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Abstract: Change detection using heterogeneous remote sensing images is an increasingly inter-
esting and very challenging topic. To make the heterogeneous images comparable, some graph-
based methods have been proposed, which first construct a graph for the image to capture the
structure information and then use the graph to obtain the structural changes between images.
Nonetheless, previous graph-based change detection approaches are insufficient in representing
and exploiting the image structure. To address these issues, in this paper, we propose an auto-
weighted structured graph (AWSG)-based regression method for heterogeneous change detection,
which mainly consists of two processes: learning the AWSG to capture the image structure and
using the AWSG to perform structure regression to detect changes. In the graph learning process, a
self-conducted weighting strategy is employed to make the graph more robust, and the local and
global structure information are combined to make the graph more informative. In the structure
regression process, we transform one image to the domain of the other image by using the learned
AWSG, where the high-order neighbor information hidden in the graph is exploited to obtain a better
regression image and change image. Experimental results and comparisons on four real datasets with
seven state-of-the-art methods demonstrate the effectiveness of the proposed approach.

Keywords: change detection; heterogeneous data; graph; auto-weighted; image regression; structure

1. Introduction
1.1. Background

Change detection (CD) is a very important topic in remote sensing, which can de-
tect changes occurring on the Earth’s surface by comparing images collected at different
times [1]. CD has a wide range of applications, such as agricultural surveys, urban planning,
environmental monitoring, and disaster assessment [2–4].

Previous CD methods often compare multitemporal images from the same sensor to
extract changes, which can be referred to as homogeneous CD or monomodal CD, such
as the homogeneous CD of SAR images [5], multispectral images [6,7], and hyperspectral
images [8]. However, homogeneous CD has the limitation that the compared images
from the same sensor may not always be acquired in time. In this case, we need to
utilize the heterogeneous CD, i.e., using multitemporal images from different sensors to
extract changes.

Heterogeneous CD can be regarded as an extension of homogeneous CD, which has
two additional advantages (compared to homogeneous CD) [9,10]: first, it can reduce the
response time of change analysis in emergency situations (such as floods, earthquakes,
etc.) by using any available image independently of its modality, instead of having to wait
for the homogeneous images to be sensed. More importantly, homogeneous images are
often unavailable due to the accompanying adverse conditions of weather and lighting.
Second, heterogenous CD can improve the temporal resolution of change analysis by
inserting heterogeneous data.
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1.2. Related Work

Compared to homogeneous CD, heterogeneous CD is more challenging because the
multitemporal images are not directly comparable owing to the fact that they come from
different modalities. In order to make heterogeneous images comparable, the first task
addressed by heterogeneous CD is to transform them to the same domain, which is related
to the topic of data transformation, feature learning, and domain adaptation [11–13].

As presented in [14–16], a more specific classification of heterogeneous CD methods is
challenging. However, the distinction between using supervised data or not in the heteroge-
neous CD is still obvious. The supervised methods usually use the labeled unchanged data
pairs to train the transformation functions [17–19]. However, acquiring supervised data is
difficult in practice [20] as it requires high labor labeling costs and strong expert knowledge.
To avoid the dependence on labeled data, unsupervised methods usually construct pseudo-
training sets or use iterative methods to filter the training data [14,21–23]. At the same
time, depending on the method used in the comparison, heterogeneous CD can also be
divided into traditional machine learning-based and deep-learning-based. The former in-
clude methods using energy model [24], dictionary learning [25], copula theory [26], patch
similarity graph [27,28], manifold learning [29], kernel canonical correlation analysis [30],
fractal projection [15], graph learning [31], kernel regression [14,17]. The latter consist of
methods using image style transferring network [32], cycle-consistent generative adver-
sarial networks [18,33], commonality autoencoder [34], symmetric convolutional coupling
network [22], self-supervised learning with Siamese networks [35,36].

Recently, a class of graph-based heterogeneous CD methods has been proposed, which
usually first construct a graph for each image to capture the structure information, and then
operate on the graphs to obtain changes. Specifically, Wu et al. [37] propose a semi-supervised
multiscale graph convolutional network (GCN) to treat the CD problem as a node classifica-
tion task, which constructs a multiscale graph for the stacked image and then propagates the
information from labeled nodes to unlabeled ones by using GCN. The graph fusion-based
CD method (GFBCD) [38] first constructs an approximate local graph for each image by
using the Nystrom extension, and then fuses the graphs to calculate the changes by mini-
mizing similarity between graphs. Furthermore, the GFBCD is improved in [39] by using a
signal smoothness representation in the graph learning stage and a graph Laplacian-based
regularization in the change estimating stage, which is referred to as GSMO-CD for short.

Based on the structure consistency between heterogeneous images, two types of graph-
based methods are proposed: structure comparison methods and structure regression
methods. For the former, they first construct a k-nearest-neighbors (KNN) graph for
each image with Euclidean distance metric, and then directly compare the differences
between the graphs by graph projection, such as the nonlocal patch similarity graph-based
method (NPSG) [40], the improved nonlocal patch graph-based method (INLPG) [28],
the iterative robust graph and Markovian co-segmentation-based method (IRG-McS) [23].
For the structure regression-based methods, a graph is first constructed for the pre-event
image, and then the pre-event image is translated to the domain of post-event image by a
structural regression or projection model, and finally, the translated image and post-event
image are compared in the same domain as the homogeneous CD problem, such as the
sparse-constrained adaptive structure consistency-based method (SCASC) [10], the fractal
projection and Markovian segmentation method (FPMS) [15], and the adaptive graph
with structure cycle consistency-based method (AGSCC) [9]. In addition, both types of
the structure comparison methods and structure regression methods can be incorporated
into the framework of graph signal processing for heterogeneous change detection (HCD-
GSP): the structure comparison methods can be regarded as computing the difference of
the same graph signal passing through different graphs in the vertex domain filtering of
HCD-GSP [41], while the structure regression methods can be regarded as computing the
difference of different graph signals passing through the same graph filter with the spectral
domain analysis of HCD-GSP [42].
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For these graph-based heterogeneous CD methods [9,10,15,23,28,37–40], there are
three attractive advantages: first, they focus on structural features rather than illumination
features (or pixel-wise features), which are very robust under different imaging conditions,
while also being able to mitigate the effects of noise; second, they extract changes by
analyzing the graph vertices, whose number is much smaller than the number of pixels,
thus significantly reducing the complexity of operations; third, these methods are all very
intuitive and interpretable (with clear physical meaning), while being able to be combined
with other frameworks and extended to other applications.

1.3. Motivation and Contribution

Motivated by recent advances of the graph-based HCD methods, this paper proposes
an auto-weighted structured graph (AWSG)-based method, which falls under the structure
regression-based approach described above. Compared with the structure comparison
methods that only provide the change results, i.e., difference image (DI) or the change map
(CM), the structure regression methods also provide a translated image of another moment,
which has a stronger visualization effect.

For the graph-based heterogeneous CD methods, two main aspects need to be solved:
first, how to construct the graph to represent the image structure; second, how to detect
changes by using the graph. Although the previous methods have achieved relatively
promising results, they still have limitations in the above two aspects.

(1) First, the graph constructed by the previous method is not robust enough. The KNN
graph is the most widely used to capture the structure information, such as INLPG [28],
GSMO-CD [39], IRG-McS [23], SCASC [10], AGSCC [9]. It is well known that the KNN
graph faces two challenges: the number (k) of nearest neighbors (NNs) and the distance
metric. INLPG and GSMO-CD connect each vertex to its NNs with a fixed number of edges
(k) without considering the proportion of objects represented by each vertex, which will
under-connect the vertex with many truly similar vertices and over-connect the vertex
with few truly similar vertices, thus making the graph unstable. To address this challenge,
SCASC, IRG-McS, and AGSCC use an in-degree-based strategy to select an adaptive k for
each vertex. However, the previous methods directly use the Euclidean distance metric
and ignore the feature difference in the graph construction or graph learning, that is,
these methods calculate the distance or similarity between vertices by assigning the same
weight to all features while ignoring the distinguishing capability of different features in
heterogeneous images.

In this paper, we learn an adaptive KNN graph for the structure regression method,
which can connect each vertex to suitable similar neighbors with appropriate weights by
using two techniques. First, it uses the k selection strategy proposed in IRG-McS [23] to
choose the number of NNs for each vertex. Second, but more importantly, it uses an auto-
weighted distance metric that adaptively assigns different weights for different features by
using a self-conducted weight learning, which can make the graph more robust.

(2) Second, the graphs constructed by the previous methods cannot completely charac-
terize the structure of the image, i.e., the representation ability of these graphs is insufficient.
For example, the FPMS [15] and PSGM [27] use the self-expression property to learn the
graph that can reconstruct each vertex by using other connected vertices, which can capture
the global structure of an image. The SCASC [10] and INLPG [28] use the self-similarity
property to construct the graph that connects each vertex with its NNs, which can capture
the local structure of an image. However, from the perspective of information mining,
we certainly hope that the graph can characterize richer structural information, which
is more conducive to the subsequent structure comparison or structure regression for
heterogeneous CD.

In this paper, we combine the local and global structure information to learn a struc-
tured graph, which uses the self-expression property to preserve the global structure of an
image and uses the adaptive neighbor approach to capture the local structure of an image.
In the graph learning process, we incorporate the local similarity-based regularization
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and global self-expression-based regularization. Then, the structured graph can find the
most informative neighbors for each target vertex, which are not only the NNs of this
target node, but can also reconstruct this target node using the corresponding edge weights.
Therefore, the proposed graph can contain more structure information than graphs pro-
viding only global structure information [15] and graphs providing only local structure
information [10].

(3) Third, previous methods have not fully utilized the information contained in the
graph to detect changes. Once the graphs are constructed or learned, they are directly fused
as in GFBCD [38] and GSMO-CD [39], or compared by projection as in INLPG [28] and
IRG-McS [23], or transformed for structure regression as in SCASC [10]. However, these
methods only use the first-order neighborhood information of the graphs, that is, they
only consider the connections between each vertex and its NNs that are directly adjacent
to it, but ignore the high-order neighbor information hidden in the graph. Therefore, this
insufficient exploitation of graph information limits the change detection performance.

Inspired by the GSP framework of the heterogeneous CD [41,42], we exploit the
high-order neighbor information of the graph in the structure regression process, that is,
the information (or attributes) of vertices that are within K-hop (K ≥ 2) away from the
target vertex are also propagate to this vertex. Specifically, in the structure regression model,
we decompose the post-event image into the translated pre-event image and the change
image, and constrain the translated image to inherit the structure of the pre-event image by
incorporating the global self-expression constraint and local similarity constraint, which
are derived from the high-order information of the graph learned from the pre-event image.
By effectively exploiting the information contained in the graph, the proposed method can
obtain a better regression image and change image, thus improving the CD performance.

The main contribution of this paper is to improve the performance of structure
regression-based heterogeneous change detection methods from two aspects: structure
representation and exploiting the graph information, which can be summarized as follows:

• We learn an auto-weighted structured graph to represent the image structure by using
a self-conducted weight learning;

• We combine the local and global structure information in the graph learning process
to obtain a more informative graph;

• We exploit the high-order neighbor information of the graph in the structure regression
process;

• We conduct comprehensive experiments on different real datasets to demonstrate the
effectiveness of the proposed method.

1.4. Outline

The remainder of this paper is composed of five sections. In Section 2, we describe the
graph learning model. In Section 3, we describe the structure regression model. In Section 4,
the experimental results are analyzed. Finally, Section 5 concludes this paper and discusses
the future work.

2. Auto-Weighted Structured Graph Learning

We consider a pair of co-registered heterogeneous images of X̃ ∈ RI×J×Cx and Ỹ ∈
RI×J×Cy obtained by different sensors over the same region before and after a change event,
respectively, where Cx and Cy represent the channel numbers of X̃ and Ỹ, respectively.
The goal of heterogeneous CD is to detect the changed region.

Since the heterogeneous images of X̃ and Ỹ are from different domains, we cannot
directly compare them to calculate the change image. Therefore, we need to find the connection
between them and make them comparable. As illustrated in [23], there is structural consistency
between heterogenous images. We first segment X̃ and Ỹ into small parts (superpixels) of X̃i
and Ỹi, i = 1, · · · , N, with the same segmentation map, then the structural consistency can
be described in the following way: if X̃i and X̃j belong to the same type of object (behaving
as they are quite similar), and none of them changed during the event, then Ỹi and Ỹj also
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belong to the same type of object (behaving as they are also quite similar). If we define
the similarity relationships between the superpixels within the pre-event image, i.e., the
relationships between X̃i and X̃j, i, j = 1, · · · , N, as the structure of pre-event image, then
this structure can be inherited by the post-event image if no change occurs. Therefore, we
can employ this structural consistency to perform the image translation, that is, transform
the pre-event image to the domain of post-event image and then compare the translated
image and post-event image in the same domain to obtain the change map. In this way,
the proposed method contains four steps: (1) pre-processing; (2) learning graph to capture the
image structure; (3) translating image by using structural consistency; (4) extracting changes
by binary segmentation. The framework of the proposed method is shown in Figure 1.

Figure 1. Framework of the proposed AWSG-based HCD method.

2.1. Pre-Processing

As the pairwise relationships is used to represent the image structure, we choose the
superpixel as the basic processing unit, which has two advantages: first, it can contain
sufficient contextual information and preserve the edges of the object; second, it can greatly
reduce the computational complexity of the proposed method.

We choose the fractal net evolution approach (FNEA) [43] to complete the superpixel
segmentation because of its good performance on both efficiency and boundary preserva-
tion. We first stack the pre-event image and post-event image into a stacked image with
Cx + Cy channels, then we use the FNEA to segment this stacked image into N superpixels
with the segmentation map Λ. Then, we project this segmentation map to the original im-
ages to obtain the superpixels of X̃i and Ỹi, i = 1, · · · , N, so that the pair of superpixels with
the same index from different image (such as X̃i and Ỹi) represent the same spatial region.

After obtaining the superpixels, different features can be extracted, such as the spectral,
spatial, and textural features. For each channel of the i-th superpixel, we extract M features
and define the m-th feature extraction operator as F (m), then we can obtain the feature
vectors as Xm

i = F (m)
(
X̃i
)
∈ RCx and Ym

i = F (m)
(
Ỹi
)
∈ RCy . Then, we can obtain the

stacked feature matrices as X ∈ RCx×N×M and Y ∈ RCy×N×M, where Xm = X:,:,m ∈ RCx×N

and Ym = Y:,:,m ∈ RCy×N represents the m-th feature matrices.
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2.2. Graph Learning

To capture the structure information of the pre-event image, we construct a directed
weighted graph G = (V, E, S), where the vertex set is V =

{
X̃1, X̃2, · · · , X̃N

}
that sets

each superpixel as a vertex, and the edge set is E =
{(

X̃i, X̃j
)
|Si,j 6= 0; i, j = 1, · · · , N

}
that

connects X̃i to X̃j with the weight Si,j.

2.3. Structured Graph Learning Model

In SCASC [10], a distance-induced graph is proposed, which is based the intuitive
constraint: the smaller the distance between X̃i and X̃j, the larger the weight between them,
i.e., Si,j, should be. SCASC learns the local structure with the following model:

min
S

N

∑
i,j=1

dx
i,jSi,j + α

(
Si,j
)2, s.t.

N

∑
i=1

Si,j = 1, Si,j ≥ 0 (1)

where dx
i,j is the distance between superpixels of X̃i and X̃j and α > 0 is a penalty pa-

rameter. As will be shown latter, the S is a sparse column when choosing a suitable α.
This type of graph describes the similarity relationships between each vertex and its local
nearest neighbors.

Different from SCASC, the self-expression property is applied to learn the global
structure in PSGM [27], which assumes that each vertex can be reconstructed by other
connected vertices. PSGM learns the graph by using the following model:

min
S

f (S), s.t. Xm = XmS, Si,j ≥ 0 (2)

where f (S) is the regularization of S. As (2) uses all the vertices to represent each vertex
with the self-weighing matrix as Xm

i = XmSi, this graph is expected to contain global
structure information of the pre-event image.

As has been shown in many problems, such as classification [44], clustering [45,46],
and feature selection [47], both global and local structural information are essential for
graph performance because they can provide complementary information. In this paper,
we combine the local structure learning of (1) and global structural learning of (2) into a
structured graph learning model as

min
S,ε

N

∑
i,j=1

dx
i,jSi,j + α

(
Si,j

)2
+ β

M

∑
m=1

g(εm)

s.t. Xm = XmS + εm,
N

∑
i=1

Si,j = 1, Si,j ≥ 0

(3)

where β > 0 represents tuning parameters, ε denotes the self-expression error caused
by the noise or corruption, g(·) denotes the penalty term. In the model (3), the local
structure penalty term of ∑N

i,j=1 dx
i,jSi,j tends to provide a smaller weight Si,j to the edge(

X̃i, X̃j
)

when the distance between X̃i and X̃j is larger. The global self-expression penalty
term of ∑M

m=1 g(εm) tends to reconstruct Xi from the whole X with Si as Xm
i ≈ ∑N

j=1 Xm
j Sj,i.

The smooth regularizer of ∑N
i,j=1 α

(
Si,j

)2
is used to avoid a trivial solution and make S

column-sparse with the constraint of ∑N
i=1 Si,j = 1, Si,j ≥ 0. Specially, if we choose α = 0,

we have a trivial solution for Si as Si,i = 1 and Sj,i = 0, j 6= i; if we set α→ ∞, we have the
trivial solution for Si as Si = 1N/N, where 1N denotes an N × 1 column vector of ones.

2.4. Weighted Graph Learning Model

In the structured graph learning model of (3), there are two points that directly affect
the performance of the graph: the α that determines the number of NNs, and the distance
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metric that determines the neighbors position and weight of S. That is, α controls the
number of non-zero elements in S, and dx

i,j and g(εm) controls the index and value of each
non-zero element of S.

The previous methods usually connect each vertex to its NNs with a fixed number of
edges (k) without considering the proportion of objects, such as INLPG [28], NPSG [40],
GSMO-CD [39], which will cause under-connection or over-connection of some vertices.
Meanwhile, the previous methods directly use the Euclidean distance metric and ignore
the distinguishing capability of different features in heterogeneous images in the graph
learning, such as SCASC [10], INLPG [28], IRG-McS [23], which is not robust and limits
the structural representational capacity of the graph. To address these two problems,
a weighted structured graph learning model can be used

min
S,ε,w

M

∑
m=1

wm

{
N

∑
i,j=1

dx
i,j,mSi,j + βg(εm)

}
+

N

∑
i=1

αi‖Si‖2
2

s.t. Xm = XmS + εm,
N

∑
i=1

Si,j = 1, Si,j ≥ 0,
M

∑
m=1

wη
m = 1, wm ≥ 0

(4)

where dx
i,j,m =

∥∥∥Xm
i − Xm

j

∥∥∥2

2
denotes the m-th feature distance between X̃i and X̃j, wm

denotes the m-th feature weight, and αi > 0 is used to determine the NNs number of
the i-th vertex, and η > 0 is used to control the weights distribution. By comparing the
models (3) and (4), we find that the weighted structured graph learning model (4) employs
the parameter αi for each vertex to control the number of NNs, and introduces the wm to
assign the weights for different features.

2.5. Auto-Weighted Structured Graph Learning

As we know, the fewer the parameters to be adjusted, the more robust the graph
learning model. We can find that η can be adjusted in a larger range and η is crucial to
the performance of graph learning in (4). Additionally, we want to eliminate the need for
manual adjustment of this parameter for different images, that is, we expect to remove
such a parameter while pursuing good learning performance.

Motivated by recently proposed iteratively re-weighted technique [48], we propose an
auto-weighted structured graph learning model by using a self-conducted weight learning

min
S,ε

M

∑
m=1

√√√√ N

∑
i,j=1

dx
i,j,mSi,j + βg(εm) +

N

∑
i=1

αi‖Si‖2
2

s.t. Xm = XmS + εm,
N

∑
i=1

Si,j = 1, Si,j ≥ 0

(5)

We can find that no weight factors are explicitly defined in (5). The Lagrange function
of the minimization problem (5) can be formulated as

L(S, ε, Ψ) =
M

∑
m=1

√√√√ N

∑
i,j=1

dx
i,j,mSi,j + βg(εm) +

N

∑
i=1

αi‖Si‖2
2 + G(Ψ, S, ε) (6)

where G(Ψ, S, ε) is the formalized term derived from the constraints of (5) with Ψ rep-
resenting the Lagrange multipliers. Taking the derivative of (6) with respect to S and ε,
and setting them to zero, we can obtain
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M

∑
m=1

wm

∂
N
∑

i,j=1
dx

i,j,mSi,j + βg(εm)

∂S
+

∂G(Ψ, S, ε)

∂S
= 0;

M

∑
m=1

wm

∂
N
∑

i,j=1
dx

i,j,mSi,j + βg(εm)

∂εm +
∂G(Ψ, S, ε)

∂εm = 0

(7)

where
wm =

1

2

√
N
∑

i,j=1
dx

i,j,mSi,j + βg(εm)
(8)

Note that wm is determined by the target variables of S and ε, so (5) cannot be directly
solved. However, if wm is set to be satisfactory, (5) can be regarded as the solution of
the problem

min
S,ε

M

∑
m=1

wm

{
N

∑
i,j=1

dx
i,j,mSi,j + βg(εm)

}
+

N

∑
i=1

αi‖Si‖2
2

s.t. Xm = XmS + εm,
N

∑
i=1

Si,j = 1, Si,j ≥ 0,

(9)

which can be solved. This inspires us to use an iterative method to optimize problem (5):
updating S by solving problem (9) with fixed wm, and then updating wm by using (8) with
fixed S and ε.

2.6. Optimization

Define the m-th feature distance matrix as Dm
x , whose i, j-th element is dx

i,j,m, i.e., the

m-th feature distance between superpixels X̃i and X̃j, and define α
1
2 as a diagonal matrix

with the i-th diagonal element being
√

αi. Then, we can rewrite the problem (9) as

min
S,ε

M

∑
m=1

wm

{
Tr
(

STDm
x

)
+ βg(εm)

}
+
∥∥∥Sα

1
2

∥∥∥2

F

s.t. Xm = XmS + εm, ST1N = 1N , S ≥ 0

(10)

where Tr(·) represents the matrix trace.
Next, we use the alternating direction method of multipliers (ADMM) to solve the min-

imization problem of (10). First, we introduce an auxiliary variable P ∈ RN×N , and rewrite
the model (9) as the minimization of

L(S, ε, P) =
M

∑
m=1

wm

{
Tr
(

STDm
x

)
+ βg(εm)

}
+
∥∥∥Sα

1
2

∥∥∥2

F

+ Tr
(
(S− P)TR1

)
+

M

∑
m=1

Tr
(
(Xm − XmP− εm)TRm

2

)
+

µ1

2
‖S− P‖2

F +
µ2

2

M

∑
m=1
‖Xm − XmP− εm‖2

F

s.t. ST1N = 1N , S ≥ 0

(11)

where R1 ∈ RN×N and Rm
2 ∈ RCx×N , m = 1, · · · , M are the Lagrangian multipliers,

and µ1, µ2 > 0 are two penalty parameters. Then, the alternating direction method (ADM)
can be used to solve the minimization of (11) by iteratively updating one variable at a time
and fixing the others.
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ε-subproblem. The minimization of (11) with respect to εm can be formulated as

min
εm

βwmg(εm)− Tr
(
(εm)TRm

2

)
+

µ2

2
‖Xm − XmP− εm‖2

F (12)

We define the proximal operator as

proxλg(b) := arg min
a

g(a) +
1

2λ
‖a− b‖2

F (13)

We have that εm can be obtained by

εm = prox βwm
µ2

g
(Qm) (14)

where Qm = Xm − XmP +
Rm

2
µ2

. According to the different regularization functions of g(·),
εm can be updated with different closed-form solutions of (14). When we select the squared
Frobenius norm g(εm) = ‖εm‖2

F, which is suitable for the case that the corruption of εm

follows a Gaussian distribution, we have

εm =
Qm

1 + 2βwm/µ2
(15)

When we select the `1-norm of g(εm) = ∑i,j

∣∣∣εm
i,j

∣∣∣, which is usually adopted in the case
that the corruption εm is the random impulse noise, we have an element-wise updating as

εm
i,j = sign

(
Qm

i,j

)
max

(∣∣∣Qm
i,j

∣∣∣− βwm/µ2, 0
)

(16)

where sign(·) denotes the signum function. When we select the `2,1-norm g(εm) = ‖εm‖2,1,
which is more suitable to characterize sample-specific corruption and outliers, we can
update ε by using the Lemma 3.3 of [49]

εm
i = max

{
‖Qm

i ‖2 −
βwm

µ2
, 0
}

Qm
i∥∥Qm

i

∥∥
2

(17)

where the convention 0 · (0/0) = 0 is followed. For the ε-subproblem, we provide three
closed forms of εm updates (15)–(17) based on different commonly used regularization
functions of g(·). However, it should be noted that there may be other more appropriate g()
to match the specific noise conditions in practice, e.g., impulsive noise with the Middleton
noise model [50] or alpha distribution [51].

P-subproblem. By taking the derivative of L(S, ε, P) of (11) with respect to P and
setting it to zero, we can obtain

M

∑
m=1

µ2(Xm)T(XmP + εm − Xm)− (Xm)TRm
2 = R1 − µ1(P− S) (18)

Then, we can update P by using

P =

(
IN +

µ2

µ1

M

∑
m=1

(Xm)TXm

)−1

×

S +

R1 +
M
∑

m=1
(Xm)TRm

2

µ1
+

µ2
M
∑

m=1
(Xm)T(Xm − εm)

µ1

 (19)

where IN denotes the N × N identity matrix.
S-subproblem. The minimization of (9) with respect to S can be formulated as a

column independent form as
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min
Si

(
M

∑
m=1

wmDm
x + R1)

T
i Si + αi‖Si‖2

2 +
µ1

2
‖Si − Pi‖2

2

s.t. ST
i 1N = 1, Si ≥ 0

(20)

By defining E =
M
∑

m=1
wmDm

x + R1 − µ1P and γi =
µ1
2 + αi, the minimization problem

of (20) can be rewritten as

min
ST

i 1N=1,Si≥0

∥∥∥∥Si +
1

2γi
Ei

∥∥∥∥2

2
(21)

According to the solving method proposed in [52], the closed form solution of Si can
be obtained by

S(j),i =


E(ki+1),i−E(j),i

kiE(ki+1),i−∑
ki
h=1 E(h),i

, j ≤ ki

0, j > ki

(22)

when we set γi as

γi =
ki
2

E(ki+1),i −
1
2 ∑ki

h=1 E(h),i (23)

where the (j) of E(h),i represents the position of the j-th smallest value in Ei.
k-selection: from (22) and (23), we can find that the learned graph S is a KNN-type

graph, and the parameter αi controls the number of NNs, which is very important in the
graph. Obviously, a very small ki will under-connect the vertices and make the graph not
robust enough, while a very large ki will over-connect the vertices and make the graph
confusing. Therefore, we use an in-degree-based adaptive k-selection strategy proposed
in the IRG-McS [23], which aims to connect each superpixel with as many truly similar
superpixels as possible.

w-subproblem. According to the self-weighting strategy, the wm can be updated by
using (8), which can be rewritten as

wm =
1

2
√

Tr(STDm
x ) + βg(εm)

(24)

Multipliers: finally, the two Lagrangian multipliers can be updated as

R1 ← R1 + µ1(S− P)

Rm
2 ← Rm

2 + µ2(Xm − XmP− εm)
(25)

The procedure of the proposed auto-weighted structured graph learning (5) is summa-
rized in Algorithm 1. The algorithm terminates when the iteration reaches the maximum
number of Niter or the relative difference between two adjacent iterations is less than the
given threshold.

Algorithm 1: AWSG learning.
Input: The feature matrix X, parameter β > 0.
Initialize: Set P, R1, and Rm

2 = 0, and adaptively select ki.
Repeat:

1: Update εm through (14) according to different g(·).
2: Update P through (19).
3: Update S through (22).
4: Update wm through (24).
5: Update R1 and Rm

2 through (25).
Until stopping criterion is met.
Output: The learned graph S.
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3. Structure Regression

Once we obtain the structured graph S that represents the structure information of
the pre-event image, we can use it to transform the pre-event image to the domain of
post-event image based on structure consistency between heterogeneous images. We define
the translation function asM and the translated image as Z̃ ∈ RI×J×Cy , that is, Z̃ =M(X̃),
and define the feature matrix of translated image as Z̃ with Zm = F (m)(Z̃).

3.1. Structure Consistency-Based Regularization

The structure consistency between a pre-event image X̃ and its translated image Z̃
constrains that they should share the same similarity relationships. This consists of two
aspects: first, if X̃i and X̃j represent the same type of objects (they are very similar), then Z̃i

and Z̃j also represent the same type of objects (they are also very similar); second, if X̃i can
be reconstructed by its NNs with Si, i.e., Xm

i = XmSi, then X̃i should also be represented
by its NNs with Zm

i = ZmSi. Combining these two aspects, we have the following local
similarity-based regularization and global self-expression-based regularization as

M

∑
m=1

ωm

(
N

∑
i,j=1‘

∥∥∥Zm
i − Zm

j

∥∥∥2

2
Si,j + βg(Zm − ZmS)

)
(26)

where ωm represents the m-th feature weights similar to those in (9) that can be auto-
determined by using the self-conducted weight learning. We define the degree matrix Ds ∈
RN×N as a diagonal matrix with the i-th diagonal element being ∑N

j=1
(
Si,j + Sj,i

)
/2, and the

Laplacian matrix as L = Ds − S+ST

2 , then the structure consistency-based regularization
can be rewritten as

M

∑
m=1

ωm

(
2Tr
(

ZmL(Zm)T
)
+ βg(Zm − ZmS)

)
(27)

3.2. Structure Regression Model

We can decompose the post-event image Ỹ into a translated image Z̃ and a change
image ∆̃. Then, we have Y = Z− ∆, where ∆ is the changed feature matrix (note that ∆

is not the feature matrix of ∆̃ because the feature extraction operator may be not a linear
operator). Based on the fact that changed region is always only a minority in the practical
CD problem, while most of the region is unchanged, we have a change sparsity-based
penalty as ∑M

m=1‖∆m‖2,1. By combining the structure consistency-based regularization (27)
and the change sparsity-based penalty, we obtain the structure regression model as

min
Z,∆,ω

M

∑
m=1

ωm

(
2Tr
(

ZmL(Zm)T
)
+ βg(εm)

)
+ λ‖∆m‖2,1

s.t. Ym = Zm − ∆m, Zm = ZmS + εm

(28)

where λ > 0 is a penalty parameter.
In the regression model (28), we only use the first-order neighborhood information

of the graph S. However, as demonstrated in HCD-GSP [41,42], the high-order neighbor
information is also very important for the heterogeneous CD. In order to incorporate the
hidden high-order information of the graph S into the structure regression model (28) and
use the self-weighting strategy, we propose a new structure regression model as

min
Z,∆

M

∑
m=1

√
2Tr
(

ZmH(L)(Zm)T
)
+ βg(εm) + λ‖∆m‖2,1

s.t. Ym = Zm − ∆m, KZm = ZmH(S) + εm

(29)
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where H(L) = ∑K
k=1 L(k) and H(S) = ∑K

k=1 S(k) denoting the sum of 1 to K-th power
polynomial of L and S, respectively.

3.3. Optimization

By using the ADMM and using the iteratively re-weighted technique similar as (5),
the model (29) can be rewritten as

L(ε, Z, ∆) =
M

∑
m=1

ωm

(
2Tr
(

ZmH(L)(Zm)T
)
+ βg(εm)

)
+ λ‖∆m‖2,1 + Tr

(
(Zm − Ym − ∆m)TRm

1

)
+

µ1

2
‖Zm − Ym − ∆m‖2

F

+ Tr
(
(KZm − ZmH(S)− εm)TRm

2

)
+

µ2

2
‖KZm − ZmH(S)− εm‖2

F

(30)

where Rm
1 , Rm

2 ∈ RCy×N, m = 1, · · · , M are Lagrangian multipliers, and µ1, µ2 > 0 are
two penalty parameters. Then, we use the ADM to separate the minimization of (30) into
ε-subproblem, Z-subproblem, ∆-subproblem and ω-subproblem, which is similar to the
procedure of solving problem (5) in Algorithm 1. The updating scheme for solving the
auto-weighted structure regression model (29) with a high-order structured graph is given by

εm = prox βωm
µ2

g

(
KZm − ZmH(S) +

Rm
2

µ2

)
(31a)

∆m = prox λ
µ1
‖·‖2,1

(
Zm − Y +

Rm
1

µ1

)
(31b)

Zm = ΘmΨ−1 (31c)

ωm =
1

2
√

2Tr
(

ZmH(L)(Zm)T
)
+ βg(εm)

(31d)

Rm
1 = Rm

1 + µ1(Zm − Y− ∆m) (31e)

Rm
2 = Rm

2 + µ2(KZm − ZmH(S)− εm) (31f)

where the proximal operator in the updating of (31a) and (31b) with different closed-form
solutions are given in (15)–(17). The matrices of Θm and Ψ in (31c) are defined as

Θm=(µ2εm − Rm
2 )(KIN −H(S))T + µ1(Y + ∆m)− Rm

1 (32a)

Ψ = µ1IN + µ2(KIN −H(S))(KIN −H(S))T + 4ωmH(L) (32b)

The procedure of the proposed structure regression model (29) is summarized in
Algorithm 2. The algorithm terminates when the iteration reaches the maximum num-
ber of Niter or the relative difference between two adjacent iterations is less than the
given threshold.

Algorithm 2: Structure regression.
Input: The matrices of Y, S and L, parameters β, λ > 0.
Initialize: Set Z = Y, and Rm

1 = Rm
2 = 0.

Repeat:
1: Update εm through (31a) according to different g(·).
2: Update ∆m through (31b).
3: Update Zm through (31c).
4: Update ωm through (31d).
5: Update Rm

1 and Rm
2 through (31e) and (31f).

Until stopping criterion is met.
Output: The feature matrices of Z and ∆.
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3.4. Change Extraction

After obtaining the regression feature matrix Z and the changed feature matrix ∆ by
solving the regression model with Algorithm 2, we can compute the translated image Z̃ by
using Z̃ = F−1(Z) and the difference image as

DI(i, j) =
M

∑
m=1
‖∆m

n ‖
2
2, (i, j) ∈ Λn, n = 1, · · · , N (33)

Then, we can divided this DI into changed and unchanged classes to object the binary
CM, which can be regarded as a binary segmentation problem. Therefore, the thresholding
methods such as Otsu threshold [53], or clustering methods such as the K-means [54],
or the random field-based methods such as MRF [10,23] can be selected to complete
the image segmentation. In this paper, we directly choose the MRF-based segmentation
method proposed in SCASC [10], which can incorporate the change information and
spatial information in the energy. There is only one hyperparameter to be adjusted in the
segmentation algorithm that is the balancing parameter, which we fix to 0.5 according to
the SCASC [10].

4. Experimental Results and Discussions

In this section, we experimentally test the performance of the proposed AWSG-based
structure regression method for HCD (named AWSG for short), which is achieved by com-
paring it with some existing state-of-the-art (SOTA) algorithms on four different datasets.

4.1. Datasets and Evaluation Metrics

Four real heterogeneous datasets are used to evaluate the proposed AWSG as listed in
Table 1, all these heterogeneous image pairs have already been registered. These datasets
contain different kinds of heterogeneity: (1) The cross-sensor cases, e.g., the image pair
consisting of the near-infrared (NIR) band image from Landsat-5 and the RGB bands optical
image from Google Earth in Dataset #1, and the image pair consisting of the optical images
from Pleiades and WorldView2 in Dataset #2; (2) The multisource cases, e.g., the image
pair consisting of the SAR image from Radarsat-2 and the optical image from Google Earth
in Dataset #3, and image pair consisting of the multispectral image from Landsat-8 and
the SAR image from Sentinel-1A. These datasets also cover different spatial resolutions,
different image sizes, and different change events, which can evaluate the robustness of the
propose algorithm, as shown in Figure 2.

Two types of metrics are utilized to evaluate change detection results. First, the quality
of DI is evaluated by the precision-recall (PR) curve and empirical receiver operating
characteristics (ROC) curve, which are plotted with the precision rate vs. recall rate and
the true positive rate (TPR) vs. false positive rate (FPR), respectively. The precision
rate, recall rate (also is the TPR), and FPR are calculated by Precision = TP/(TP + FP),
Recall = TP/(TP + FN), and FPR = FP/(TN + FP) respectively, with the true positives, false
positives, true negatives, and false negatives abbreviated as TP, FP, TN, and FN, respectively.
Second, the quality of binary CM is evaluated by the overall accuracy (OA), the Kappa
coefficient (κ) and F1-score (F1), which are computed as

OA =
TP + TN

TP + TN + FP + FN

κ =
2× (TP× TN− FN× FP)

(TP + FP)× (FP + TN) + (TP + FN)× (FN + TN)

F1 =
2× TP

2× TP + FP + FN

(34)

For all the experiments of AWSG, we choose the global self-expression penalty term
as g(εm) = ‖εm‖2

F for Algorithms 1 and 2; we adjust the scale parameter of FNEA to make
the number of segmented superpixels around 5000, i.e., N ≈ 5000, and extract the features
of mean, median, and variance values for each band of the superpixel; we fix β = 1,
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µ1 = µ2 = 0.4 for Algorithms 1 and 2; we set λ = 0.1 and fix K = 3 (according to the
HCD-GSP [42]) for Algorithm 2.

(a) pre-event (b) post-event (c) ground truth

#4

#3

#1

#2

(d) regression (e) DI

Figure 2. Heterogeneous datasets, regression images and DIs. From top to bottom, they correspond
to Datasets #1 to #4, respectively. From left to right: (a) pre-event image X̃; (b) post-event image Ỹ;
(c) the ground truth; (d) the regression images Z̃; (e) the DI calculated by using (33) with changed
feature matrix ∆.
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Table 1. Description of the four heterogeneous data sets.

Dataset Location Event (& Spatial
Resolution) Sensing Date Collection

Sensor
Image Size

(Pixels)

#1 Sardinia, Italy Lake expansion
(30 m)

Sept. 1995
July 1996

Landsat-5
Google Earth

300× 412× 1
300× 412× 3

#2 Toulouse,
France

Construction
(0.52 m)

May 2012
July 2013

Pleiades
WorldView2

2000× 2000× 3
2000× 2000× 3

#3 Shuguang
Village, China

Building
construction (8 m)

June 2008
Sept. 2012

Radarsat-2
Google Earth

593× 921× 1
593× 921× 3

#4 Sutter County,
CA, USA Flooding (≈15 m) Jan. 2017

Feb. 2017
Landsat-8

Sentinel-1A
875× 500× 11
875× 500× 3

4.2. Regression Images and Difference Images

In the first experiment, we demonstrate the effectiveness of the AWSG-based regression
model by displaying the regression image Z̃ (using the mean feature of Z as the value of
each pixel within the superpixel) and the difference image computed by (33). In Figure 2d,
we show the regression images generated by the AWSG on different heterogeneous datasets.
We can find that the structures of the regression images Z̃ are consistent with the pre-event
images X̃ in both the changed and unchanged areas. At the same time, it can also be found
that the regression images Z̃ have the same image style as the post-event images Ỹ. These
two aspects demonstrate that the AWSG-based regression model can well translate the
pre-event image to the domain of post-event image.

In Figure 2e, we show the DI generated by AWSG on Datasets #1 to #4. There are two
observations that can be visualized: first, the DIs are able to distinguish the unchanged
and changed areas by giving a larger value to the changed superpixels, which shows the
effectiveness of the AWSG-based structure representation of Algorithm 1 and the high-
order-based structure regression with the learned AWSG of Algorithm 2; second, the DIs
are sparse with the change sparsity-based ∑M

m=1‖∆m‖2,1 in the regression model (29), which
means that satisfactory segmentation maps can be obtained even by the simple thresholding
methods or clustering methods. Figure 3 plots the ROC and PR curves of the difference
images, the areas under the ROC curves (AUR) of Datasets #1 to #4 are 0.938, 0.828, 0.954,
and 0.878, respectively, and the the areas under the PR curves (AUP) of Datasets #1 to #4
are 0.656, 0.586, 0.735, and 0.456, respectively. From the curves in Figure 3 and the values
of AUR and AUP, we can find that the DIs are able to distinguish well between changed
and unchanged areas, by simply using the commonly used classification methods, such as
thresholding methods (e.g., the Otsu threshold [53]), and clustering methods (e.g., the K-
means [54] and fuzzy c-means [55]). For example, if we plot a line with Precision = Recall
on the PR curves of Figure 3b and calculate the intersection of this diagonal line with
the PR curve of each dataset, we can obtain the horizontal coordinates of the points with
Precision = Recall on the PR curves: 0.689, 0.563, 0.661, 0.519 corresponding to Datasets #1
to #4, respectively. These are also the F1 values (F1 = Precision when Precision = Recall)
that can be obtained by a simple threshold segmentation on the DIs. From the DIs of
Figure 2 and the ROC, PR curves of Figure 3, we can find that the proposed method is able
to effectively identify changes from heterogenous image pairs.
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Figure 3. ROC (a) and PR (b) curves of AWSG generated DIs.

4.3. Change Maps

In order to evaluate the effectiveness of the AWSG based HCD algorithm, we select
seven SOTA methods (including two deep-learning-based methods) for comparison, where
we use the default parameters in the codes that are also consistent with their original papers.

M3CD (M3CD is available at http://www-labs.iro.umontreal.ca/~mignotte (accessed
on 9 August 2022)) [16]. An MRF-based method that builds up the observation field from a
pixel pairwise modeling and solves the energy minimization problem by using iterative
conditional estimation.

FPMS (FPMS is available at http://www-labs.iro.umontreal.ca/~mignotte (accessed on
9 August 2022)) [15]. A fractal projection and Markovian segmentation-based method that
translates the image by using a spatial fractal decomposition and a contractive projection.

CICM (CICM is available at http://www-labs.iro.umontreal.ca/~mignotte (accessed
on 9 August 2022)) [56]. It is a circular invariant convolution model-based method that aims
at transforming images by using a concentric circular invariant convolution representation
and a multiscale Markov segmentation model.

SCASC (SCASC is available at https://github.com/yulisun/SCASC (accessed on
9 August 2022)) [10]. It is a sparse-constrained adaptive structure consistency-based
method that translates the images by using the structure consistency with a local similarity
based graph.

AGSCC (AGSCC is available at https://github.com/yulisun/AGSCC (accessed on 9
August 2022)) [9]. It is an adaptive graph with a structure cycle consistency-based method
that translates the images by combining the forward transformation and cycle transformation.

SCCN (SCCN is implemented at https://github.com/llu025 (accessed on 9 August
2022)) [22]. It is a deep-learning-based method that uses a symmetric convolutional cou-
pling network (SCCN) to transform the heterogeneous images into a common feature space.

ACE-Net (ACE-Net is available at https://github.com/llu025 (accessed on 9 Au-
gust 2022)) [21]. It is a deep image translation method that uses an adversarial cyclic
encoder network consisting of two auto-encoders and an affinity-based change prior for
network training.

Figure 4 shows the CMs of all the methods on the Datasets #1 to #4, and Table 2
lists the quantitative measures of these CMs. We find that most methods can roughly
reflect the change information, whereas some methods do not perform robustly enough on
some datasets. To be specific, in Dataset #1, most methods can well identify the changes,
but the false negatives in CICM and SCASC are more than for other methods, and the
false positives in the SCCN and FPMS are more than others, which leads to a lower F1
and κ of CICM, SCCN, FPMS, and SCASC in Table 2. In Dataset #2, the resolution of the

http://www-labs.iro.umontreal.ca/~mignotte
http://www-labs.iro.umontreal.ca/~mignotte
http://www-labs.iro.umontreal.ca/~mignotte
https://github.com/yulisun/SCASC
https://github.com/yulisun/AGSCC
https://github.com/llu025
https://github.com/llu025
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multitemporal images is very high (0.52 m) and the proportion of the changed region is
also relatively larger than in other datasets, which bring difficulties in accurately detecting
changes. From Figure 4 and Table 2, we find that most methods can only detect a small part
of the changes, such as FPMS (κ = 0.215) and CICM (κ = 0.270), however, the proposed
AWSG can obtain a more accurate CM with better visual effects and highest evaluation
metrics (κ = 0.524). In Dataset #3, there are a large number of false alarms in the SCCN,
resulting in a poorer detection performance (F1 = 0.386) than other methods. Additionally,
the proposed AWSG is able to obtain good detection results on this dataset, scoring second
only to the ACE-Net. In the last Dataset #4, there are more types of objects in the pre- and
post-event images than in the other datasets (such as buildings, farmland, rivers, forests,
roads, mountains) and these objects are very unevenly proportioned, as shown in Figure 2,
which poses difficulties in capturing image structure and completing image regression.
Nevertheless, the proposed method is still able to achieve optimal detection results and
gain the highest evaluation metrics (F1 = 0.547), which further demonstrates the structural
expressiveness of AWSG and the importance of higher-order structure information in the
image regression model. The average OA, κ and F1 of the proposed AWSG on these four
datasets are about 0.951, 0.628, and 0.656, respectively, which shows that the proposed
AWSG is very competitive, even compared with the deep-learning-based methods.

(a) M3CD (b) FPMS (d) SCASC (e) AGSCC
TP FP TN FN

(c) CICM (f) SCCN (g) ACE-Net (h) AWSG

Figure 4. Binary CMs of different methods on heterogeneous datasets. From top to bottom, they
correspond to Datasets #1 to #4, respectively. From left to right are binary CMs generated by:
(a) M3CD; (b) FPMS; (c) CICM; (d) SCASC; (e) AGSCC; (f) SCCN; (g) ACE-Net; (h) AWSG. In the
binary CM, White: true positives (TP); Red: false positives (FP); Black: true negatives (TN); Green:
false negatives (FN).
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Table 2. Quantitative measures of binary CMs on the heterogeneous datasets. Note that SCCN and
ACE-Net are deep-learning-based methods.

Methods
Dataset #1 Dataset #2 Dataset #3 Dataset #4 Average

OA κ F1 OA κ F1 OA κ F1 OA κ F1 OA κ F1

M3CD 0.963 0.669 0.689 0.863 0.405 0.481 0.962 0.602 0.622 0.575 0.021 0.077 0.841 0.424 0.467
FPMS 0.925 0.552 0.588 0.838 0.215 0.296 0.938 0.569 0.597 0.947 0.329 0.356 0.912 0.416 0.459
CICM 0.943 0.451 0.481 0.867 0.270 0.321 0.974 0.745 0.759 0.899 0.081 0.131 0.921 0.387 0.423

SCASC 0.947 0.593 0.621 0.892 0.464 0.516 0.979 0.741 0.751 0.961 0.479 0.500 0.945 0.569 0.597
AGSCC 0.959 0.658 0.680 0.897 0.490 0.540 0.983 0.773 0.782 0.960 0.486 0.506 0.950 0.602 0.627
SCCN 0.900 0.478 0.524 0.848 0.417 0.507 0.908 0.344 0.386 0.906 0.392 0.431 0.891 0.408 0.462

ACE-Net 0.964 0.718 0.737 0.886 0.480 0.541 0.981 0.788 0.798 0.940 0.468 0.497 0.943 0.614 0.643

AWSG 0.963 0.690 0.711 0.896 0.524 0.581 0.984 0.775 0.783 0.962 0.524 0.547 0.951 0.628 0.656

4.4. Discussion
4.4.1. Ablation Study

The proposed AWSG mainly contains two processes: the structure representation by
learning an auto-weighted structured graph and the structure regression by using high-
order neighbor information of the graph. To further investigate the contributions of the
proposed method in the heterogeneous CD, that is, the roles of the auto-weighted strategy,
the structured graph combining local and global information, the adaptive k-selection
strategy, and the high-order structure regression, an ablation experiment is carried out,
i.e., eliminating the corresponding parts on the basis of the complete AWSG for comparison.
The detection performances (F1 measure of CM) of the AWSG without (w/o) auto-weighted
strategy (AW), local structure information (LS), global structure information (GS), adaptive
k-selection (AK), high-order neighbor information (HN) are reported in Table 3. In addition,
we also show the DI and CM generated by AWSG without these parts on Dataset #1 in
Figure 5.

(f) AWSG(a) w/o AW (b) w/o LS (c) w/o GS (d) w/o AK (e) w/o HN

Figure 5. Ablation study of AWSG. From top to bottom, they correspond to the DI and CM generated
by different methods on the Dataset #1. From left to right are the results generated by: (a) AWSG
without auto-weighted strategy; (b) AWSG without local structure information; (c) AWSG without
global structure information; (d) AWSG without adaptive k-selection; (e) AWSG without high-order
neighbor information; (f) the original AWSG.

According to Table 3, the detection performance degrades without (w/o) AW, LS,
GS, AK, and HN on all the evaluated datasets. Specifically, compared to the other parts,
the effect of adaptive k-selection structure is slightly weaker, which has a more pronounced
effect on datasets with uneven feature distribution, e.g., the F1 score is improved by 2.6%
in Dataset #4. When applied with the auto-weighted strategy, the constructed graph can
adaptively assign different weights for different features by using a self-conducted weight
learning, which makes the graph more robust. Therefore, the score of F1 increases by about
4.6% on Dataset #1 and 3.2% on Dataset #2 compared to that without AW. By using the
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structured graph that combines the local similarity structure and global self-expression
property, the average score of the F1 is about 2.0% higher than that of using only local
structural information and 2.3% higher than that of using only global structural information
as reported by Table 3. It can also be seen in Figure 5 that the CM of AWSG combining
global and local structure information has fewer false alarms and missed detections than
the AWSG w/o LS or GS, which demonstrates the effectiveness of structured graph that
can improve the ability of characterizing structures. By exploiting the high-order neighbor
information (H(L) and H(S)) in the structure regression model (29), the final detection
results is more accurate, as shown in Figure 5e,f, and the average F1 can be improved by
about 2.1% compared to that which only uses the first-order neighborhood information, as
reported in Table 3.

Table 3. Ablation study of AWSG measured by the F1 score of CM.

Methods
Heterogeneous Datasets

Average
#1 #2 #3 #4

AWSG w/o AW 0.665 0.549 0.751 0.513 0.620
AWSG w/o LS 0.682 0.564 0.761 0.525 0.633
AWSG w/o GS 0.695 0.558 0.752 0.540 0.636
AWSG w/o AK 0.703 0.570 0.772 0.521 0.642
AWSG w/o HN 0.677 0.565 0.760 0.539 0.635

AWSG 0.711 0.581 0.783 0.547 0.656

4.4.2. Parameter Analysis

The main parameters of AWSG are the superpixel number N, maximum iterations
Niter, the balancing parameter β, and the sparse penalty parameter λ.

Generally, the number N of superpixels should be determined based on the resolution
of the dataset and should also take into account the CD task’s requirements on compu-
tational efficiency. A large N increases the computational burden while improving the
detection granularity.

To investigate the convergence performance of the proposed AWSG with parameter
Niter, we plot the convergence curves of Algorithms 1 and 2, which are measured by the
relative difference (Rel.diff) ξk versus iteration number k, as shown in Figure 6, where

ξ [k+1] =
M
∑

m=1

‖S[k+1]−S[k]‖F
‖S[k+1]‖F

for the Algorithm 1 and ξ [k+1] =
M
∑

m=1

‖∆m[k+1]−∆m[k]‖F
‖∆m[k+1]‖F

for the

Algorithm 2. It is clear that the ADMM in the solving of Algorithms 1 and 2 converges
quickly, and the exit criterion of Niter = 15 or ξ0 = 0.01 is enough for the algorithms when
taking into account the computational time.

The parameter β balances the weight of local structure penalty term and global self-
expression penalty term in the graph learning model (5) and structure regression model (29).

Given the penalty function of g(εm) = ‖εm‖2
F, we have ∑N

i=1 ∑N
j=1

∥∥∥Xm
i − Xm

j

∥∥∥2

2
Si,j ≥

‖Xm − XmS‖2
F by using the condition of ∑N

i=1 Si,j = 1. Therefore, it is recommended
that β ≥ 1.

For the sparse penalty parameter λ, it is used to control the sparsity level of DI,
which should be determined based on the percentage of real change in the ground truth.
However, we experimentally find that the proposed algorithm is not sensitive to this
parameter, as shown in Figure 7, where we show the AUR at different values of λ (from
10−5 to 1 with the ratio of 10). It can be found that the AWSG performs well in a broad
range of λ.
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Figure 6. Convergence performance of AWSG.

Figure 7. Influence of parameter λ on the proposed AWSG.

4.4.3. Complexity Analysis

The main complexity of the proposed method is concentrated in the AWSG learning
(Algorithm 1) and the structure regression with AWSG (Algorithm 2).

Algorithm 1: Step 1, update εm, requires O
(
Cx N2) for calculating Qm and O(Cx N)

for the proximal operator of (14); Step 2, update P, requires O
(

N3) for the matrix inver-

sion of
(

IN + µ1
µ2

∑M
m=1 (X

m)TXm
)−1

and O
(
Cx N2) for the matrix multiplication; Step 3,

update S, requires O
(
Cx N2) for calculating E, O

(
N2 log N

)
for sorting all columns of

E, and O
(

N2) for the closed-form solution of (22); Step 4, update wm, requires O
(

N2)
by using (8) or (24); Step 5, update the Lagrangian multipliers of R1 and Rm

2 , requires
O
(
Cx N2) for matrix multiplication.

Algorithm 2: Step 1, update εm, requires O
(
CyN2) for the matrix multiplication

and O
(
CyN

)
for the proximal operator of (31a); Step 2, update ∆m, requires O

(
CyN

)
by

using (31b); Step 3, update Zm, requires forO
(
CyN2) calculating Θm,O

(
N3) for the matrix

inversion of Ψ−1, and O
(
CyN2) for the matrix multiplication; Step 4, update wm, requires

O
(

N2) by using (31d); Step 5, update the Lagrangian multipliers of Rm
1 and Rm

2 , requires
O
(
CyN2) for the matrix multiplication.

Although the complexity of AWSG is very high in the above theoretical analysis, which
requires O

(
N3) for the matrix inversion of each iteration in Algorithms 1 and 2, it can be

accelerated by using some iterative solvers for updating P with (19) in Algorithm 1 and Zm

with (31c) in Algorithm 2. The linear systems of updating P and Zm can be solved efficiently
by using the conjugate gradient (CG) method. In addition, some pre-conditioners can also
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be used to accelerate CG method [57]. In our experiments, we use the CG with incomplete
Cholesky pre-conditioner for updating P and Zm. The computational time of each process
of AWSG with different N on Datasets #2 and #3 is listed in Table 4, where the AWSG is
performed in MATLAB 2016a running with Intel Core i9-10980HK CPU.

Table 4. Computational time (s) of AWSG, where tA1, tA2, and ttotal denote the computational time
of Algorithms 1 and 2 and the whole AWSG, respectively.

Datasets N tA1 tA2 ttotal

Dataset #2
2000× 2000× 3(3)

2500 3.8 2.0 9.1
5000 12.1 5.9 29.3

10,000 69.8 28.7 127.5

Dataset #3
593× 921× 1(3)

2500 3.5 1.8 8.4
5000 10.4 5.1 24.2

10,000 65.9 26.6 120.4

5. Conclusions

In this paper, we proposed an unsupervised image regression method for heteroge-
neous change detection. Specifically, the proposed method first segments the multitemporal
images into superpixels, and learns an adaptive KNN graph for the pre-event image to
capture the structure information, which uses a self-conducted weighting strategy and
combines the local and global structure information to make the graph more capable of
structural characterization. Then, based on the structure consistency between heteroge-
neous images, the proposed method transforms the pre-event image to the domain of
post-event image by using the learned graph. By exploiting the high-order neighbor infor-
mation hidden in the graph, it can obtain a better translated image and change image and
thus improve the accuracy of change detection. The experimental results confirm the effec-
tiveness of the proposed method by comparing with other related methods. In future work,
we will focus on the distributional properties of the image, especially ways to improve the
structure representation of the graph in the case of uneven object distribution.
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