, the AUC value and kappa coefficient of FR-
BO-SVM are 0.820 and 0.471, respectively. It still has an average prediction effect and
moderate consistency. FR-BO-RF still has a good prediction effect (AUC = 0.876), but the
kappa coefficient is 0.589, which shows medium consistency and accuracy. FR-BO-XGB
has demonstrated excellent prediction effectiveness and consistency with AUC and kappa
coefficients of 0.887 and 0.617, respectively, and the accuracy remains above 0.8 at 0.809.
Combining the above analysis, we can conclude that FR-BO-XGB is the best model among
these three models.

3.5. Importance of Triggering Factor Features

The model evaluation shows that FR-BO-XGBoost is the best model among the three
models, so the model can explain the relationship between fire points and each triggering
factor well. However, different triggering factors do not have the same degree of influence
on fire, and it is necessary to understand the importance of various triggering factors
in starting a fire. The vertical coordinates in Figure 6 are each triggering factors for fire
risk assessment. The horizontal coordinates are the ratio of times each feature attribute
is used for decision tree node segmentation to the number of times all feature attributes
are segmented. The feature importance analysis shows that precipitation is the most
important triggering factor for wildfires in Liangshan, followed by NDVI, land cover,
and maximum temperature, respectively, while other triggering factors such as elevation,
average temperature, and population density have some influence on fire initiation.
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Figure A2 reveals the percentage of the different risk levels of the four main fire
initiating factors. We can summarize that the annual precipitation reached more than
800 mm, which was a high incidence area of wildfire (Figure A2a). The role of precipitation
on fire is reflected in the fact that higher precipitation means higher fuel loading for brush
and grass fires, resulting in higher fire behavior. The influence of NDVI on fire (Figure A2b)
was manifested primarily in the fact that the larger the value, the more the high incidence
areas of fire, which was mainly related to the rich vegetation types in the Liangshan region.
Liangshan is a national critical fly-sown forest area (Figure A2c). The territory is planted
with the Yunnan pine as the representative of the flammable tree species. It had been
reported that lightning strikes on Yunnan pine caused forest fires in Muli, and land cover
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was concentrated on cropland, woodland, grassland, and shrubland, where a large amount
of combustible material had accumulated, thus creating the potential for wildfires. The
effect of maximum temperature on fires is specifically demonstrated by the fact that higher
temperatures lead to lower humidity, which leads to lower fuel moisture, which leads to
higher combustibility. Figure A2d demonstrates that above 18 ◦C is the high incidence of
fire in the region.

4. Discussion

This paper proposed an integrated machine learning approach to wildfire risk assess-
ment by introducing frequency ratios and machine learning models. The method used
frequency ratios to achieve objective weighting of the triggering factors. On this basis
we focused on optimizing the machine learning model to reveal the complex nonlinear
relationships among the triggering factors, which more objectively reflects the degree of in-
fluence and the contribution of each factor. In the final, we achieved a quantitative regional
assessment of wildfire risk. For validation purpose, based on the occurrence mechanism of
wildfires in the Liangshan region, we selected 10 years of the burned area data (MCD64A1
burned area product), 10 years of meteorological data (precipitation, maximum tempera-
ture, average temperature), topographic data (elevation, slope, aspect, TWI), vegetation
data (NDVI, landcover) and human activities factor data (population density) to construct
a wildfire risk assessment model for the Liangshan region. In the end, we acquired accurate
and reliable results.

It was worth noting that topographic factors (elevation, slope, aspect and TWI), mete-
orological factors (precipitation, average temperature, maximum temperature), vegetation
factors (NDVI and landcover) and human activities factors (population density) were all
mountain wildfire main triggering factors. However, in different regions and research
scenarios, the impact of various factors on fires was quite different. The existing models
and methods (such as the factor superposition method, analytic hierarchy process, logistic
regression method, etc.) had problems such as subjectivity of weight allocation and lin-
earization of statistical models. As a result, the robustness of the fire risk assessment model
was generally not high, and the generalization ability was poor. Aiming at the problem of
accurate quantification of the weights of disaster triggering factors, based on the historical
fire data in the Liangshan area in the past 10 years, this paper obtained the frequency ratio
of each triggering factor through statistical analysis and acquired the weight of the fire
location and different categories of each fire triggering factor. On this basis, the complex
non-linear relationship between the triggering factors was revealed through the machine
learning model, and a wildfire risk assessment model suitable for this research scenario
was finally obtained which objectively reflected the influence degree and contribution of
each factor.

In previous studies, a risk assessment of forest fires in the Bizerte region of Tunisia in
terms of burn index, geographic terrain index, human index, climate index and other indica-
tors using GIS and remote sensing (RS) techniques, Saidi et al. [57]. Zhao, Pengcheng et al. [7]
selected topographic, meteorological, vegetation and human factors for forest fire assess-
ment in Laoshan National Forest Park, Nanjing using AHP. Saeedeh et al. [58] utilized
a fuzzy analytic hierarchy process (FAHP), the spatial correlation method and the Dong
model to predict forest fires in Iran from four aspects: geographic terrain factor, ecological
factor, environmental factor and human factor. Elham et al. [59] considered factors such
as slope, elevation, and road distance, and applied the analytic network process (ANP) to
assess the risk of forest fires in a city. These methods had subjective factor assignments
and lack objective consideration of factor weights. The difference in this study was the
introduction of frequency ratios to achieve objective weighting of the triggering factors,
which avoided the problem of inaccurate quantification of factors. Pan et al. [60] combined a
logistic regression model for forest fire assessment in Shanxi Province by selecting elevation,
slope, distance from the nearest road, fuel moisture content (FMC), land surface tempera-
ture, NDVI and global vegetation moisture index (GVMI), and verified that the AUC of
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the model was 0.757. Li Haiping et al. [33] established a logistic risk assessment model for
forest fires in Liangshan Prefecture by adopting the main risk factors such as topography,
vegetation, meteorology and population density, and finally acquired an AUC of 0.798. The
above model only described a simple linear relationship among the factors, causing the
model to be poorly generalized and less accurate. The distinction of the machine learning
algorithm proposed in this study was that it can solve the complex nonlinear relationship
between factors quite well. On this basis, the degree of influence of each triggering factor
on fires can be further acquired automatically. It is worth mentioning that, in the identical
study scenario, the model performance of the integrated machine learning method for fire
risk assessment proposed in this study improved by 0.089 over the former method [33].
This indicates that the method has a promising application in wildfire risk assessment.

5. Conclusions

To address the problems of subjective weighting of triggering factors and linearization
of models in the current wildfire risk assessment studies, we proposed an integrated
machine learning approach to wildfire risk assessment. Frequency ratios were introduced to
achieve objective weighting of the triggering factors, and on this basis, the machine learning
model was focused on optimizing the model to reveal the complex nonlinear relationships
among the triggering factors, which reflected the influence degree and contribution of
each factor more objectively. Finally, we achieved the regional quantitative assessment of
wildfire risk. For validation purposes, we filtered out 10 wildfire triggers based on the
mechanism of wildfires in the Liangshan region. Combined with historical remote sensing
fire data, a fire database was constructed and a wildfire risk level map was obtained for the
Liangshan region. In the final, the degree of influence of fire triggering factors on wildfires
in the region was further revealed in conjunction with the feature importance analysis. The
greatest contribution of this study is to overcome the difficulties of subjective selection
of factor weights and the linearization of the model in the research process. The findings
of the study can provide useful information for the relevant departments to manage and
make decisions on wildfire prevention and control in advance. In addition, the method
can also be applied to wildfire risk assessment in other regions. It is essential to note that
the selection of triggering factors using this method needs to take into account the actual
situation of wildfire occurrence in the corresponding area.

However, in this study, predictions were based on a single pixel for each factor layer
of the fire occurrence site, ignoring the fact that fire occurrence is also related to the
surrounding environment. In future research, deep learning algorithms can be considered
to accurately extract the deep features of different factor layers.
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Appendix A

Table A1. Data of each triggering factor.

Category Triggering Factors Resolution Data Source

Topography

Elevation
Slope

Aspect
TWI

30 m https://www.gscloud.cn/ (accessed on 23 April 2022 )

Meteorology
Average temperature

Maximum temperature
Precipitation

0.5◦ https://crudata.uea.ac.uk/cru/data/hrg/ (accessed on 23 April 2022)

Vegetation Land cover
NDVI

30 m http://www.globallandcover.com/ (accessed on 24 April 2022)
250 m https://explorer.earthengine.google.com/ (accessed on 24 April 2022)

Humanity Population density 100 m https://explorer.earthengine.google.com/ (accessed on 24 April 2022)
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Table A2. Frequency ratios of different triggering factor categories.

Triggering
Factors Classes Classes Pixels Fire Pixels FR

Elevation (m)

308~1608 378,249 639 1.19
1608~2177 839,922 1422 1.19
2177~2675 1,038,686 1237 0.84
2675~3190 926,171 1637 1.24
3190~3806 626,194 962 1.08
3806~5901 373,870 54 0.10

Slope (◦)

0~5 74,637 244 2.30
5~15 155,138 197 0.89

15~25 983,516 1220 0.87
25~35 1,413,834 1952 0.97
35~45 1,125,384 1795 1.12

>45 430,583 543 0.89

Slope (◦)

0~5 74,637 244 2.30
5~15 155,138 197 0.89

15~25 983,516 1220 0.87
25~35 1,413,834 1952 0.97
35~45 1,125,384 1795 1.12

>45 430,583 543 0.89
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Table A2. Cont.

Triggering
Factors Classes Classes Pixels Fire Pixels FR

Aspect

Flat 4781 1 0.15
North 447,717 477 0.75

Northeast 505,581 506 0.70
East 603,767 722 0.84

Southeast 572,515 884 1.09
South 480,907 885 1.29

Southwest 509,576 945 1.30
West 555,006 880 1.11

Northwest 503,242 651 0.91

TWI

1.5~5.3 2,050,828 3106 1.06
5.3~7.3 1,406,009 1904 0.95
7.3~10.6 482,052 647 0.94
10.6~15 203,487 246 0.85

>15 40,716 48 0.83

Average
temperature (◦C)

−1.4~3.5 195,154 16 0.06
3.5~7.1 373,851 705 1.33
7.1~10.3 423,180 395 0.66

10.3~12.5 1,466,289 2030 0.97
12.5~14.3 1,353,512 1930 1.00
14.3~17.4 371,106 875 1.66

Maximum
temperature (◦C)

6.9~11.1 333,928 207 0.44
11.1~14.1 367,464 714 1.37
14.1~16.4 780,108 581 0.52
16.4~18.1 1,507,804 1993 0.93
18.1~20.1 910,210 1697 1.31
20.1~22.9 283,578 759 1.88

Precipitation
(mm)

739~828 447,911 246 0.39
828~876 575,927 875 1.07
876~919 848,386 1995 1.65
919~964 961,536 1607 1.17

964~1002 644,965 354 0.39
1002~1072 704,367 874 0.87

NDVI

0.1~0.4 5716 6 0.74
0.4~0.5 10,993 19 1.21
0.5~0.6 36,355 91 1.76
0.6~0.7 142,139 391 1.93
0.7~0.8 955,839 2243 1.65
0.8~1 3,032,050 3201 0.74

Landcover

Cropland 810,215 752 0.65
Woodland 2,418,827 3971 1.15
Grassland 679,862 747 0.77
Shrubland 205,254 402 1.38
Wetland 1638 0 0.00

Water body 35,807 0 0.00
Artificial surface 29,183 78 1.88

Bare land 1654 1 0.42
Glaciers and

permanent snow 652 0 0.00

Population
(person/km2)

0~3 4,088,035 5653 0.97
3~15 78,498 244 2.18

15~41 11,862 46 2.73
41~81 2786 4 1.01

81~137 1481 4 1.90
137~266 430 0 0.00



Remote Sens. 2022, 14, 4592 17 of 19

Table A3. Optimal parameters of the three models.

Algorithm Parameters

SVM
Kernel:rbf

C:100
Gamma:0.1

RF

N_estimators:248
Criterion: Gini
Max_depth:14

Max_features:0.432
Min_samples_spilt:14

XGBoost

Max_depth:9
Learning_rate:0.051

N_estimators:119
Min_child_weight:1

Subsample:0.827
Colsample_bytree = 1

Booster:gbtree
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