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Abstract: The aftermath of the 2010 Deepwater Horizon oil spill highlighted the lack of baseline
spatial, behavioral, and abundance data for many species, including imperiled marine turtles, across
the Gulf of Mexico. The ecology of marine turtles is closely tied to their vertical movements within
the water column and is therefore critical knowledge for resource management in a changing ocean.
A more comprehensive understanding of diving behavior, specifically surface intervals, can improve
the accuracy of density and abundance estimates by mitigating availability bias. Here, we focus on
the proportion of time marine turtles spend at the top 2 m of the water column to coincide with depths
where turtles are assumed visible to observers during aerial surveys. To better understand what
environmental and oceanographic conditions influence time at surface, we analyzed dive and spatial
data from 136 satellite tags attached to three species of threatened or endangered marine turtles
across 10 years. We fit generalized additive models with 11 remotely sensed covariates, including
sea surface temperature (SST), bathymetry, and salinity, to examine dive patterns. Additionally,
the developed model is the first to explicitly examine the potential connection between turtle dive
patterns and ocean frontal zones in the Gulf of Mexico. Our results show species-specific associations
of environmental covariates related to increased time at surface, particularly for depth, salinity, and
frontal features. We define seasonal and spatial variation in time-at-surface patterns in an effort to
contribute to marine turtle density and abundance estimates. These estimates could then be utilized
to generate correction factors for turtle detection availability during aerial surveys.

Keywords: dive behavior; marine turtle; Gulf of Mexico; satellite remote sensing; generalized
additive models; bio-logging

1. Introduction

Rapid environmental change is affecting species distributions at an unprecedented
pace, which could in turn affect ecosystem function and resilience [1]. Such climate-related
shifts can have significant and potentially detrimental implications for migratory species
such as birds, mammals, and marine turtles that move seasonally between foraging and
breeding areas [2,3]. Understanding how this wide-ranging movement is influenced by
biotic and abiotic factors is a key element in contemporary species distribution modeling
and, by extension, management frameworks that address migratory species [2,4]. Incorpo-
rating migratory species into spatial management frameworks, such as marine protected
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areas or fisheries closures, presents a unique conservation challenge, yet such measures are
necessary to combat rapid, global population declines in marine species [5,6].

Studies that spatially link animal movement to environmental drivers are ubiquitous
in the literature (e.g., [7,8]). However, the relationship between many oceanographic condi-
tions and diving patterns or behavior is still poorly understood [9,10]. Recent technological
advances in data loggers and remote sensors now allow for detailed observations of animal
use of the water column at a scale relevant for marine management and further biogeo-
graphic studies [11–13]. There is significant spatiotemporal variation in dive behavior and
even more so when the physiological constraints of the individual animal (i.e., age, body
mass, etc.) are considered. Diving behavior for many marine species is thought to primarily
occur in tandem with foraging [10,14], although dives can also occur to escape predators
or locate cooler water temperatures [9,15]. An improved understanding of dive patterns
enables complex investigation into how animals search for and capture prey, detailed
energetic and activity budgets, and habitat use [14,16].

Measurements of dive behavior are increasingly being tested and modeled for en-
vironmental associations. For example, numerous studies have utilized satellite-derived
sea surface temperature to correlate dives with foraging behavior in elephant seals [17],
marine turtles [12], and whale sharks [18]. Additional environmental variables considered
to influence dive patterns have included bathymetry, salinity, ocean productivity, or other
physiographic features (i.e., continental shelf) [15,19]. The development of models that
relate biologging data (i.e., animal distribution or activity data loggers) to environmental
parameters require biological data at the appropriate sample size as well as sufficient
geographic and temporal representation. Often, the necessary data are either unmeasured
or not available at the appropriate scale and proxies such as space (latitude/longitude)
and time (month/year) are integrated into the modeling framework, potentially limiting
the interpretability of the model output [20]. The increased availability of satellite-derived
variables at the appropriate spatial and temporal resolution offers both continuous and
cost-effective means of measuring a species’ environment [21]. Furthermore, coupling
animal movement models with numerical ocean models, such as the HYbrid Coordinate
Ocean Model (HYCOM) [22], allows for more detailed explorations of interactions within
ecosystems.

The Deepwater Horizon oil spill revealed a fundamental lack of baseline data, both
economic and ecological, on the importance of the Gulf of Mexico’s natural assets [23].
Due to its unique geographic location and hydrologic conditions, the Gulf of Mexico
supports high biodiversity with an estimated 15,000 species found in the semi-enclosed
sea [24,25]. This ecosystem currently faces a barrage of anthropogenic threats including
habitat degradation, exploitation of resources, and coastal runoff, as well as increasing
hurricane intensity and the worsening effects of climate change [26,27]. These threats
are often exacerbated and made more complex by natural processes such as ocean fronts,
mesoscale eddies, coastal upwelling, and the loop current that can all have significant effects
on ocean circulation patterns [24,28]. While these large-scale ocean dynamics are difficult
to quantify let alone integrate into species distribution models, it is increasingly apparent
that their impacts need to be accounted for to achieve dynamic ocean management [29].

As a long-lived species, marine turtles are ideal candidates to monitor as indicators of
ecosystem health, as their populations are dispersed throughout a range of spatiotemporal
scales. The Gulf of Mexico in particular contains some of the most important nesting
habitat in the western hemisphere and multiple high-use foraging areas [30]. For such a
critical area, depth-loggers are currently an underutilized resource from both a conservation
management and climate change forecasting perspective [31]. Recent Gulf-centric studies
have examined fine-scale habitat use and environmental influence on dive patterns in
multiple species of marine turtles. For example, Iverson et al. [12] found that increased SST
and net primary productivity in the Gulf of Mexico were associated with longer dives and
more dives to the seafloor in female loggerheads. A more regional study from Homossassa
Bay, Florida found significant variability among three species of marine turtles for multiple
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parameters of dive behavior, including dive duration, dive depth, and time at surface [32].
These studies were a crucial first step in elucidating dive and surface behavior of marine
turtles in the Gulf of Mexico. However, population level assessments, such as density
or abundance, and resulting management frameworks require accurate, bias-corrected
behavioral data with a broad spatial and temporal footprint [33].

Spatial density models are an important tool for resource management and conserva-
tion frameworks, as well as for understanding the potential impacts of catastrophic events
and climate change. Density models for marine turtles in the Gulf of Mexico are frequently
based on aerial surveys that have known biases related to long dive times and surface
availability [25,33]. To contribute to unbiased estimates of turtle density, we focused our
analysis on a specific aspect of marine turtle dive behavior; the proportion of time spent
at the surface. To better understand what environmental and oceanographic conditions
influence marine turtle surface time (referred to here as the top 2 m of the water column),
we analyzed dive and spatial data from satellite tags adhered to three species of threatened
or endangered marine turtles. We fit generalized additive models (GAMs) with remotely
sensed covariates, including sea surface temperature (SST), bathymetry, and salinity, to
examine species-specific and spatiotemporal variation in time-at-surface patterns. Further-
more, while a handful of studies on marine turtles and ocean fronts can be found for several
regions in the Pacific Ocean (e.g., [34,35]), or the North Atlantic (e.g., [36]), similar studies
for the Gulf of Mexico are rare [37] or nonexistent. Therefore, one aspect of our study
explicitly examines the potential connection between turtle dive patterns and ocean fronts
in the Gulf of Mexico. This analysis can contribute to the development of correction factors
for turtle detection availability during aerial surveys specifically to support conservation
planning and management.

2. Materials and Methods
2.1. Data Collection

All turtles were captured and tagged in various locations throughout the Gulf of Mex-
ico (i.e., Texas, Louisiana, Mississippi, Alabama, or Florida; Figure 1), following methods
identical to those in previous studies (e.g., [38]). Per funding and permit requirements,
only sub-adult or adult turtles (i.e., carapace length >40 cm) were tagged to ensure animals
were large enough to be seen by aerial observers. Briefly, following standard morphometric
data collection, we attached platform transmitter terminals (PTT) to the turtle carapace
using slow-curing epoxy (two-part Superbond epoxy). Data were collected via specialized
depth-logging satellite tags (Wildlife Computers SPLASH10-309A and SPLASH10-238A-
AF; tag specifications available in Supplementary Materials) from 2010–2019. Each of the
136 tags was programmed to collect dive activity information 24 h a day by ‘binning’ the
data into a pre-specified number of bins throughout the summary period. Data were then
transmitted once a day through the Argos satellite system. Beginning in 2011, all satellite
tags on nesting loggerheads were optimized in an effort to preserve battery life by setting
transmission to every third day from 1 November through 1 April [38]. We utilized the
time-at-depth (TAD; percent time within depth bins) component of the tag summary and
set depth bins at 0, 1, 2, 3, 4, 5, 10, 20, 30, 40, 50, 100, 150, and >150 m. Depth bins from
0–2 m were collectively defined as the surface of the water and correspond to depths where
turtles are assumed visible to observers during aerial surveys. As our focus for this analysis
was time at surface (TAS), we organized the data as the proportion of time per day that the
turtle spent at the surface and disregarded all other depth bins. We used a daily scale for
all turtles regardless of species or spatial location due to irregularities in the data collection
and satellite transmission periods throughout the study duration. Dive data were then
formatted so each daily point contained information on the proportion of time spent at
surface, the date, and all relevant metadata (i.e., species, sex, capture method (i.e., nester or
in-water), and tagging location).
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Figure 1. Map of study area and tag deployment locations, from 2010 to 2019, for all 136 turtles
included in this study. Sub regions of the Gulf of Mexico as defined by Bureau of Ocean Energy
Management (BOEM), from which descriptive and statistical analyses were performed, are outlined
in blue.

2.2. Linking Spatial and Dive Data

We linked spatial location to each dive observation by performing a switching state
space model (SSM) on the raw location data. The SSM approach was used to estimate the
animals’ true locations at regular time intervals due to significant positional uncertainty in
the Argos data [6] and to generate daily locations on which to annotate the proportion of
TAS. All turtles were pooled for the SSM in order to more precisely estimate daily spatial
locations and movement parameters [39,40]. Briefly, following previous analyses [6,41], we
used a Bayesian hierarchical movement model implemented in the R package ‘bsam’ [40,42],
using the ‘hDCRWS’ model specification and a time step of 1 day to match the TAS data.
We set the Markov Chain Monte Carlo (MCMC) parameters following Roberts et al. [6],
which used adaptive sampling for 7000 draws, taking 10,000 samples from the posterior
distribution, and then thinning by five to reduce MCMC autocorrelation, resulting in
2000 posterior samples from which to make inference. Trace plots, diagnostic plots, and
ACF plots were utilized to visually assess sufficient model convergence [40,43]. The SSM
process ultimately resulted in a more accurate dataset by accounting for location errors and
provided 1 location point for each turtle per day. We then linked SSM output to the TAS
data using the unique turtle ID and date.

2.3. Environmental and Oceanographic Variables

We identified 11 remotely sensed environmental or oceanographic parameters that
have known or plausible roles in influencing turtle dive behavior (Table 1) [12,13]. For
the static variables (i.e., distance to shore/shelf and bathymetry), we obtained gridded
layers and extracted the raster value using the ‘raster’ package in R at each turtle location
in the dive data. Daily sea surface temperature (SST) and SST anomaly (SSTa) gridded
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layers were downloaded at a 0.04 decimal degree resolution from the NOAA ERDDAP
online repository for the duration of our tracking period (2010–2019; https://coastwatch.
pfeg.noaa.gov/erddap/griddap/ncdcOisst2Agg.html (accessed on 1 March 2020)). Each
daily SST and SSTa value were paired spatially with the dive information using the ‘raster’
package. We downloaded daily netCDF files (also at a 0.04 decimal degree resolution) for
surface salinity, sea surface height (SSH), and u and v vector surface currents from the
Gulf of Mexico HYCOM project (https://www.hycom.org/data/goml0pt04/ (accessed
on 1 March 2020)) [22]. The ‘ncdf4’ R package was used to extract the variables with the
associated longitude, latitude, and date and organize all into a single data frame. In order
to pair each variable with the daily observations in the dive data, we found the minimum
spatial difference between each point in the dive data and each HYCOM variable. Current
strength (i.e., absolute current) and current direction were calculated using the u and v
vector components.

Table 1. Summary of all environmental and oceanographic covariates explored for each species
time-at-surface model. Each variable was linked to the dive data by date and spatial location.

Variable Units Source Time Window Spatial Resolution

Sea surface temperature ◦C ERDDAP OISST-V2-AVHRR Daily 3.5 km (0.04◦)
Sea surface
temperature anomaly

◦C ERDDAP OISST-V2-AVHRR Daily 3.5 km (0.04◦)

Sea surface salinity PSU HYCOM + NCODA Daily 3.5 km (0.04◦)
Sea surface height m HYCOM + NCODA Daily 3.5 km (0.04◦)
Bottom depth m SRTM30 Static ~1 km (30′)
Distance to shore km Derived from Harris et al. (2014) Static NA
Distance to shelf km Derived from Harris et al. (2014) Static NA
Current strength m/s HYCOM + NCODA Daily 3.5 km (0.04◦)
Current direction Degrees HYCOM + NCODA Daily 3.5 km (0.04◦)

Frontal gradient
magnitude-color fronts 1/km

USF Optical Oceanography
Laboratory; BOA front detection

algorithm (Belkin and O’Reilly, 2009)
based on MODIS/Aqua 9-km CI

Weekly ~9 km

Frontal gradient
magnitude-thermal fronts

◦C/km

USF Optical Oceanography
Laboratory; BOA front detection

algorithm (Belkin and O’Reilly, 2009)
based on MODIS/Aqua 9-km SST

Weekly ~9 km

To explore the potential relationship between the ocean frontal features and turtle
time at surface, we analyzed the dataset describing ocean color and thermal frontal zones
in the Gulf of Mexico [24]. The dataset was generated by applying a gradient-based
front detection algorithm [44] to the daily MODIS/Aqua SST and color index (CI) [45]
measurements between 2002 and 2019. Its spatial and temporal resolutions are 9 km and
weekly, respectively. In the weekly maps, each location is described by its mean frontal
gradient magnitude (FGM); more details on this dataset can be found in Zhang and Hu [24].
The FGM value corresponding to each turtle data record (latitude, longitude, date) was
extracted and analyzed with other turtle-relevant data. Individual observations for all
predictor variables were identified as outliers and removed from subsequent analyses if
they fell more than two standard deviations away from their mean (less than 3% of the
entire dataset). We ensured the removal of outliers had no effect on model performance
by comparing GAM summary metrics (details in Section 2.4) prior to and after removal.
All organization and formatting of environmental data was performed in Program R
(Version 4.0.3) [46].

2.4. Quantifying Environmental Influence on Time at Surface

To determine which environmental or oceanographic parameters influence the pro-
portion of time turtles spend at the surface, we used a generalized additive modeling

https://coastwatch.pfeg.noaa.gov/erddap/griddap/ncdcOisst2Agg.html
https://coastwatch.pfeg.noaa.gov/erddap/griddap/ncdcOisst2Agg.html
https://www.hycom.org/data/goml0pt04/
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(GAM) approach with a beta error distribution appropriate for proportional data scaled
between 0 and 1 and logit link; we fit GAMs using the R package ‘mgcv’ [47]. The data
were first separated by species, as we aim to contribute to species-specific density estimates
and aerial correction factors. For each species model, we randomly partitioned the data
with approximately 70% being used for model training and 30% used for model testing
or evaluation. This 70/30 split occurred at the scale of the individual turtle, rather than
the daily observation, to ensure model training and testing encompassed the entirety of a
turtle’s track. Additionally, this process retained the model structure within the dataset
used for model evaluation and ensured that predicted values were generated on complete
turtle tracks that were not included in model development. Following a data exploration of
each variable, we determined that a logarithmic transformation was necessary for salinity
and depth. All continuous variables were then assessed for collinearity using the Pearson
correlation coefficient method to ensure accurate predictions. A collinearity threshold value
of 0.7 was applied to reject the use two or more variables in the same model [48].

We set a maximum of 5 knots for each covariate to avoid overfitting and specified the
restricted maximum likelihood (REML) method. Planning region of the Gulf of Mexico
as defined by the U.S. Department of the Interior Bureau of Ocean Energy Management
(BOEM; Figure 1) and season were incorporated as factor variables and unique turtle
ID was included as a random effect. Following an examination of the spatial pattern in
residuals, we also included spatial smooths for easting and northing in each species model.
Covariates (including factor variables) were only kept in each model if its inclusion resulted
in a lower Akaike’s Information Criterion (AIC) value for the overall model. A ∆AIC
threshold of >2 was used to determine if an added covariate improved the model. For each
GAM, we checked the basis dimension values for each smooth term to ensure the correct
number of knots were present [47]. Pairwise concurvity was also analyzed to ensure close
relationships did not exist between the smooth terms. Model performance was assessed
using the adjusted R2 value and the amount of deviance explained. Additionally, we
quantified the model error or confidence in the resulting probability estimates for both the
testing and training datasets. Model error was displayed using the coefficient of variation
(CV), which is the ratio of the root mean squared error (RMSE) to the predicted value per
observation. Spatial predictions and associated model uncertainty were then aggregated
into a regularized 10 × 10 km2 grid for visual purposes.

3. Results
3.1. Data Collection

Throughout the 10-year tagging effort, we deployed 136 depth tags onto three species
of marine turtles: loggerhead (Caretta caretta; n = 59), Kemp’s ridley (Lepidochelys kempii,
n = 63), and green (Chelonia mydas, n = 14). Of these 136, 47 were tagged in Florida; 45 were
tagged in Alabama; 26 were tagged in Mississippi; 13 were tagged in Louisiana; and
5 were tagged in Texas (Figure 1) [49]. Mean tracking duration across the three species was
130 days, with 100 days on average for Kemp’s ridley (LK), 156 days for loggerheads (CC),
and 163 days for green turtles (CM; Supplementary Materials: Figures S1 and S2). We used
a total of 100,475 Argos locations to run the SSM, after filtering for extreme outliers and
removing those observations without a location class. Four individuals (tag IDs 161454,
172675, 175680, and 100391) were hindering the fit of the SSM due to inadequate tracking
duration (i.e., <10 days) [6] and were removed from further analysis. After fitting the SSM,
we were left with a total of 11,451 daily locations for 132 turtles (Supplementary Materials:
Figure S3).

3.2. Time-at-Surface Summaries

Kemp’s ridley turtles, the most well represented species in our analysis, spent on
average 18% of the time at the surface (TAS) across all spatial locations with no seasonal
variability. Loggerheads spent on average approximately 16% of the time at the surface.
This average was slightly lower for the western planning area of the Gulf, likely due to
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a lack of tracking data for this species as most tagged individuals hugged the Florida
coastline and only moved as far west as Louisiana (Figure 2A). Loggerhead TAS also
dropped slightly during the winter months and peaked during summer, which coincides
with the timing of nesting season (Figure 2B). While we have a much lower sample size
from which to draw conclusions for green turtles, our data suggests that this species has
a slightly higher mean TAS than the other two species (19%). Additionally, the range of
TAS for green turtles is wider when examined across all individuals. We did not track any
green turtles into the western planning region (Figure 2A). Time spent at the surface for
green turtles peaked in summer, which coincides with nesting season activity (Figure 2B).
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3.3. Modeling Time at Surface

Results from the GAM demonstrated that loggerheads spent a higher proportion of
time at the surface in warmer waters (i.e., between 25 ◦C and 30 ◦C), shallow to interme-
diate depth ranges, and all but the highest measured salinities (Supplementary Materials:
Figure S4). The increased presence of a front, both SST and ocean color derived, also
increased surface time in loggerheads. However, particularly strong SST fronts decreased
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time at surface. Additionally, increased surface time coincided with spring and summer
months, which is consistent with loggerhead nesting season. Spatial predictions show that
loggerhead TAS proportions are highest off the coast of southwest Florida and in parts of
the Florida Keys, with a maximum TAS value of 74% (Figure 3A). For the remainder of the
loggerhead tracking footprint in the Gulf, our results show there is minimal variability in
TAS. (Figure 3A). Spatial output of model uncertainty for the loggerhead time-at-surface
model (represented by the coefficient of variation) reveals high confidence (i.e., below 0.5)
in the majority of predictions with the exception of several observations along the Florida
Keys reef tract and one off the Louisiana coast (Figure 3B).
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Our results indicate that Kemp’s ridley turtles occupy a wide temperature range at
the surface (i.e., between 20 ◦C and 35 ◦C) with close proximity to the continental shelf,
and very shallow waters (i.e., below 30 m). Neither frontal product was significant to the
Kemp’s ridley model, and no relationship was evident to time at surface (Supplementary
Materials: Figure S5). Spatial predictions demonstrate the substantial latitudinal gradient
for the Kemp’s ridley model compared to the loggerheads and greens, which results in
more variability in proportions of time at the surface (Figure 4A). Higher surface intervals
(i.e., above 45%) were predicted between the continental shelf and Louisiana coastline,
while the majority throughout the rest of the Gulf ranged between 10% and 40% (Figure 4A).
Despite the widespread tracking footprint, we achieved majority low model uncertainty
(i.e., CV less than 0.2) in the predictions generated for the Kemp’s ridley model (Figure 4B).
Potentially due to limited data in the area, we have higher uncertainty in interpreting the
predictions off the coast of Mexico and into the Yucatan Peninsula as well as along the
western coast of Florida (Figure 4B).

While we have a lower sample size for green turtles, the distribution of tracking data
is notably unique from the other two species in the proximity to the coastline. Therefore,
our interpretation of dive behavior for green turtles can serve as an important first step
in delineating species-specific environmental associations. Results from the GAM for the
14 green turtles suggested that higher time-at-surface proportions were closely related to
spring months, shallow waters, warmer than average SST (based on anomaly calculation;
Table 1), and stronger/more persistent SST fronts (Supplementary Materials: Figure S6).
The increased presence of ocean color fronts decreased the time spent at the surface in
green turtles. The tendency for green turtles to stay in close proximity to the coastline is
demonstrated in Figure 5A. These spatial predictions also reveal significant variability in
surface intervals, similar to the Kemp’s ridleys, even among 14 individuals. We see the
highest predicted time at surface for the green turtles along the Florida panhandle and off
the coast of Louisiana (Figure 5A). Associated uncertainty in these predictions is high due
to low sample size (Figure 5B). For this species, we therefore concentrate our conclusions
along sections of the Florida coastline where uncertainty is lower (Figure 5B).

Remote Sens. 2022, 14, x FOR PEER REVIEW 10 of 18 
 

 

Kemp’s ridley model, and no relationship was evident to time at surface (Supplementary 
Materials: Figure S5). Spatial predictions demonstrate the substantial latitudinal gradient 
for the Kemp’s ridley model compared to the loggerheads and greens, which results in 
more variability in proportions of time at the surface (Figure 4A). Higher surface intervals 
(i.e., above 45%) were predicted between the continental shelf and Louisiana coastline, 
while the majority throughout the rest of the Gulf ranged between 10% and 40% (Figure 
4A). Despite the widespread tracking footprint, we achieved majority low model uncer-
tainty (i.e., CV less than 0.2) in the predictions generated for the Kemp’s ridley model 
(Figure 4B). Potentially due to limited data in the area, we have higher uncertainty in in-
terpreting the predictions off the coast of Mexico and into the Yucatan Peninsula as well 
as along the western coast of Florida (Figure 4B).  

While we have a lower sample size for green turtles, the distribution of tracking data 
is notably unique from the other two species in the proximity to the coastline. Therefore, 
our interpretation of dive behavior for green turtles can serve as an important first step in 
delineating species-specific environmental associations. Results from the GAM for the 14 
green turtles suggested that higher time-at-surface proportions were closely related to 
spring months, shallow waters, warmer than average SST (based on anomaly calculation; 
Table 1), and stronger/more persistent SST fronts (Supplementary Materials: Figure S6). 
The increased presence of ocean color fronts decreased the time spent at the surface in 
green turtles. The tendency for green turtles to stay in close proximity to the coastline is 
demonstrated in Figure 5A. These spatial predictions also reveal significant variability in 
surface intervals, similar to the Kemp’s ridleys, even among 14 individuals. We see the 
highest predicted time at surface for the green turtles along the Florida panhandle and off 
the coast of Louisiana (Figure 5A). Associated uncertainty in these predictions is high due 
to low sample size (Figure 5B). For this species, we therefore concentrate our conclusions 
along sections of the Florida coastline where uncertainty is lower (Figure 5B).  

 

Figure 4. Cont.



Remote Sens. 2022, 14, 4534 10 of 17

Remote Sens. 2022, 14, x FOR PEER REVIEW 11 of 18 
 

 

 
Figure 4. (A) Spatial predictions and (B) associated model uncertainty, represented by coefficient of 
variation (CV), for Kemp’s ridley turtles (Lepidochelys kempii) time-at-surface model. Disparity in 
Kemp’s ridley tracking footprint compared to loggerheads or greens is due to tagging locations 
predominantly located in the western Gulf of Mexico. Time-at-surface predictions can be inter-
preted as a percentage of 100% for a 24 h observational time window. Predictions from both training 
and testing data are displayed but were generated independently. 

 

Figure 4. (A) Spatial predictions and (B) associated model uncertainty, represented by coefficient
of variation (CV), for Kemp’s ridley turtles (Lepidochelys kempii) time-at-surface model. Disparity
in Kemp’s ridley tracking footprint compared to loggerheads or greens is due to tagging locations
predominantly located in the western Gulf of Mexico. Time-at-surface predictions can be interpreted
as a percentage of 100% for a 24 h observational time window. Predictions from both training and
testing data are displayed but were generated independently.

Remote Sens. 2022, 14, x FOR PEER REVIEW 11 of 18 
 

 

 
Figure 4. (A) Spatial predictions and (B) associated model uncertainty, represented by coefficient of 
variation (CV), for Kemp’s ridley turtles (Lepidochelys kempii) time-at-surface model. Disparity in 
Kemp’s ridley tracking footprint compared to loggerheads or greens is due to tagging locations 
predominantly located in the western Gulf of Mexico. Time-at-surface predictions can be inter-
preted as a percentage of 100% for a 24 h observational time window. Predictions from both training 
and testing data are displayed but were generated independently. 

 

Figure 5. Cont.



Remote Sens. 2022, 14, 4534 11 of 17Remote Sens. 2022, 14, x FOR PEER REVIEW 12 of 18 
 

 

 
Figure 5. (A) Spatial predictions and (B) associated model uncertainty, represented by coefficient of 
variation (CV), for green turtles (Chelonia mydas) time-at-surface model. Time-at-surface predictions 
can be interpreted as a percentage of 100% for a 24 h observational time window. Predictions from 
both training and testing data are displayed but were generated independently. 

4. Discussion 
Conservation measures that target migratory species frequently rely on a compre-

hensive assessment of habitat preferences and space use, often obtained from satellite 
tracking data and species distribution models. Their use of three-dimensional space, how-
ever, and how their environment influences this behavior is still emerging as an integral 
component to understanding species’ ecology and life history [9,12]. Here, we present the 
environmental and oceanographic influence on time-at-surface patterns for 132 marine 
turtles across three species, the largest dataset on dive behavior for the Gulf of Mexico 
region. We incorporated 11 satellite-derived environmental variables into the models, sev-
eral of which have never been examined in the context of marine turtle distribution or 
dive patterns. In addition to defining seasonal and spatial differences in time-at-surface 
patterns, we found species-specific associations of environmental covariates related to in-
creased time at surface, particularly for frontal features, depth, and salinity.  

The complexity of dive and surface behavior in marine turtles can result in discrep-
ancies among species, study area, or time of year [12,33]. For example, Hatch et al. [33] 
examined dive-surfacing behavior, including proportion of time at the surface, for logger-
head turtles in the Northwest Atlantic and reported an average TAS of approximately 
50%, compared to an average TAS of 16% found in this study for the same species. An-
other study that focused on green turtles in the Torres Strait found that approximately 
23% of recorded dive time was spent between 0 and 2.5 m of depth [50], which is compa-
rable to our finding of 19% TAS on average for green turtles in the Gulf of Mexico. These 
patterns or differences could be the product of a myriad of explanatory variables related 
to foraging, physiological factors, or environmental conditions. Furthermore, there are 
other potential drivers of increased TAS that our models cannot account for, such as 
warmer temperatures resulting in higher metabolic rates and therefore requiring higher 
oxygen consumption. 

Figure 5. (A) Spatial predictions and (B) associated model uncertainty, represented by coefficient of
variation (CV), for green turtles (Chelonia mydas) time-at-surface model. Time-at-surface predictions
can be interpreted as a percentage of 100% for a 24 h observational time window. Predictions from
both training and testing data are displayed but were generated independently.

4. Discussion

Conservation measures that target migratory species frequently rely on a comprehen-
sive assessment of habitat preferences and space use, often obtained from satellite tracking
data and species distribution models. Their use of three-dimensional space, however, and
how their environment influences this behavior is still emerging as an integral component
to understanding species’ ecology and life history [9,12]. Here, we present the environ-
mental and oceanographic influence on time-at-surface patterns for 132 marine turtles
across three species, the largest dataset on dive behavior for the Gulf of Mexico region. We
incorporated 11 satellite-derived environmental variables into the models, several of which
have never been examined in the context of marine turtle distribution or dive patterns.
In addition to defining seasonal and spatial differences in time-at-surface patterns, we
found species-specific associations of environmental covariates related to increased time at
surface, particularly for frontal features, depth, and salinity.

The complexity of dive and surface behavior in marine turtles can result in discrep-
ancies among species, study area, or time of year [12,33]. For example, Hatch et al. [33]
examined dive-surfacing behavior, including proportion of time at the surface, for logger-
head turtles in the Northwest Atlantic and reported an average TAS of approximately 50%,
compared to an average TAS of 16% found in this study for the same species. Another
study that focused on green turtles in the Torres Strait found that approximately 23% of
recorded dive time was spent between 0 and 2.5 m of depth [50], which is comparable to
our finding of 19% TAS on average for green turtles in the Gulf of Mexico. These patterns
or differences could be the product of a myriad of explanatory variables related to foraging,
physiological factors, or environmental conditions. Furthermore, there are other potential
drivers of increased TAS that our models cannot account for, such as warmer temperatures
resulting in higher metabolic rates and therefore requiring higher oxygen consumption.

Many studies have demonstrated a connection between oceanographic features, such
as fronts, eddies and currents, and the life cycles of marine migratory species [24,36,51].
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Species often use changes in these environmental features as cues for feeding, migration,
etc.; therefore, these features are crucial to systematically evaluate when interpreting biolog-
ging data [52,53]. One interesting result of our model is the species-specific relationship
to frontal features, incorporated into the models as ocean color and SST frontal gradient
magnitude (FGM). Both frontal products were significant to loggerhead and green turtles,
but neither were included in the Kemp’s ridley final model. One possible explanation
for this result is that Kemp’s prefer much shallower water while they are at the surface
compared to the other two species, based on the 63 individuals included in this analysis.
While frontal behavior in shallow, coastal areas is often difficult to quantify, these fronts
can be narrower and less stable than their deep-ocean counterparts [24]. Our results from
the loggerhead dive model are similar with previous research [36] in determining that
increased TAS for this species is associated with increased frontal activity, suggesting these
turtles are possibly exploiting these highly productive areas for foraging purposes similar
to other marine megafauna [54,55]. Also consistent with previous research, although our
sample size is limited, surface time in green turtles was associated with frontal features [56].
Similar to loggerheads, green turtles may be engaging with fronts at the surface due to
increased productivity in these areas.

The improvement in remotely-sensed environmental data has allowed for the emer-
gence of novel predictor variables to be utilized in modeling frameworks. In addition
to including ocean frontal features in our GAMs as well as variables such as SST and
bathymetry that have demonstrated relationships to marine turtle dive behavior [12,32], we
also explored the relationship between time at surface and current strength and direction,
calculated from U and V component vectors [22]. While neither variable was significant to
any species model, potentially due to the daily scale at which this analysis was performed,
the influence of oceanic currents on species’ trajectories has previously been detected [52,57].
Where oceanic currents are incorporated into movement models, results have shown that
some marine predators exhibit highly directional movement even in the face of strong cur-
rents for foraging or migrating purposes [52,58] and will often select areas of high-current
to reduce their energy expenditure [59]. Remotely sensed products will only improve in
complexity, comprehensiveness, and resolution moving forward [60]. While the numerous
predictor variables included in this analysis represent the most wide-ranging assessment to
understand marine turtle surface behavior to date, further environmental drivers can be
explored as they become available to improve predictions.

Marine turtles face a multitude of threats in the ocean, such as entanglement in fishing
gear, pollution, habitat destruction and vessel strikes [61]. Risk assessments have often
concluded that these threats are exacerbated in shallow, coastal habitats due to their relative
importance for foraging and development; thus, heavily contributing to the anthropogenic
mortality of turtle species [62]. Collisions with vessels, for example, have increased in
recent decades as a result of high-density recreational boat traffic in coastal areas and often
minimal regulation or enforcement on vessel speed [61]. For three imperiled turtle species,
this analysis provides descriptive statistics on how often (on average) turtles can be found
at the surface within the Gulf of Mexico as well as environmental conditions associated
with an increase in surface activity and could therefore be implemented into conservation
strategies to assess risk and minimize vessel-related mortality. Existing or proposed spatial
management efforts, such as no-wake zones or human exclusion zones, could be informed
by our results and potentially implemented under a dynamic framework to allow for rapid
adjustments in space and time [29]. Additionally, knowledge of marine turtle surface
behavior could be valuable for fisheries management in the Gulf of Mexico, as certain gear
types are known to unintentionally but frequently capture turtles [62].

We have identified the main sources of uncertainties in our analysis. First, the col-
lection of the dive activity data spanning multiple projects across ten years resulted in
inconsistencies in tag programming, thus eliminating our ability to delineate day versus
night dive behavior. This assumption, that marine turtle time at surface remains the same
throughout the day, potentially distorts our results as all possible satellite transmissions
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throughout a 24 h time period were aggregated. This analysis therefore can serve as a
baseline for elucidating time-at-surface behavior in the Gulf of Mexico at the species level
and can be updated prior to inclusion in any management or action framework. Addi-
tionally, due to this 24 h applied scale and the inherent flaws in inferring animal behavior
from position and dive data, we were unable to accurately define foraging at the surface.
Future work could utilize recent advances in animal movement modeling (e.g., [63,64]),
to differentiate foraging strategies among individuals and potentially evaluate foraging
success at the population level. Finally, addressing how marine turtle surface patterns are
linked to changing climatic and oceanographic conditions, although a key priority area
for dynamic management [65], was beyond the scope of this analysis. However, a larger
spatial coverage due to increased tag deployments, increased diversity in climatic vari-
ables, and a longer study duration could determine if observed environmental influences
on time at surface are shifting over time and whether these shifts could be attributed to
climate change.

Understanding the spatiotemporal distribution of protected species is a key component
in developing conservation strategies and mitigating potential human impacts. Species
distribution models that evaluate species–environment relationships and use these to
characterize animal density or occurrence across broad spatial and temporal scales are
routinely used to support environmental impact assessments [66,67]. The data underlying
these models are primarily visual line-transect survey data (e.g., [68]). In the case of sea
turtles in the Gulf of Mexico, these data are collected through aerial surveys over the
continental shelf (e.g., [69]). However, sea turtles spend a significant portion of their time
below the water surface, and this is a source of substantial negative bias in density estimates
derived from visual surveys. Furthermore, spatiotemporal variation in the probability that
turtles are at the surface may further bias the inferred spatial patterns in animal distribution.
Our models can be used to directly estimate availability at the surface for visual surveys
based upon contemporaneous oceanographic conditions and animal location and thereby
address this known bias and improve the reliability of resulting spatial density models.

5. Conclusions

In this study, we have demonstrated how marine turtle surface patterns can be linked
to environmental and oceanographic variables and how this behavior varies seasonally
and by species. To our knowledge, this unique dataset on turtle dive behavior is the largest
available for the Gulf of Mexico, encompassing over 10 years of depth-logging and satellite
tracking information. Furthermore, we illustrate how this analysis can be integrated
into future work on density and abundance modeling for the Gulf of Mexico’s broader
ecosystem to improve our understanding of how marine turtles utilize this important
region. For further population monitoring, results from the GAMs reveal that loggerhead
turtles are more available to be seen by aerial surveys off the southwest Florida coastline,
Kemp’s ridleys off Louisiana and Texas, and green turtles along the western Florida
coastline. These results support a strategy whereby each species would be managed
independently, which could lead to a more accurate estimation of species-specific foraging
habitats and impacts on trophic resources. Increasingly reliable, spatially-explicit models
on distribution and behavior of imperiled species can inform decisions related to the
Endangered Species Act and other regulatory needs. This analysis contributes to ongoing
discussions of critical habitat designations for marine turtles in the Gulf of Mexico and
highlights the importance of quantifying their use of the water column for the purpose of
risk mitigation and adaptive management.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14184534/s1, Figure S1: Tracking duration of all marine turtles
included in the analysis from mid-2010 until January of 2016. Colors represent region of the Gulf of
Mexico as defined by Bureau of Ocean Energy Management (BOEM); Figure S2: Tracking duration of
all marine turtles included in the analysis from January 2016 until mid-2019. Colors represent region of
the Gulf of Mexico as defined by Bureau of Ocean Energy Management (BOEM); Figure S3: Resulting
tracks from state space model for all marine turtles included in the analysis separated by species;
Figure S4: Generalized additive model (GAM) plots of loggerhead turtle (Caretta caretta) time-at-
surface (scaled between 0 and 1) in the Gulf of Mexico relative to environmental and factor variables.
Shaded areas for environmental variable plots represent standard error; Figure S5: Generalized
additive model (GAM) plots of Kemp’s ridley turtle (Lepidochelys kempii) time-at-surface (scaled
between 0 and 1) in the Gulf of Mexico relative to environmental and factor variables. Shaded areas
for environmental variable plots represent standard error; Figure S6: Generalized additive model
(GAM) plots of green turtle (Chelonia mydas) time-at-surface (scaled between 0 and 1) in the Gulf of
Mexico relative to environmental and factor variables. Shaded areas for environmental variable plots
represent standard error.
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