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Abstract: Invasive alien species (IAS) are a threat to biodiversity and ecosystem function worldwide.
Unfortunately, researchers, agencies, and other management groups face the unresolved challenge
of effectively detecting and monitoring IAS at large spatial and temporal scales. To improve the
detection of soniferous IAS, we introduced a pipeline for large-scale passive acoustic monitoring
(PAM). Our main goal was to illustrate how PAM can be used to rapidly provide baseline information
on soniferous IAS. To that aim, we collected acoustic data across Puerto Rico from March to June
2021 and used single-species occupancy models to investigate species distribution of species in
the archipelago and to assess the peak of vocal activity. Overall, we detected 16 IAS (10 birds, 3
mammals, and 3 frogs) and 79 native species in an extensive data set with 1,773,287 1-min recordings.
Avian activity peaked early in the morning (between 5 a.m. and 7 a.m.), while amphibians peaked
between 1 a.m. and 5 a.m. Occupancy probability for IAS in Puerto Rico ranged from 0.002 to 0.67. In
general, elevation and forest cover older than 54 years were negatively associated with IAS occupancy,
corroborating our expectation that IAS occurrence is related to high levels of human disturbance and
present higher occupancy probabilities in places characterized by more intense human activities. The
work presented here demonstrates that PAM is a workable solution for monitoring vocally active IAS
over a large area and provides a reproducible workflow that can be extended to allow for continued
monitoring over longer timeframes.

Keywords: birds; anurans; mammals; occupancy model; ecoacoustics; soundscape; Puerto Rico;
Caribbean; remote sensing; vocal activity; autonomous recording units

1. Introduction

Invasive alien species (IAS) are one of the largest threats to biodiversity around the
world [1]. It is estimated that the global costs of damage caused by IAS exceed hundreds of
billions of U.S. dollars a year [2,3] and that IAS have negatively affected more than a hun-
dred critically endangered native terrestrial vertebrates [4]. The number of established IAS
has exponentially increased during the last century for different biological groups [5], and
climate change is expected to further expand the distribution of some invasive species [6].
After reaching and becoming established in a new area, IAS can impact local biodiver-
sity through direct and indirect negative interactions with native taxa, such as predation,
competition, disease spread, predator poisoning, and altering habitat characteristics [2].
The impact of introducing an alien species can be even more dramatic for native species
on islands, which may experience rapid extirpation of native fauna after the arrival and
establishment of an IAS [7–9]. Insular species often have small populations and home
ranges, low genetic diversity, and lack morphological adaptations against IAS [7]. Islands
in warmer regions of the globe are hotspots for IAS and tend to have more established
invasive species than mainland areas, generating a profound concern for the conservation
of native species on tropical islands [5,8].
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One of the main obstacles that wildlife managers and conservationists face in opposing
the threat of invasive species is acquiring rapid, reliable, large-scale baseline information on
the distribution of fauna—data which are critical in guiding effective wildlife management
programs [10]. A central challenge to this type of monitoring is how to cover a large
sampling area with a limited number of researchers (an issue faced by many projects and
agencies) and still complete surveys in a short period of time, which has the dual benefit of
avoiding temporal bias and providing distribution data quickly. Moreover, the success of
IAS control or eradication efforts is typically greater when species are detected in an early
stage before they become established in a new location [11]. Therefore, the development of
early-stage detection systems is urgent in order to identify IAS before they can become a
significant threat [12–14]. The rapid evolution of remote sensing tools has made it possible
to conduct large-scale monitoring in a short period of time, providing detailed baseline
information of ecosystems and biodiversity [15].

Remote sensing through satellite and airborne images has been successfully used to
detect and monitor changes in forest cover, vegetation type, disturbance regimes, plant
phenology, and ecosystems [16–20]. However, remote sensing is still mostly overlooked
for invasive fauna, though camera traps and autonomous acoustic devices have been
successfully used to detect and monitor alien animal species [15,21,22]. Other noninvasive
methods such as eDNA have also been used recently to detect IAS [21,22]. The emergence
of new autonomous recording units (ARUs) and platforms to store and analyze massive
amounts of audio data has greatly improved the utility of passive acoustic monitoring
(PAM) to monitor soniferous wildlife and its threats [23–28]. Taxa that regularly produce
species-specific vocalizations, such as birds, anurans, bats, insects, and some mammals,
are well suited for ecoacoustic surveys [29,30]. Although PAM has great potential for
monitoring biodiversity and researching a variety of ecological issues [31], it has not been
used yet to its maximum potential for investigation of soniferous terrestrial IAS [32,33].
However, PAM has been used for investigating the occurrence of invasive freshwater drum
in the New York State Canal System and assessing the phenology of the invasive cane toad
in Australia [34,35].

Passive acoustic monitoring has numerous benefits for rapid assessment and early
detection of sound-producing fauna, as well as large-scale and long-term monitoring,
and can decrease the response time for managing soniferous IAS [28,31,33,36]. Amongst
the primary benefits, PAM is a standardized noninvasive survey method that can be
used simultaneously in numerous locations, allowing for the monitoring of hundreds
to thousands of sites at the same time, which would otherwise be impossible if trained
researchers were required to be in the field at each location [36]. Additionally, PAM
facilitates sampling during all periods of the day, covering the peak of activity of different
taxa; devices can be easily deployed with little or no specialized training; and recordings
can be permanently stored, providing insights on temporal patterns of biodiversity [36,37].

Passive acoustic monitoring generates the detection and non-detection data required for
species distribution models, one of the most used tools for IAS risk assessment [38–42]. Due
to the substantial volume of data collected by the ARU in the field, one constraint on PAM
has been the ability to examine all of the recordings collected. As a result, the development of
protocols that optimize inspection of recordings together with semiautomatic or automatic
techniques that speed up data analysis is necessary to extract the maximum amount of
information from the acoustic data collected. In addition, to expedite biological and ecological
insights from data acquired through PAM, it is important to develop user interface tools
that allow availability, visibility, and management of results for the nonacademic public (e.g.,
citizen scientists, birdwatchers, practitioners, and wildlife managers).

Here, we used a large-scale PAM survey across the Puerto Rican archipelago (841 sam-
pling sites) to investigate the spatial distribution and peak of vocal activity of IAS. Our
main goal was to generate baseline population data for soniferous native and IAS in Puerto
Rico. Moreover, we provide a roadmap on how remote soundscape data collection can
be used to rapidly provide distribution information for soniferous species through a free,
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user-friendly web interface designed to be accessible to diverse stakeholder groups as biol-
ogists, ecologists, wildlife managers, and citizen scientists. Our workflow offers a balance
between manual inspection of recordings with semiautomatic analysis, which considerably
reduces the time required to analyze the large amount of data typically generated by PAM,
and providing assessment for the peak activity of species and detection/nondetection
data for each day and site sampled. To assess the status of IAS populations in Puerto
Rico, we used Bayesian single-species occupancy models to investigate how the spatial
distribution of IAS varied through environmental gradients. The last step of our end-to-end
pipeline for large-scale passive acoustic monitoring consisted in the development of a
web page connecting and summarizing data from the Arbimon platform to display and
share the results of the ecoacoustic analyses and close the gaps between academia and
wildlife managers and decision makers. We expect that our study can provide baseline
information on soniferous IAS for wildlife managers and decision makers in Puerto Rico
and support future research focused on the rapid assessment or long-term monitoring of
sound-producing wildlife across a broad spatial area using acoustic survey methods.

2. Materials and Methods
2.1. Passive Acoustic Monitoring

The Caribbean is a hotspot of biodiversity [43]; unfortunately, the islands in the region
are also hotspots of established IAS [8]. Amongst them, Puerto Rico has a long history
of IAS, which raises concerns about the prior and future impacts of those species on the
native and endemic flora and fauna [44,45]. There is a gap in the knowledge of population
assessment of IAS in the archipelago, primarily for birds and frogs. We conducted a large-
scale PAM survey in the Puerto Rican archipelago, including the main island of Puerto Rico
and the major offshore islands of Culebra, Desecheo, Mona, and Vieques (Appendix A).
Overall, we successfully deployed ARUs at 841 sites: 198 sites in and around six preselected
regions in the interior of Puerto Rico and 643 sites distributed in 14 regions across coastal
areas in the main island of Puerto Rico (n = 485 ARU), Culebra (n = 49), Desecheo (n = 7),
Mona (n = 52), and Vieques (n = 50). The selection of sampling sites within each region
and protected area followed an approximate systematic sampling design to capture the full
range of conditions found there.

We made use of lightweight and low-cost Open Acoustic Devices AudioMoth recorders
to record the soundscapes across Puerto Rico [26,36]. We used the Open Acoustic Devices
AudioMoth Configuration App to program the audio devices to record 1 min every 5 min
with mean gain and at a 48 kHz sampling rate. Four teams of two field agents deployed
AudioMoths between 1 March and 6 June 2021. The ARUs were placed in a protective
waterproof plastic case and then affixed to a tree/vine/shrub using wooden clothespins at
a height of 1.5 m (Appendix A). A total of approximately 200 AudioMoths were simultane-
ously in the field at any given time during the survey period; the AudioMoths were rotated
across sampling sites after about 1 week of data collection, with ARUs simultaneously
in the north, south, east, and west of the island at all times. The AudioMoths recorded
in the field for at least seven consecutive days; thereafter, field agents revisited each site
to retrieve the ARUs that had been deployed and move them to a new location. Due to
logistical issues and the occasional malfunction of the devices, the number of days recorded
at a site ranged from 1 to 11 (mean = 8.3, sd = 1.11). The main factors contributing to data
loss or site failure were device malfunction (n = 10) and theft (n = 4).

We made an effort to deploy the ARUs no less than 200 m apart from each other, which
was an adequate distance to ensure that a calling event of most species was not recorded by
more than one device simultaneously (the great majority of the distances between nearest
points were above 500 m; mean = 865.03 m, sd = 714.05). Moreover, we expected that
200 m was a good proxy of the home range of most low-vagility forest birds and frogs,
ensuring site independence for these species. Field agents manually documented the date,
site ID, recorder ID, latitude, longitude, and additional relevant climate and environmental
factors. The Rainforest Connection (RFCx) Companion App was also used during AudioMoth
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deployments to sync the ARUs and add site metadata (e.g., GPS coordinates, elevation,
photos, and notes) with sites in the RFCx Arbimon web platform (https://apps.apple.com/
us/app/rainforest-connection/id1178078181 (accessed on 1 March 2021)). Once the ARUs
were retrieved, all recordings were uploaded to RFCx Arbimon web-based platform, where
all the sound files are now permanently stored (https://arbimon.rfcx.org/project/puerto-
rico-island-wide/dashboard (accessed on 5 July 2021)).

2.2. Semiautomatic Species Identification Workflow

Large-scale and long-term investigations using ARUs commonly generate a colossal
number of recordings [27], quantities that quickly become unworkable to examine through
manual approaches. We developed a protocol for acquiring species detections from audio
recordings using a semiautomated procedure that requires a relatively small time invest-
ment from researchers to produce a preliminary list of species occurring in a study area and
provides a validation data set [46–49] (Figure 1). RFCx Arbimon is a free, cloud-based, user-
friendly acoustic analysis platform for storage, management, visualization, and analysis
of ecoacoustic data. Using the spectrograms generated by Arbimon, two of the coauthors
with extensive experience in audio surveys (G.A.L. and T.N.M.) manually inspected all
1-min recordings from two nonconsecutive days at each site (576 1-min recordings per
site were inspected) to search for species’ sound signals and noted if each species call
was present in each record [49]. During this process, hereafter referred to as “manual
annotation”, animal sounds with a high signal-to-noise ratio were identified and selected
as the templates for template-matching analyses, known as Pattern Matching (PM) analysis
in the RFCx Arbimon system [49] (Figure 1). During these steps we identified and tagged
other characteristics and sound sources such as the quality of recordings, noises caused by
internal malfunction of AudioMoth devices, external interference, anthrophony (e.g., noise
of machines, vehicles, and voices), and domestic animals. This manual annotation of the
data was an important step in providing a consistent preliminary list of species recorded by
ARUs throughout the study area, selecting good templates for PM analysis, and generating
validated data sets [23,46,49].

Figure 1. Infographic representing the main steps of an end-to-end pipeline for large-scale passive
acoustic monitoring (PAM). Step 1—The project begins with study design, during which fundamental

https://apps.apple.com/us/app/rainforest-connection/id1178078181
https://apps.apple.com/us/app/rainforest-connection/id1178078181
https://arbimon.rfcx.org/project/puerto-rico-island-wide/dashboard
https://arbimon.rfcx.org/project/puerto-rico-island-wide/dashboard
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research questions are defined. To increase the chance of success of wildlife monitoring programs,
three central questions should be made clear at this point: Why? What? How? (see Yoccoz et al.
(2001) [50]). During this process, important environmental variables should be gathered to assist with
survey design; for example, spatial data can provide the main habitat types and most appropriate
locations for the deployment of the autonomous recording units (ARUs; e.g., land cover, elevation,
watercourses, trails, and roads). Step 2—Set temporal PAM designs depending on the goals of the
project and deployment of ARUs in the field. The literature and pilot studies can assist in more
effective adjustments to sample target species. Step 3—The large volume of recordings collected
during large-scale and long-term studies are processed via a software or web platform to store,
visualize, manage, and analyze the audio recordings efficiently. Step 4—A subset of recordings is
manually inspected (i.e., “manual annotations”) to search for target acoustic signals with a high
signal-to-noise ratio and select the templates for further use in an Arbimon Pattern Matching analysis
(PM), also known as Template Matching analysis. Step 5—In the semiautomatic approach, the PM
analysis is a crucial step in searching for and detecting target acoustic signals through all recordings
in a playlist. There is a trade-off in choosing the PM threshold: a low threshold returns a high number
of false positives while reducing the possibility of false negatives. We chose to use a low PM threshold
and manually validated a subset of PM per site (i.e., best-scored ROI per site per day). This process
enhanced the chances of detecting at least one call of the species at the site and aided in the removal
of false positives. In addition to producing useful ecological data per se, the PM provides training
data for artificial intelligence models (e.g., a convolutional neural network [46]). Training data can
also be acquired through automatic event detection of acoustic signals through audio event detection
analyses that can be clustered to identify groups with similar sound characteristics. Even for this
automatic identification process, manual post validation of a subset of recordings is necessary. Step
6—The last step is to summarize all information and make the ecological information available to
decision makers. This step can be the final point of PAM or can provide a feedback loop for new
questions to be investigated.

The preliminary species list created by the manual annotation of a subset of recordings
provided the templates that were subsequently used to select species of greatest conserva-
tion need (SGCN; https://www1.usgs.gov/csas/swap (accessed on 30 September 2021)),
native and endemic species and all IAS detected for the ecological analyses. We ran a PM
analysis for a total of 65 species in the RFCx Arbimon platform (37 SGCN, 16 IAS and
12 extra species). Using available audio libraries (e.g., Xeno-Canto) we also created PMs
for other SGCN and IAS that are known to occur in Puerto Rico but were not detected
during the manual validation or that did not have acceptable templates. Use of external
templates did not result in the detection of any new species. Pattern Matching, a template-
based detection algorithm, take a sound template and an audio file playlist as inputs and
searches a selected playlist for signals that correlated with the template in the spectrogram
domain [46]. All audio segments with a correlation equal to or greater than a user-chosen
threshold were detected as regions of interest (ROI) and displayed in a graphical user
interface (GUI) in a grid format. We assigned a correlation threshold equal to 0.2 and ran
the models on all sites included in the playlists. The selection of a low threshold resulted in
a high number of false positives, though the number of false negatives was assumed to be
negligible. M.C.C., G.L. and T.M. manually reviewed the template-matching results. In this
step, we annotated the results as either positive or negative to indicate the corresponding
species’ presence or absence, respectively. This ensured that the final data set used in the
analyses only included expert-verified detections and excluded all false-positive detections.

We created two playlists on which to run the PM: a diurnal playlist with all recordings
from 5 a.m. to 6 p.m. and a nocturnal playlist with all recordings from 6 p.m. to 5 a.m. The
diurnal playlist was applied to 41 bird species and three mammal species; the nocturnal
playlist was applied to 18 frog species and three bird species. The resulting ROIs from the
PM analysis were manually inspected in a grid view and validated as true or false positives
by experts. For validation, we filtered the results to only show the best-scored ROI per site
and day to acquire detection and nondetection data to be used in the occupancy models

https://www1.usgs.gov/csas/swap
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(Figure 1). The PM analysis of all species detected using all recordings together with the
manual validation of the best-scored ROI per site and day took two ornithologists (GAL
and TNM) approximately 15 days. Using these validations, we created a table of sampling
sites by sampling days for each species (i.e., 1 if the species was detected, otherwise 0).
Since our main objective here was not to investigate the daily activity of these species but
to maximize detection in each sampling site, we chose the period with the greatest volume
of soniferous data for the birds and frogs based on our experience working with the birds
and frogs of Puerto Rico. Thus, we highlight that the polar plots for birds and mammals
were biased for the diurnal period while those for frogs and nocturnal birds were biased
for the nocturnal period. However, if the research goals involve investigating the daily
activities of species, this approach can be easily adjusted to incorporate both periods of day
for each species.

In this paper, we used the standard biological sense adopted by Simberloff (2013) [2]
that defines invasive species as “species that arrive with human assistance, establish
populations, and spread”, contrary to the usage adopted by policymakers who assume that
IAS are only introduced species that cause some proven negative impact on diversity or an
ecosystem, although there is evidence suggesting that most of these IAS may be threats to
Puerto Rico’s biodiversity.

2.3. Explanatory Variables

We collected environmental data from multiple online repositories administered by
the Multi-Resolution Land Characteristics Consortium, National Oceanic and Atmospheric
Administration, Open Street Map, USDA Caribbean Climate Hub, and USGS EarthExplorer.
Data gathered included GIS layers of elevation, climate, forest age, land-use type, protected
area extent, and roads and trails. For each sampling location, a buffer was added with
a radius of 200 m around the site (area = 12.57 ha). Data for inclusion as environmental
covariates in the ecological analyses were extracted for the 200 m site buffers using the
Zonal Statistics and Tabulate Area tools in ESRI ArcMap (version 10.8; Environmental
Systems Research Institute, Inc., Redlands, CA, USA).

We selected 13 explanatory variables that have been reported to have an effect on
fauna from the GIS layers a priori [38,48,51,52]. We checked multicollinearity among the
explanatory variables used in the occupancy models through the variance inflation factor
(VIF) function of the “usdm” package [53] in R version 3.6 [54]. This function progressively
excludes collinear covariates through a stepwise procedure. VIFs were calculated using
two methods: VIFcor (threshold = 0.7) and VIFstep (Threshold = 10). The following
variables with low collinearity were used in occupancy models: elevation, mean annual
precipitation, percent of forested area between 34–54 years old, percent of forested area
older than 54 years, percent of area within a protected area boundary, percent of canopy
cover, distance from roads, and proportion of built-up area (Appendix B).

We used the Generate Tessellation tool in ArcMap to create a hexagon grid covering
the entire extension of Puerto Rico and major offshore islands. The hexagon grid had a
cell area equal to that of the 200 m buffer applied to survey sites. We exported values for
the explanatory covariates for each hexagon, which were used to make maps of predicted
occupancy for each species using the top-ranked model.

2.4. Single-Species Occupancy Model

Since the IAS may have experienced different introduction histories on the islands and
have different capabilities to colonize new islands, we chose to model species occupancy
only for the islands where the species was detected in at least five sampling sites. We
investigated occupancy while accounting for imperfect detection of invasive species by
fitting a hierarchical single-season occupancy model [55–57] in a Bayesian framework using
the “ubms” package in R [58,59]. The occupancy model made use of repeated observations
in the sites to disentangle the observational component (i.e., detection/nondetection) from
the state variable of interest (i.e., “true” occupancy [38,55]). The model had four central
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assumptions: (i) independence between sampling sites, (ii) independence between repeated
observation occasions, (iii) absence of misidentification of the focal species (no false positive
error), and (iv) no colonizations or extinctions during the study period; that is, the sampling
sites were expected to be “closed” to the occupancy state of species during the study
period [55,60,61]. Assumption of a closed occupancy state may be relaxed if the changes
in the occupancy state are random, and therefore the occupancy parameter should be
interpreted as the probability that the species “uses” the habitat [62].

We applied a sequential approach to identify the most parsimonious model for each
species rather than run all possible model combinations [63]. Firstly, we held the occupancy
probability constant (ψ(.)) and fit four a priori candidate models for detection probability:
null model, elevation only, linear and quadratic effect of Julian day, and full model (Table 1).
Then, we held the top-ranked detection model (ρ(TM)) and modeled a set of a priori
candidate models for the occupancy probability of species (Table 1). Since the availability
of the spatial data containing the predictor variables varied across islands, the number of
candidate models for the species also varied depending on the island on which the species
was detected (Table 1). The parameters of both detection and occupancy were modeled
as a logit function [55,59]. We normalized all continuous explanatory variables to have a
mean of 0 and a standard deviation of 1 [61].

Table 1. A priori candidate models fitted in the occupancy analyses for the main island of Puerto
Rico and Culebra, Mona, and Vieques. TM = top model; precip = precipitation (cm); PA = proportion
of protected area; canopy = proportion of canopy cover; date = Julian date (we considered Julian day
1 as the first day of a device starting to record in the field, which was 1 March 2021); date2 = square
of Julian date; fa2 = proportion of forest cover aged between 32 and 54 years; fa3 = proportion of
forest cover older than 54 years; dist_road = distance from roads (m); built_up = built-up proportion;
RSR = restricted spatial regression. We considered a distance threshold of 1000 m for two sites to be
considered a neighborhood in the spatial occupancy model.

Detection Models Occupancy Models

Main Island of Puerto Rico

ψ(.); ρ(.) ψ(elevation + precip); ρ(TM)
ψ(.); ρ(elevation) ψ(PA + canopy); ρ(TM)
ψ(.); ρ

(
date + date2) ψ(FA2 + FA3); ρ(TM)

ψ(.); ρ
(
elevation + date + date2) ψ(dist_road + built_up); ρ(TM)

ψ( f ull); ρ(TM)
ψ(TM + RSR–1000); ρ(TM)

Mona Island

ψ(.); ρ(.) ψ(elevation); ρ(TM)
ψ(.); ρ(elevation) ψ(canopy); ρ(TM)
ψ(.); ρ

(
date + date2) ψ(elevation + canopy); ρ(TM)

ψ(.); ρ
(
elevation + date + date2) ψ(TM + RSR–1000); ρ(TM)

Culebra and Vieques Islands

ψ(.); ρ(.) ψ(elevation + precip); ρ(TM)
ψ(.); ρ(elevation) ψ(PA + canopy); ρ(TM)
ψ(.); ρ

(
date + date2) ψ(dist_road); ρ(TM)

ψ(.); ρ
(
elevation + date + date2) ψ(elevation + precip + PA + canopy + dist_road); ρ(TM)

ψ(TM + RSR–1000); ρ(TM)

We did not acquire precipitation, fa2, or fa3 layers for Mona Island; the entire island is protected. Therefore, the
occupancy model for this island considered only elevation and canopy cover as predictor variables in the competing
models. There was minimal built-up class variation on Culebra and Vieques and fa2 and fa3 layers were not available
for these islands, so we were not able to include these variables as predictors of the occupancy model.

Even while expecting that 200 m was a sufficient distance to guarantee sampling-site
independence, we made the decision to run a spatial occupancy model to account for
spatial autocorrelation in the occupancy probability, since including spatial autocorrelation
in occupancy modeling can improve species prediction and distribution maps [56,59,64].
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We modeled the spatial occupancy model using restricted spatial regression (RSR) that
dealt with the random effect uncorrelated with the fixed covariates [64]. We considered
that two sites were neighbors if the distance between them was equal to or below 1000 m
(we set the threshold at 1000). RSR has been shown to be a good choice for modeling
occurrences while accounting for imperfect detection and spatial autocorrelation [59,64].
Due to the long time required to run models with spatial autocorrelation, we chose only
to fit RSR with the top-ranked nonspatial occupancy model to determine if incorporating
spatial autocorrelation improved the model fit.

We compared the models using Bayesian leave-one-out cross-validation (LOO) [59,65].
The log pointwise predictive density (elpd) was calculated for each model using the modSel
function of the “ubms” package [59]; we ranked elpd from highest to lowest since the model
with the largest elpd value corresponded to the model with the best accuracy [65]. Additionally,
we presented the difference between the elpd of models and the elpd of the top-ranked model
(∆elpd) along with standard error of elpd (se of ∆elpd). We checked the chains’ convergence
of all parameters of the top-ranked model by assessing the effective sample size (n_eff) and
R-hat statistic and by visually inspecting traceplots [59]. Furthermore, we assessed the model
fit through residual plots for the state and observation variables.

Based on previous studies, we assumed that the IAS would benefit from high levels
of human disturbance and present higher occupancy probabilities in places characterized
by more intense human activities [45,66]. Therefore, we expected that invasive species
occupancy would be negatively related to elevation because human activities are more
common and intense in low-elevation areas (e.g., human settlement and agriculture) in
Puerto Rico. A higher proportion of protected areas and canopy cover would be inhibitors
of invasive species occurrence by representing more preserved environments [66–68]. Since
the anuran IAS considered in our study do not present striking adaptations to grow and
reproduce in conditions with a low availability of water, we predicted a positive relationship
between these species’ occupancies and the mean annual precipitation. Additionally, we
expect that a proximity to roads and a high proportion of built-up area in a location would
positively influence the occupancy of IAS [66].

3. Results

We based our findings on 1,773,287 1-min recordings from 8.9 TB of soundscape data.
Our manual inspection of recordings together with PM analysis generated an overall list
of 95 species detected throughout the Puerto Rican archipelago: 74 birds, 18 frogs, and 3
mammals (Appendix C). We found 92 species on the main island of Puerto Rico, followed
by Vieques, Culebra, and Mona with 31, 25, and 19 species, respectively (Appendix C).
Overall, 16 species were considered invasive species (Appendix C) and are potential threats
to wildlife in the Puerto Rico: 10 birds (Icterus, Molothrus bonariensis, Gallus gallus domesticus,
Brotogeris versicolurus, Passer domesticus, Amazona amazonica, Amazona viridigenalis, Bubulcus
ibis, Myiopsitta monachus, and Streptopelia decaocto), 3 frogs (Lithobates catesbeianus, Osteopilus
septentrionalis, and Rhinella marina), and 3 mammals (Canis lupus familiaris, Capra hircus, and
Equus ferus caballus).

None of the invasive species were detected on Desecheo Island; therefore, this island
was not used in the occupancy model. The wild goat (C. hircus) was detected at 21 sites, all
of which were on Mona Island. Feral horse (E. ferus caballus) was detected at 11 sites on
Vieques and two sites on the mainland; therefore, the occupancy model was performed
only for Vieques. Chickens (G. gallus domesticus), Venezuelan troupial (I. icterus), shiny
cowbird (M. bonariensis), and domestic dog (C. lupus familiaris) were the most widespread
species, detected at 165, 131, 78, and 76 sites, respectively. Chickens (the only IAS for
which the occupancy model was fitted for more than one island) were detected at 134 sites
on the main island, 27 sites on Culebra, 3 sites on Vieques, and 1 site on Mona. Five
bird species (A. amazonica, A. viridigenalis, B. ibis, M. monachus, and S. decaocto) had low
raw detections and were detected at few sites (less than 10 sites); thus, we did not run
occupancy models or a call activity pattern analysis for them. The other IAS detected
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were found at between 12 and 24 sites (American bullfrog (L. catesbeianus), house sparrow
(P. domesticus), Cuban tree frog (O. septentrionalis), cane toad (R. marina), and white-winged
parakeet (B. versicolurus)).

The number of calls recorded and the peak of activity varied greatly between species
(Figure 2). The group with the highest number of detections (i.e., best-scored ROI per site
and day) was birds (e.g., chicken had more than 750 raw detections, Venezuelan troupial had
450 detections, and shiny cowbird had 194 detections), followed by mammals (ranging from
23 to 148 detections) and frogs (ranging from 53 to 75 detections). The bird species had a high
activity peak early in the morning (between 5 a.m. and 7 a.m.). The peak activity of frog
species varied between 1 a.m. and 5 a.m. depending on the species. The American bullfrog
had a peak in calling activity at dawn (about 6 a.m.); the cane toad showed a peak at 2 a.m.;
and the Cuban tree frog showed two peaks of activity, with the strongest at 3 a.m. and a
second less-intense peak at dusk. Mammals did not show a clear calling activity peak.

Figure 2. Polar plot representing the frequency of call activity of eleven invasive alien species across
Puerto Rico from March to June 2021. The numbers around the polar plots are hours of day and
the numbers to the left of the panel represent the gray rings in the plot, which are frequency of call
activity. Top left: calling activity patterns of bird species (we used only the three birds with the
highest number of detections because they represented 91% of bird detections). Top right: calling
activity patterns of frog species. Bottom left: calling activity patterns of mammal species. Bottom
right: Calling activity patterns by group. We used the three first letters of the genus and a specific
epithet for species in the legends (e.g., Gallus gallus domesticus = GALGAL). We emphasize that the
polar plots for birds and mammals were biased to the diurnal period while that for frogs was biased
to the nocturnal period.

We fit occupancy models for 11 IAS (all 3 frog and mammal IAS and 5 species of
birds). In general, the occupancy models presented good convergence and fit well for
the species when checked through the inspection of traceplots (Appendix D) and using
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R-hat statistic values <1.1 (Appendix E). However, the “top-ranked” spatial occupancy
model of the Cuban tree frog did not show good convergence and efficiency diagnostics for
Markov chains (ψ(fa2 + fa3 + RSR-1000); ρ(elevation + date + date2)) even after running
the model with 200,000 interactions; thus, we used the second-best model for the species
to show the parameter estimates (Table 2; Appendix E). In general, the probability of
detecting IAS throughout Puerto Rico was medium to low and varied widely, ranging from
0.002 to 0.63 (Appendix E); most species were below 0.3. The best model that explained
the detection probability of all species (except for feral horse, white-winged parakeet, and
the two domesticated species) included the three predictor variables: elevation, Julian
date linear, and Julian date quadratic (Appendix E). In general, the Julian date positively
influenced a species’ mean detection probability. The relationship between elevation and
the detection probability varied depending on the species.

Table 2. Three top-ranked models for eleven alien invasive species in Puerto Rico. ELPD = expected
log pointwise predictive density; ∆ELPD = difference of ELPD relative to the top-ranked model;
se of ∆elpd = standard error of elpd; RSR = restricted spatial regression (threshold = 1000 m);
PA = proportion of protected area; fa2 = proportion of forest cover aged between 32 and 54 years;
fa3 = proportion of forest cover aged older than 54 years; dist_road = distance from roads (m);
built_up = built-up proportion; date = Julian date (we considered Julian day 1 as the first day of a
device starting to record in the field, which was 1 March 2021); date2 = square of Julian date.

Species Model elpd Nº of
Parameters ∆elpd Se of

∆elpd

Brotogeris versicolurus
ψ(elevation + precip); ρ(elevation) −199.17 8.07 0.00 0.00
ψ(elevation + precip + RSR-1000); ρ(elevation) −199.65 9.73 −0.49 0.45
ψ(dist_road + built_up); ρ(elevation) −199.93 8.07 −0.76 1.82

Gallus gallus
domesticus

ψ(full + spatial1000); ρ(elevation) −1256.53 24.44 0.00 0.00
ψ(full); ρ(elevation) −1259.28 18.40 −2.75 2.94
ψ(PA + canopy); ρ(elevation) −1262.57 11.82 −6.04 5.09

Icterus icterus

ψ(elevation + precip + RSR-1000);
ρ(elevation + date + date2) −981.56 27.85 0.00 0.00

ψ(elevation + precip); ρ(elevation + date + date2) −993.23 17.99 −11.67 4.24
ψ(full); ρ(elevation + date + date2) −993.72 25.31 −12.17 6.08

Molothrus bonariensis
ψ(.); ρ(elevation + date + date2) −634.59 7.55 0.00 0.00
ψ(elevation + precip); ρ(elevation + date + date2) −635.00 9.67 −0.40 2.01
ψ(fa2 + fa3); ρ(elevation + date + date2) −635.21 9.95 −0.62 1.84

Passer domesticus
ψ(.); ρ(elevation + date + date2) −105.15 8.34 0.00 0.00
ψ(PA + canopy); ρ(elevation + date + date2) −105.92 10.42 −0.77 1.12
ψ(dist_road + built_up); ρ(elevation + date + date2) −106.18 9.58 −1.03 0.91

Lithobates catesbeianus
ψ(full); ρ(elevation + date + date2) −115.90 14.02 0.00 0.00
ψ(full + RSR-1000); ρ(elevation + date + date2) −116.16 14.40 −0.25 0.25
ψ(fa2 + fa3); ρ(elevation + date + date2) −119.42 9.56 −3.52 2.95

Osteopilus
septentrionalis

ψ(fa2 + fa3 + RSR-1000); ρ(elevation + date + date2) −211.25 17.82 0.00 0.00
ψ(fa2 + fa3); ρ(elevation + date + date2) −213.20 15.63 −1.94 1.39
ψ(dist_road + built-up); ρ(elevation + date + date2) −214.15 15.48 −2.89 3.21

Rhinella marina
ψ(.); ρ(elevation + date + date2) −214.99 6.43 0.00 0.00
ψ(elevation + precip); ρ(elevation + date + date2) −216.09 9.30 −1.10 1.76
ψ(PA + canopy); ρ(elevation + date + date2) −216.24 8.64 −1.25 1.51

Canis lupus familiaris
ψ(full); ρ(.) −556.65 11.26 0.00 0.00
ψ(full + RSR-1000); ρ(.) −557.57 12.53 −0.92 0.37
ψ(fa2 + fa3); ρ(.) −559.83 5.03 −3.17 4.08

Capra hircus
ψ(.); ρ(elevation + date + date2) −107.63 5.81 0.00 0.00
ψ(canopy); ρ(elevation + date + date2) −108.32 6.78 −0.68 0.81
ψ(canopy + spatial1000); ρ(elevation + date + date2) −108.46 7.00 −0.83 0.77

Equus ferus caballus
ψ(elevation + precip); ρ(.) −74.76 3.96 0.00 0.00
ψ(.); ρ(.) −75.32 1.38 −0.56 2.64
ψ(PA + canopy); ρ(.) −75.68 5.02 −0.92 2.67
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Occupancy probability ranged from 0.002 (American bullfrog) to 0.67 (wild goat on
Mona). The three amphibian IAS showed a very low occupancy probability (lower than
0.08). The results showed that elevation and precipitation were the variables that best
explained the occupancy probability of IAS in Puerto Rico and appeared in the top-model
of six species, followed by proportion of forest cover aged between 32–54 years (fa2) and
forest cover older than 54 years (fa3; Table 2). The best model selected for four of the species
(shiny cowbird, cane toad, wild goat, and house sparrow) was the null model containing
only the intercept.

We created maps of model-predicted species occupancy probability across Puerto
Rico and outlying islands for the 11 invasive species with occupancy models (Figure 3;
Appendix F). Here, we exemplify the predicted occupancy of the Venezuelan troupial
(see Appendix F for the occupancy prediction maps for the other species). We chose the
Venezuelan troupial as an example because it was the species that showed the top-ranked
model with the highest difference between the other a priori candidate models, which
suggested more confidence in the top-ranked model (higher ∆ELPD between the top-
ranked and second-best models). We limited the forecast map to the islands where the
occupancy model was fitted for each species to diminish spurious predictions because the
gradients between islands were different. The point-estimates occupancy probability map
for the Venezuelan troupial in Puerto Rico in 2021 under the top-ranked occupancy model
suggested a high probability of the species occurring in regions close to the coast, mainly in
the south and southwest of the main island (Figure 3).

Figure 3. Maps of model-forecasted (mean expected occupancy probability) and the model prediction
uncertainty (standard deviation) for Venezuelan troupial (Icterus icterus) across the main island of
Puerto Rico (top-ranked model used in prediction was ψ(elevation + precip + spatial1000); ρ(elevation
+ date + date2)). The black circles represent the sampling sites where the species was detected and
the white circles represent sampling sites without detections.

We developed a website (https://bio.rfcx.org/puerto-rico-island-wide (accessed on
14 June 2022)) with the purpose of data sharing and summarizing the results of the study for
the use of government agencies (e.g., Departamento de Recursos Naturales y Ambientales
(DRNA), U.S. Fish and Wildlife Service) and the general public (e.g., educators and bird-
watchers). The website contains information on the vocalizations, distribution, and ecology
of the species detected at the 841 sampling sites in Puerto Rico during the project, including
a searchable database with detection data, presence/absence maps, and occupancy maps
for all birds, mammals, and anurans recorded (Appendix G). All maps, plots, and data used
to generate the figures can be freely downloaded. The data and figures on the website are
continuously updated according to new acoustic data as they become available.

4. Discussion

The acquisition of population baseline data for native and invasive species is a fun-
damental step in monitoring and managing wildlife in dynamic land cover and climate
change scenarios. However, detecting and monitoring animal species at large spatiotem-
poral scales, especially in the tropics, remains a significant challenge. In this study, we
presented an end-to-end acoustic monitoring pipeline that was able to detect several sonif-

https://bio.rfcx.org/puerto-rico-island-wide
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erous native, endemic, threatened, and invasive species; access their current population
status; and summarize and display results in a user-friendly platform.

Converging with our expectations, the occupancy probabilities of IAS were generally
lower in environments with less human disturbance. For example, the occupancy prob-
abilities of some IAS were negatively associated with elevation (five species) and forest
older than 54 years (four species). These findings suggested that IAS may be favored by
human activities because species occupancies were higher in new forest areas that were
expected to be more disturbed and human activities are more common and intense at low
elevations in Puerto Rico. Our findings were in agreement with an overall correlation
between anthropogenically disturbed habitats and invasive species of plants, invertebrates,
fishes, birds, frogs, and mammals [45,66,67,69]. Our results revealed that elevation and
precipitation were the most important variables for explaining the distribution of most
soniferous IAS (the best model for 6 of 11 IAS contained elevation and precipitation as
explanatory variables), followed by proportion of forest cover aged between 32–54 years
(fa2) and forest cover older than 54 years (fa3).

Free-range pets and domesticated species can also have a negative impact on native
species, especially in island ecosystems [68,70]. Although the chicken, dog, wild goat, and
feral horse are domesticated species, we decided to include them in the acoustic analysis
because they can impact native wildlife directly (e.g., predation) and indirectly (e.g., spreading
diseases and impacting on vegetation) [71]; moreover, some feral populations exist in the
archipelago. Some studies have shown that domesticated species (such as dogs) can occur
widely within protected areas and may represent a threat to native species [72,73]. In contrast,
our occupancy models suggested a lower probability of dogs and chickens occupying the
protected areas on the main island of Puerto Rico (Appendices E and F), indicating that
protected areas can offer some level of protection against domesticated species.

Our knowledge about the main drivers of IAS distribution is still limited, which was
reflected in the model-selection process. The null model was the top-ranked model of four
species, indicating that the explanatory variables utilized in the models were not good
predictors of spatial variation of these species. The anuran IAS showed a low probability
of occupancy (<0.07) in the landscape of the main island of Puerto Rico, which may have
reflected the low natural availability of aquatic environments in the landscape (i.e., natural
low occupancy probability of species) or may have been a result of our sampling design,
which was not focused on lentic systems. The three frog IAS had call activity associated
with ponds; a new sampling process could easily be designed to include more lentic
systems, which would increase the chance of finding frogs with an aquatic life stage.

Estimating the probability of detection and occupancy of IAS can facilitate more
efficient management actions because the estimations of parameters related to species
occurrence on the landscape will be unbiased and provide an uncertainty measure [74,75].
In our study, most IAS showed a higher probability of detection at the end of the sampling
period (late May and early June 2021), suggesting that most species were more vocal and
thus more easily detected by PAM at the end of the early high rainfall season. These
findings were congruent with breeding activity peaks recorded for terrestrial birds in
Puerto Rico [52]. This positive relationship was restricted to the temporal range of the
study (March–June) because a year-round sampling design can have more variability and
alter the relationship between the Julian day and detection probability.

Despite the large volume of data analyzed through PM, five birds were detected at
only a few sites (<10), and we did not run occupancy models for them due to the small
number of detections (see Appendix H for detection locations). This low detection rate
could correspond to a “real” low occurrence/density of the species in the study area or
might have resulted from the species vocalizing sparingly. Even with a low number of
detections, knowing where these species were found can present a valuable opportunity to
prioritize surveying of locations closely similar in geographical and environmental space
where the species were detected. Although working with few detection points (or even
one detection point) is challenging and has several limitations, it can be useful in directing
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resources and field survey efforts to find undetected populations of a “rare” species in a
region [76] and monitor possible early-stage expansions.

The detection/nondetection of species is a baseline outcome of audio data analysis
that can be used in various ecological analyses that make use of this type of data [28,36,38].
For example, the diel and annual activities of species are fundamental aspects of their life
history, and the knowledge of it can be used along with artificial advertisement calls to trap
and manage IAS [35,77,78]. We found that diel call activity of the species groups greatly
varied, suggesting that monitoring and management programs should focus on specific
periods of the day to increase their chance to detect and capture the IAS.

Our end-to-end pipeline provided an effective method for detecting several native,
endemic, threatened, and IAS (16 species) in Puerto Rico, including birds, frogs, and mammals
(95 species were detected overall). The manual validation of best ROI per site per day of PM
analysis detected around 2000 call events of IAS. We took less than two days to validate the PM
of the 16 IAS following our workflow. The fast analysis of this vast data set (1,773,287 1-min
recordings) was only possible through a user-friendly web-based platform with annotation
functionality and the creation of user-defined playlists that allowed us to combine manual
annotations with PM analysis and validations by experts (see Figure 1). While users can
take advantage of a variety of available software platforms or develop their own code to
analyze PAM data, multifunctional tools that have user-friendly interfaces are necessary to
speed up and increase usage of PAM by a wider audience with varying skill sets [79]. Free
user-friendly interfaces may be an effective way to implement early-stage detection and assist
in the long-term monitoring of IAS populations by conservationists, wildlife managers, and
decision makers. Cloud-based platforms such as those used in this project also can facilitate
the inclusion of citizen scientists and other experts to improve and speed up the validation of
data from the target groups.

Detection and monitoring of IAS is of increasing importance for informing conser-
vation management. Tools using an intuitive GUI can improve data exploration and
narrow communication and knowledge gaps between the scientific community and other
groups [80]. Here, we introduced a webpage as part of the last step of the Arbimon ecosys-
tem, filling a critical need for a practical and intuitive way to summarize, display, and
share ecological results from acoustic-monitoring processes so that the data generated can
be easily used and shared by and with environmental agencies. This web-based tool was
designed to display biodiversity indicators such as number of detected species, activity
patterns, and species occupancy over maps and plots that can support species management.

Previous studies have shown the benefit of combining acoustic monitoring with oc-
cupancy modeling to understand native species distribution [38,51,81–83]; in accordance
with these findings, our study reinforced that this approach can be useful to understand
the distribution of soniferous IAS as well. Additionally, our approach generated detec-
tion/nondetection data from species of greatest conservation need beyond IAS that can be
used in more complex models (e.g., two-species or multispecies models) to assess relation-
ships and interactions between IAS and SGCN, which can help researchers to understand
the potential effects of IAS on native species detection and occupancy probabilities [84–86].
PAM has been shown to be very useful for investigating IAS, and there remain a number
of avenues for expansion. Other studies have demonstrated the usefulness of PAM as a
consistent tool to examine sounds in nature, involving a range of topics [27] such as moni-
toring native wildlife species [49,82,87], disturbance from human noise [88,89], agricultural
pests [90], ecosystem functions [91], disease-transmitting mosquitoes [92], gunshots [93,94],
and illegal timber harvests [95]. Although automated techniques are emerging to deal
with the massive amount of acoustic data that are intrinsic to this monitoring tool, many
of these methods still require manual examination of sounds for training and validating
models [47,96–98]. Therefore, manually processing a large amount of recorded data con-
tinues to be one of the biggest challenges of PAM, and forthcoming studies may benefit
from the pipeline we introduced. Furthermore, the usefulness of passive acoustic moni-
toring in combating invasive alien species should be boosted if used in actions organized
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and interconnected globally alongside other emerging tools such as environmental DNA,
GIS analysis, camera traps, and citizen science [29,33,99]. We also emphasize the need to
develop a long-term real-time alert system using artificial intelligence models to keep a
vigilant eye on the early detection of alien invasive species, which can be easily driven
through passive acoustic monitoring.

5. Conclusions

In summary, we showed that passive acoustic monitoring is a flexible, powerful,
and practical tool for generating baseline population data for soniferous native and alien
invasive species. The end-to-end pipeline that we presented, which can quickly provide
data on the presence/absence of species, was used to evaluate the spatial and temporal
distribution of IAS. Our results led to the conclusion that the occupancy probabilities
of the soniferous IAS were primarily related to areas with the highest human activities.
Finally, we present the last step of the Arbimon ecosystem which contains webpages that
provide decision makers and wildlife managers with results acquired through PAM in a
user-friendly way.
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Appendix A

Figure A1. Map of the sampling sites across Puerto Rico from March to July 2021. For each sampling
site, an AudioMoth device was deployed. The light-green polygons represent protected areas.

https://bio.rfcx.org/puerto-rico-island-wide
https://arbimon.rfcx.org/project/puerto-rico-island-wide/dashboard
https://arbimon.rfcx.org/project/puerto-rico-island-wide/dashboard
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Figure A2. The AudioMoth device, an open acoustic, lightweight, and affordable autonomous
recording unit used to monitor the soundscape in Puerto Rico during 2021. The device hardware,
which included a lithium-ion rechargeable battery (blue packet in the photo), was placed in a
protective waterproof plastic case with a silica packet and then deployed in a tree/vine/shrub at a
1.5 m height.

Appendix B

Distribution of the eight predictor variables for the occupancy models of invasive
species in Puerto Rico.

Figure A3. Maps of environmental variables across the main island of Puerto Rico. Top left: elevation
(range: 0 to 1325 m); top right: mean annual precipitation (range: 71 to 433 cm); bottom left: distance
of nearest road (range: 0.1 to 1864 m); bottom right: built-up proportion (range: 0 to 84%).



Remote Sens. 2022, 14, 4565 16 of 37

Figure A4. Maps of environmental variables across the main island of Puerto Rico. Top left: propor-
tion of protected area (range: 0 to 100%); top right: proportion of canopy cover (range: 14 to 96%);
bottom left: proportion of forest age between 34–54 years (range: 0 to 94%); bottom right: map of
proportion of forest cover older than 54 years (range: 0 to 100%).

Figure A5. Maps of environmental variables of Mona Island, Puerto Rico. Left: elevation; right:
proportion of canopy cover.
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Figure A6. Maps of environmental variables across Vieques and Culebra Islands, Puerto Rico. Top
left: elevation; top center: mean annual precipitation; top right: distance of the nearest road; bottom
left: proportion of protected area; bottom center: proportion of canopy cover.

Appendix C

Table A1. Table of 95 species detected (74 birds, 18 frogs, and 3 mammals) through passive acoustic
monitoring (combination of manual annotations and Arbimon Pattern Matching analysis) across the
841 sampling sites in Puerto Rico. PM = Pattern Matching, indicating the species with PM analysis;
IUCN = International Union for Conservation of Nature; CR = critically endangered; EN = endangered;
VU = vulnerable; NT = near threatened; LC = least concern; PR = Puerto Rico main island;
CU = Culebra; MO = Mona; VI = Vieques; National Red List = PRSWAP 2018; Occ = naive occu-
pancy (proportion of sites where the species was detected); Det = detection frequency.

Species Island Endemic Exotic PM IUCN National
Red List Occ Det

BIRDS
Gallus gallus
domesticus PR/MO/CU/VI Yes Yes 0.048 0.006

Patagioenas
leucocephala PR/MO/VI Yes Yes NT VU 0.071 0.025

Patagioenas
squamosa PR/VI Yes LC 0.334 0.061

Geotrygon montana PR Yes LC DD 0.011 0.003
Columbina passerina PR/MO/CU/VI LC 0.054 0.005
Streptopelia decaocto PR/MO/CU Yes Yes LC 0.001 0.000
Zenaida aurita PR/MO/CU/VI LC 0.130 0.012
Zenaida asiatica PR/MO/CU/VI LC 0.162 0.021
Crotophaga ani PR/MO/CU/VI Yes LC 0.182 0.018
Coccyzus vieilloti PR Yes Yes LC LR 0.242 0.044
Coccyzus minor PR/MO/VI LC 0.070 0.004
Chordeiles
gundlachii PR/VI Yes LC DD 0.095 0.029

Antrostomus
noctitherus PR Yes Yes EN EN 0.083 0.038
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Table A1. Cont.

Species Island Endemic Exotic PM IUCN National
Red List Occ Det

Bubulcus ibis PR Yes Yes LC 0.001 0.000
Butorides virescens PR/CU LC 0.017 0.001
Aramus guarauna PR Yes LC DD 0.008 0.001
Pluvialis squatarola PR/VI Yes LC DD 0.038 0.005
Actitis macularius PR/VI LC 0.006 0.000
Tringa melanoleuca PR LC 0.001 0.000
Tringa semipalmata PR LC 0.001 0.000
Charadrius vociferus PR/CU/VI LC 0.013 0.001
Himantopus
mexicanus PR LC 0.003 0.000

Fulica caribaea PR LC VU 0.001 0.000
Gallinula galeata PR LC 0.014 0.001
Porphyrio martinica PR LC 0.002 0.000
Rallus crepitans PR/CU LC 0.019 0.002
Thalasseus maximus PR LC 0.001 0.000
Larus atricilla PR/MO LC 0.006 0.000
Sula sula MO LC 0.001 0.000
Buteo platypterus
brunnescens PR/CU/VI Yes Yes LC CR 0.018 0.004

Buteo jamaicensis PR/CU/VI Yes LC 0.138 0.008
Accipiter striatus
venator PR Yes Yes LC CR 0.001 0.000

Asio flammeus PR/CU LC 0.002 0.000
Gymnasio nudipes PR Yes Yes LC 0.323 0.090
Megaceryle alcyon PR/CU/VI LC 0.010 0.001
Falco sparverius PR/MO/CU LC 0.030 0.001
Todus mexicanus PR Yes Yes LC 0.291 0.036
Melanerpes
portoricensis PR/VI Yes Yes LC LR 0.520 0.108

Brotogeris
versicolurus PR/VI Yes Yes LC 0.014 0.001

Myiopsitta
monachus PR Yes Yes LC 0.013 0.001

Amazona amazonica PR Yes Yes LC 0.001 0.000
Amazona
viridigenalis PR Yes Yes EN 0.001 0.000

Amazona vittata PR Yes Yes CR CR 0.008 0.009
Elaenia martinica PR/CU/VI LC 0.058 0.006
Contopus latirostris
blancoi PR Yes Yes LC 0.017 0.002

Myiarchus
antillarum PR/VI Yes Yes LC 0.424 0.066

Tyrannus
caudifasciatus PR/VI LC 0.087 0.005

Tyrannus
dominicensis PR/MO/CU/VI LC 0.276 0.026

Vireo altiloquus PR/MO/VI Yes LC DD 0.392 0.127
Vireo latimeri PR Yes Yes LC VU 0.130 0.049
Progne dominicensis PR Yes LC DD 0.015 0.002
Margarops fuscatus PR/MO/CU/VI Yes LC 0.372 0.213
Turdus plumbeus PR Yes LC 0.181 0.027
Mimus polyglottos PR/MO/CU LC 0.059 0.008
Nesospingus
speculiferus PR Yes Yes LC DD 0.060 0.017

Spindalis
portoricensis PR Yes Yes LC LR 0.171 0.030

Icterus portoricensis PR Yes Yes LC DD 0.057 0.005
Icterus icterus PR Yes Yes LC 0.164 0.065
Agelaius xanthomus PR/MO Yes Yes EN EN 0.010 0.003
Molothrus
bonariensis PR/VI Yes Yes LC 0.101 0.014

Quiscalus niger PR/VI LC 0.062 0.004
Setophaga americana PR LC 0.008 0.001



Remote Sens. 2022, 14, 4565 19 of 37

Table A1. Cont.

Species Island Endemic Exotic PM IUCN National
Red List Occ Det

Setophaga angelae PR Yes Yes EN EN 0.040 0.029
Setophaga petechia PR/CU/VI Yes LC VU 0.037 0.083
Setophaga discolor PR Yes LC DD 0.024 0.003
Setophaga
caerulescens PR Yes LC 0.005 0.001

Setophaga adelaidae PR/VI Yes Yes LC LR 0.437 0.140
Parkesia
noveboracensis PR LC 0.002 0.000

Coereba flaveola PR/CU/VI Yes LC 0.802 0.229
Melopyrrha
portoricensis PR Yes Yes LC LR 0.277 0.091

Melanospiza bicolor PR LC 0.050 0.004
Tiaris olivaceus PR/MO LC 0.009 0.000
Passer domesticus PR/CU Yes Yes LC 0.006 0.000
Euphonia musica PR LC 0.002 0.000

FROGS
Eleutherodactylus
antillensis PR/CU/VI Yes LC 0.366 0.107

Eleutherodactylus
brittoni PR Yes LC DD 0.122 0.083

Eleutherodactylus
cochranae PR/CU/VI Yes LC 0.132 0.083

Eleutherodactylus
cooki PR Yes Yes EN VU 0.002 0.009

Eleutherodactylus
coqui PR Yes LC 0.369 0.152

Eleutherodactylus
gryllus PR Yes Yes CR 0.005 0.006

Eleutherodactylus
hedricki PR Yes Yes EN 0.013 0.005

Eleutherodactylus
juanariveroi PR Yes Yes CR CR 0.001 0.002

Eleutherodactylus
locustus PR Yes Yes EN VU 0.005 0.004

Eleutherodactylus
monensis MO Yes Yes VU 0.003 0.002

Eleutherodactylus
portoricensis PR Yes Yes EN VU 0.017 0.059

Eleutherodactylus
richmondi PR Yes EN 0.001 0.002

Eleutherodactylus
unicolor PR Yes Yes CR 0.009 0.023

Eleutherodactylus
wightmanae PR Yes Yes EN 0.047 0.039

Rhinella marina PR/CU Yes Yes LC 0.029 0.017
Osteopilus
septentrionalis PR Yes Yes LC 0.026 0.007

Leptodactylus
albilabris PR Yes LC 0.101 0.031

Lithobates
catesbeianus PR Yes Yes LC 0.019 0.017

MAMMALS
Canis lupus
familiaris PR/CU Yes Yes

Capra hircus MO Yes Yes 0.024 0.003
Equus ferus caballus PR/VI Yes Yes 0.015 0.002

Appendix D

We accessed convergence and mixing across Markov chains for each parameter
through visual inspection of traceplots from the best occupancy model of 11 invasive
species in Puerto Rico. We used three Markov chains for all the models. When the Markov
chains (characterized by different colors in the figures below) showed a random scatter
around a mean value, this suggested a good mixing and convergence. The x-axis represents
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the number of iterations for each chain in the order in which they are drawn. The maximum
number of interactions of the models varied (so the x-axis varied as well) because some
models need more iterations in order for the Markov chains to achieve convergence of the
parameters. The y-axis represents the estimated values of the parameter.

Figure A7. Traceplots from the best spatial occupancy model of Venezuelan troupial
(Icterus icterus) in Puerto Rico: (ψ(intercept + elevation + precipitation + RSR-1000);
ρ(intercept + elevation + date + date2)). Note: alt = elevation; precip = mean annual precipitation;
date = Julian date (we considered Julian day 1 as the first day of a device starting to record in the
field, which was 1 March 2021); date2 = square of Julian date; RSR = restricted spatial regression
(threshold = 1000 m).

Figure A8. Traceplots from the best occupancy model (ψ(intercept + elevation + precipitation);
ρ(intercept + elevation)) of white-winged parakeet (Brotogeris versicolurus) in Puerto Rico. Note:
alt = elevation; precip = mean annual precipitation.
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Figure A10. Traceplots from the best occupancy model (ψ(intercept);  𝜌(intercept + elevation + date 
+ date2)) of shiny cowbird (Molothrus bonariensis) in Puerto Rico. Note: alt = elevation; date = Julian 

Figure A9. Traceplots from the best occupancy model of chicken (Gallus gallus domesticus) in Puerto
Rico: (ψ(intercept + elevation + precipitation + protected area + canopy cover + fa2 + fa3 + distance
of road + built-up + RSR-1000); ρ(intercept + elevation)). Note: alt = elevation; precip = mean
annual precipitation; protArea = proportion of protected area; canopy = proportion of canopy cover;
fa2 = proportion of forest cover aged between 32 and 54 years; fa3 = proportion of forest cover
aged 55 years and older; dis_road = minimum distance from road; builtup = built-up proportion;
RSR = restricted spatial regression (threshold = 1000 m).

Figure A10. Traceplots from the best occupancy model (ψ(intercept); ρ(intercept + elevation + date +
date2)) of shiny cowbird (Molothrus bonariensis) in Puerto Rico. Note: alt = elevation; date = Julian
date (we considered Julian day 1 as the first day of a device starting to record in the field, which was
1 March 2021); date2 = square of Julian date.
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Figure A11. Traceplots from the best occupancy model (ψ(intercept); ρ(intercept + elevation + Julian
day + Julian day2)) of house sparrow (Passer domesticus) in Puerto Rico. Note: alt = elevation;
date = Julian date (we considered Julian day 1 as the first day of a device starting to record in the
field, which was 1 March 2021); date2 = square of Julian date.

Figure A12. Traceplots from the best occupancy model of American bullfrog (Lithobates catesbeianus)
in Puerto Rico: (ψ(intercept + elevation + precipitation + protected area + canopy cover + fa2 +
fa3 + distance of road + built up); ρ(intercept + elevation + date + date2)). Note: alt = elevation;
precip = mean annual precipitation; protArea = proportion of protected area; canopy = proportion
of canopy cover; fa2 = proportion of forest cover aged between 32 and 54 years; fa3 = proportion of
forest cover aged 55 years and older; dis_road = minimum distance from road; builtup = built-up
proportion; date = Julian date (we considered Julian day 1 as the first day of a device starting to
record in the field, which was 1 March 2021); date2 = square of Julian date.
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Figure A13. Traceplots from the second-best occupancy model (the top-ranked model did not
converge well) of Cuban tree frog (Osteopilus septentrionalis) in Puerto Rico: (ψ(intercept + fa2 + fa3);
ρ(intercept + elevation + date + date2)). Note: alt = elevation; fa2 = proportion of forest cover aged
between 32 and 54 years; fa3 = proportion of forest cover aged 55 years and older; date = Julian date
(we considered Julian day 1 as the first day of a device starting to record in the field, which was
1 March 2021); date2 = square of Julian date.

Figure A14. Traceplots from the best occupancy model of cane toad (Rhinella marina) in Puerto Rico:
(ψ(intercept); ρ(intercept + elevation + date + date2)). Note: alt = elevation; date = Julian date (we
considered Julian day 1 as the first day of a device starting to record in the field, which was 1 March
2021); date2 = square of Julian date.
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Figure A15. Traceplots from the best occupancy model of domestic dog (Canis lupus familiaris)
in Puerto Rico: (ψ(intercept + elevation + precipitation + protected area + canopy cover + fa2 +
fa3 + distance of road + built up); ρ(intercept + elevation)). Note: alt = elevation; precip = mean
annual precipitation; protArea = proportion of protected area; canopy = proportion of canopy cover;
fa2 = proportion of forest cover aged between 32 and 54 years; fa3 = proportion of forest cover aged
55 years and older; dis_road = minimum distance from road; builtup = built-up proportion.

Figure A16. Traceplots from the best occupancy model of wild goat (Capra hircus) in Puerto Rico:
(ψ(intercept); ρ(intercept + elevation + date + date2)). Note: alt = elevation; date = Julian date (we
considered Julian day 1 as the first day of a device starting to record in the field, which was 1 March
2021); date2 = square of Julian date.
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Figure A17. Traceplots from the best occupancy model of feral horse (Equus ferus caballus) in Puerto
Rico: (ψ(intercept + elevation + precipitation); ρ(intercept)). Note: alt = elevation; precip = mean
annual precipitation.

Appendix E

Below is the output summary from the best occupancy model used for the prediction
maps for 11 invasive alien species in Puerto Rico.

Table A2. Output summary from the best model (ψ(intercept + elevation + precipitation + RSR-1000);
ρ (intercept + elevation + Julian day + Julian day2)) of Venezuelan troupial (Icterus icterus) in Puerto
Rico. RSR = restricted spatial regression. Runtime: 2.722 h.

Covariates Estimated SD 2.5% 97.5% n_eff Rhat

Occupancy
(logit-scale):
Intercept −2.034 0.284 −2.586 −1.463 3019 1.00
Elevation −0.754 0.477 −1.686 0.190 2948 1.00
Precipitation −1.287 0.261 −1.830 −0.796 2836 1.00
RSR (tau)—1000 m 0.652 1.776 0.076 3.070 374 1.01

Detection (logit-scale):
Intercept −1.14 0.285 −1.691 −0.579 2475 1.00
Elevation −1.08 0.450 −1.937 −0.209 2561 1.00
Julian date (linear) 0.58 0.127 0.333 0.822 2427 1.00
Julian date (quadratic) −0.13 0.153 −0.423 0.172 2882 1.00
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Table A3. Output summary from the best spatial occupancy model (ψ(intercept + elevation +
precipitation); ρ (intercept + elevation)) of white-winged parakeet (Brotogeris versicolurus) in Puerto
Rico. Runtime: 13.692 min.

Covariates Estimated SD 2.5% 97.5% n_eff Rhat

Occupancy
(logit-scale):
Intercept −3.133 0.461 4.025 −2.170 1021 1.002
Elevation −0.925 0.777 −2.391 0.671 1042 1.002
Precipitation 0.637 0.322 0.019 1.272 1808 0.999

Detection (logit-scale):
Intercept −1.28 0.461 −2.24 −0.422 956 1.01
Elevation −1.37 0.780 −2.96 0.0642 1019 1.00

Table A4. Output summary from the best spatial occupancy model (ψ(intercept + elevation +
precipitation + protected area + canopy cover + fa2 + fa3 + distance of road + built up + RSR-1000);
ρ (intercept + elevation)) of chicken (Gallus gallus domesticus) in Puerto Rico. Note: fa2 = proportion
of forest cover aged between 32 and 54 years; fa3 = proportion of forest cover aged 55 years and older.
RSR = restricted spatial regression (threshold = 1000 m). Runtime: 2.788 h.

Covariates Estimated SD 2.5% 97.5% n_eff Rhat

Occupancy
(logit-scale):
Intercept −1.513 0.122 −1.764 −1.284 2546 0.999
Elevation 0.189 0.150 −0.111 0.480 2714 1.00
Precipitation −0.456 0.160 −0.781 −0.156 2635 1.00
Protected area −0.758 0.151 −1.070 −0.479 2136 1.00
Canopy cover 0.268 0.159 −0.046 0.582 2799 1.00
fa2 −0.176 0.123 −0.427 0.047 2955 1.00
fa3 −0.284 0.172 −0.630 0.045 2385 1.00
Distance of road −0.450 0.185 −0.840 −0.114 2816 1.00
Built up 0.117 0.094 −0.064 0.307 2565 1.00
RSR (tau)—1000 m 23.256 41.832 0.891 138.545 403 1.02

Detection (logit-scale):
Intercept 0.306 0.056 0.197 0.414 3118 1.00
Elevation 0.226 0.072 0.087 0.370 3110 1.00

Table A5. Output summary from the best occupancy model (ψ(intercept); ρ (intercept + elevation +
Julian day + Julian day2)) of shiny cowbird (Molothrus bonariensis) in Puerto Rico. Runtime: 13.118 h.

Covariates Estimated SD 2.5% 97.5% n_eff Rhat

Occupancy
(logit-scale):
Intercept −1.8 0.131 −2.05 −1.53 2244 1.00

Detection (logit-scale):
Intercept −1.179 0.160 −1.492 −0.868 1856 1.00
Elevation −0.431 0.170 −0.745 −0.083 2051 1.00
Julian date (linear) 0.353 0.117 0.126 0.594 2011 1.00
Julian date (quadratic) −0.031 0.125 −0.284 0.203 1866 1.00
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Table A6. Output summary from the best occupancy model (ψ(intercept); ρ (intercept + elevation +
Julian day + Julian day2)) of house sparrow (Passer domesticus) in Puerto Rico. Runtime: 11.022 min.

Covariates Estimated SD 2.5% 97.5% n_eff Rhat

Occupancy
(logit-scale):
Intercept −3.81 0.318 −4.47 −3.22 2046 1

Detection (logit-scale):
Intercept −2.225 0.533 −3.258 −1.210 1537 1.004
Elevation −1.392 0.584 −2.560 −0.286 1704 1.001
Julian date (linear) 0.126 0.236 −0.330 0.595 2262 0.999
Julian date (quadratic) 0.667 0.270 0.142 1.203 1927 1.002

Table A7. Output summary from the best spatial occupancy model (ψ(intercept + elevation +
precipitation + protected area + canopy cover + fa2 + fa3 + distance of road + built up); ρ (intercept +
elevation + Julian day + Julian day2)) of American bullfrog (Lithobates catesbeianus) in Puerto Rico.
Note: fa2 = proportion of forest cover aged between 32 and 54 years; fa3 = proportion of forest cover
aged 55 years and older. Runtime: 40.292 min.

Covariates Estimated SD 2.5% 97.5% n_eff Rhat

Occupancy
(logit-scale):
Intercept −6.454 0.936 −8.477 −4.889 1343 1.001
Elevation −1.846 0.953 −4.113 −0.334 2155 1.001
Precipitation 1.332 0.490 0.413 2.281 2809 1.000
Protected area −0.098 0.366 −0.852 0.582 3376 0.999
Canopy cover 0.015 0.478 −0.931 0.968 3071 1.000
fa2 0.017 0.317 −0.61 0.626 3110 0.999
fa3 −2.267 0.888 −4.267 −0.799 1835 1.001
Distance of road 0.349 0.262 −0.197 0.841 3109 1.000
Built up −0.695 0.546 −1.946 0.176 2402 0.999

Detection
(logit-scale):
Intercept 0.572 0.903 −1.115 2.45 2426 0.999
Elevation 1.755 1.345 −0.764 4.56 2503 1.000
Julian date (linear) 0.979 0.475 0.225 2.09 1766 0.999
Julian date (quadratic) 1.170 0.428 0.416 2.11 1738 1.000

Table A8. Output summary from the second-best occupancy model (ψ(fa2 + fa3); ρ (intercept +
elevation + Julian day + Julian day2)) of Cuban tree frog (Osteopilus septentrionalis) in Puerto Rico
(the top-ranked model did not converge well). Note: fa2 = proportion of forest cover aged between
32 and 54 years; fa3 = proportion of forest cover aged 55 years and older. Runtime: 29.712 min.

Covariates Estimated SD 2.5% 97.5% n_eff Rhat

Occupancy
(logit-scale):
Intercept −2.458 0.400 −3.268 −1.720 1783 1
fa2 −0.144 0.254 −0.674 0.340 2761 1
fa3 −0.831 0.408 −1.672 −0.085 2085 1

Detection (logit-scale):
Intercept −4.364 0.804 −5.946 −2.751 1715 1
Elevation −2.784 0.915 −4.817 −1.181 1833 1
Julian date (linear) 1.919 0.466 1.106 2.960 1862 1
Julian date (quadratic) −0.202 0.337 −0.891 0.422 2118 1
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Table A9. Output summary from the best occupancy model (ψ(intercept); ρ (intercept + elevation +
Julian day + Julian day2)) of cane toad (Rhinella marina) in Puerto Rico. Runtime: 9.981 min.

Covariates Estimated SD 2.5% 97.5% n_eff Rhat

Occupancy
(logit-scale):
Intercept −3.17 0.217 −3.6 −2.77 2530 1.00

Detection
(logit-scale):
Intercept −0.983 0.300 −1.609 −0.417 1448 1.00
Elevation −1.109 0.311 −1.712 −0.491 2561 1.00
Julian date (linear) −0.395 0.160 −0.711 −0.085 2538 1.00
Julian date
(quadratic) 0.113 0.201 −0.274 0.506 1626 1.00

Table A10. Output summary from the best spatial occupancy model (ψ(intercept + elevation + precipita-
tion + protected area + canopy cover + fa2 + fa3 + distance of road + built up); ρ (intercept)) of domestic
dog (Canis lupus familiaris) in Puerto Rico. Note: fa2 = proportion of forest cover aged between 32 and
54 years; fa3 = proportion of forest cover aged 55 years and older. Runtime: 11.735 min.

Covariates Estimated SD 2.5% 97.5% n_eff Rhat

Occupancy
(logit-scale):
Intercept −2.106 0.175 −2.472 −1.775 2092 1.00
Elevation −0.018 0.197 −0.411 0.357 2975 1.00
Precipitation 0.132 0.199 −0.257 0.515 2869 1.00
Protected area −0.372 0.192 −0.757 −0.006 2948 1.00
Canopy cover −0.050 0.233 −0.514 0.406 2264 1.00
fa2 0.356 0.162 0.047 0.671 2538 1.00
fa3 −0.154 0.246 −0.643 0.336 2320 1.00
Distance of road −0.499 0.304 −1.138 0.015 2141 1.00
Built up 0.326 0.137 0.068 0.605 2834 1.00

Detection (logit-scale):
Intercept −1.43 0.12 −1.67 −1.2 3159 0.999

Table A11. Output summary from the best occupancy model (ψ(intercept); ρ (intercept + Julian day +
Julian day2)) of wild goat (Capra hircus) in Puerto Rico. Runtime: 49.586 s.

Covariates Estimated SD 2.5% 97.5% n_eff Rhat

Occupancy (logit-scale):
Intercept 0.688 0.504 −0.182 1.73 1775 1.00

Detection (logit-scale):
Intercept −1.147 0.315 −1.794 −0.539 1659 1.002
Elevation 1.100 0.296 0.545 1.666 2083 1.001
Julian date (linear) −0.087 0.264 −0.601 0.435 2925 0.999
Julian date (quadratic) −1.197 0.307 −1.826 −0.646 2233 1.00

Table A12. Output summary from the best spatial occupancy model (ψ(intercept + elevation +
precipitation); ρ (intercept)) of feral horse (Equus ferus caballus) in Puerto Rico. Runtime: 41.425 s.

Covariates Estimated SD 2.5% 97.5% n_eff Rhat

Occupancy (logit-scale):
Intercept −1.068 0.551 −2.08 0.115 1192 1.00
Elevation −0.163 0.794 −1.64 1.461 1293 1.00
Precipitation 1.730 1.070 0.16 4.354 848 1.00

Detection (logit-scale):
Intercept −1.28 0.338 −1.99 −0.649 1247 1.00
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Appendix F

Figure A18. Cont.
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Figure A18. Prediction maps using the top-ranked model (mean expected occupancy probability)
with the model prediction uncertainty (standard deviation) for the invasive alien species found during
passive acoustic monitoring across Puerto Rico. When the top-ranked model of the species was the
null model for occupancy or did not converge well, we used the model that ranked second-best to
draw the prediction maps (i.e., for Molothrus bonariensis, Osteopilus septentrionalis, Rhinella marina, and
Capra hircus), and as such, we highlight that these predictions should be interpreted with caution
because there was a high uncertainty associated with them. The circles represent the sampling sites
where the species were detected by the AudioMoth devices. The prediction for wild goat was made
for Mona Island, the prediction for feral horse was made for Vieques island, and the predictions for
the other species were made for the main island of Puerto Rico.

Appendix G

We created a biodiversity insight page as a new feature of Arbimon web-based plat-
form for use by government agencies (e.g., Departamento de Recursos Naturales y Am-
bientales (DRNA), U.S. Fish and Wildlife Service), and the general public (e.g., educa-
tors and birdwatchers). The platform provides access to the main results of this study
and information on the calls, behavior, and biology of the species detected in the ARU
(https://bio.rfcx.org/puerto-rico-island-wide (accessed on 14 June 2022)). The main fea-
tures of this page include information on the vocalizations, distributions, and ecologies of
most bird and anuran species in Puerto Rico. The page also includes a searchable database
that contains the detection data, presence/absence maps, and occupancy maps for the birds
and anurans detected at the 841 sampling sites. All maps, plots, and data used to generate
the figures can be downloaded. Since the project is still in progress, the data on the page
are constantly being updated as more data are validated.

Figure A19. Dashboard: This page presents an overview of the project, including background
information, objectives, funding, and stakeholders. General results are also presented, such as the
total number of detections, sampling sites, species detected, and the number of species in each threat
category according to the International Union for Conservation of Nature (IUCN). This page also
features a map with all sampling sites and the number of species detected at each site.

https://bio.rfcx.org/puerto-rico-island-wide
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Figure A20. Species Richness: This page presents the results of the number of species detected and
allows for exploration of those data in greater detail. The data are presented as a bar graph with
aggregated results that can be filtered by region/site, date, and taxonomic group. Below the bar
graph is an accompanying map depicting species richness in the selected sites; the point size reflects
the number of species detected at each location. Below the map is a graph displaying the number of
species according to time of day, day of the week, month, or date.

Figure A21. Activity Overview: This page offers an overview of temporal and spatial vocal activity
patterns. It can be used to summarize detection frequency, number of raw detections, or naive
occupancy results (i.e., proportion of occupied sites), with a focus given to general patterns at the
community level. As with the Richness page, the user can use the filters to select results from
taxonomic groups, sampling sites, or specific periods and visualize the results in a map or graphs
that present the results according to the hour, day of the week, or month.
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Figure A22. Spotlight: This page offers an in-depth look at the raw detection and occupancy of
individual species. On this page, the user can select the species that were detected in the project data
using either the scientific or common name. Basic information about the species, photo, call example,
population status according to IUCN, detection frequency, and naive occupancy values are presented.
The first map shows the detection results by site and allows for filtering by detection frequency, the
number of detections (raw), and naive occupancy (i.e., proportion of occupied sites). A second map,
when available for the species, shows the predicted occupancy (i.e., probability of occupancy) in
Puerto Rico. In addition, a graph displays either detection frequency or the number of detections
results according to the hour, day of the week, or month. Like the Richness and Activity pages, the
data set can be subset by selecting one or more sampling sites or sampling periods.

Appendix H

Figure A23. Map of sites where the species with low raw detections were found (<10 sites detected).
The light-green polygons represent protected areas.
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