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Abstract: Remote sensing image scene classification takes image blocks as classification units and
predicts their semantic descriptors. Because it is difficult to obtain enough labeled samples for
all classes of remote sensing image scenes, zero-shot classification methods which can recognize
image scenes that are not seen in the training stage are of great significance. By projecting the image
visual features and the class semantic features into the latent space and ensuring their alignment,
the variational autoencoder (VAE) generative model has been applied to address remote-sensing
image scene classification under a zero-shot setting. However, the VAE model takes the element-wise
square error as the reconstruction loss, which may not be suitable for measuring the reconstruction
quality of the visual and semantic features. Therefore, this paper proposes to augment the VAE
models with the generative adversarial network (GAN) to make use of the GAN’s discriminator in
order to learn a suitable reconstruction quality metric for VAE. To promote feature alignment in the
latent space, we have also proposed cross-modal feature-matching loss to make sure that the visual
features of one class are aligned with the semantic features of the class and not those of other classes.
Based on a public dataset, our experiments have shown the effects of the proposed improvements.
Moreover, taking the ResNet models of ResNet18, extracting 512-dimensional visual features, and
ResNet50 and ResNet101, both extracting 2048-dimensional visual features for testing, the impact of
the different visual feature extractors has also been investigated. The experimental results show that
better performance is achieved by ResNet18. This indicates that more layers of the extractors and
larger dimensions of the extracted features may not contribute to the image scene classification under
a zero-shot setting.

Keywords: zero-shot learning; remote sensing image scene classification; cross-modal feature alignment;
variational autoencoder; generative adversarial network

1. Introduction

With the rapid development of earth observation technology, there are more and more
remote sensing sensors providing numerous images of the earth surface. The demand
for rapid analysis of vast quantities of remote sensing images has increased significantly.
Classification of these massive images is one of the most important tasks. Compared with
pixel-level and object-level classification, image scene classification takes the scenes, i.e., the
image blocks, as the classification units and labels them with semantic descriptors [1,2]. It is a
promising way for classifying the current high-resolution remote sensing images, and plays
an important role in natural disaster monitoring [3] and functional area classification [4].

Similar to image classification in the computer vision domain, the key to remote
sensing image scene classification is the extraction of image scene features. Due to the
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powerful feature extraction ability and successful application in various domains, deep
learning has been widely applied to remote sensing image scene classification in recent
years. However, these deep-learning-based scene classification methods [5–7] usually
require a large number of labeled samples. Because it is difficult to obtain enough labeled
samples for all classes, it is of great significance for methods which can recognize the image
scenes that are not seen in the training stage. In this case, zero-shot learning (ZSL) methods
which does’t require any labeled samples have recently attracted much attention [8].

Derived from transfer learning [9], zero-shot learning is the training of a model using
a large number of labeled samples called the seen classes of samples, and then using the
model to predict the labels of unseen classes of samples, where the samples of seen and
unseen classes are not identical. Taking the semantic features of the seen and unseen classes
as the auxiliary information, zero-shot learning leverages the knowledge learned from the
seen classes and applies them to the unseen classes. By now, many methods have emerged
for zero-shot learning in the computer vision domain. The common strategy for ZSL is to
build a mapping between the visual features of the seen images and the semantic features
of the seen classes, and then apply the mapping to the unseen images [10,11]. This kind
of methods often suffer from the hubness problem [12] or the domain shift problem [13].
Recently, more and more works are using the generative methods to tackle ZSL problem.
Some works propose to utilize generative methods to generate a certain number of visual
features for each unseen class conditioned on their semantic features [14]. The classes of
the unseen images can be predicted by applying nearest-neighbor search algorithms. In the
meantime, some works propose to apply the generative method to embed both the image
visual features and the class semantic features into the latent space, and then match or align
these latent features [15].

Due to the specific characteristics of remote sensing images, more challenges for zero-
shot learning exist in remote sensing. For example, unlike the labels of the natural images,
labels of remote sensing images can’t actually reflect the semantic information of the classes.
Moreover, there often exist scale variation and arbitrary orientation of geo-spatial elements
in remote sensing images [16]. The images also show large intraclass differences and large
interclass similarities [17,18]. With these challenges, many methods [16,19] have been
proposed to address the zero-shot classification problem of remote sensing image scenes
based on existing zero-shot learning works. For example, with the aim to achieve the cross-
modal feature matching and address the intraclass differences and interclass similarities, a
set of loss constraints has been designed in [16]; and to obtain the high-quality semantic
representation of remote sensing image scenes, a remote sensing knowledge graph has
been constructed [19]. In recent works, researchers have also started to use generative
methods to tackle zero-shot remote sensing image scene classification. In the work of Li et
al. [19], two variational autoencoders (VAE) have been utilized to project the visual features
of image scenes and the semantic features of the classes into the latent space, after which
the reconstruction loss and the distribution matching loss are used to achieve cross-modal
feature alignment.

However, for the generative model of VAEs used for zero-shot image scene classi-
fication, an important component is the metric measuring the reconstruction quality. It
calculates the element-wise square error between the true visual/semantic features and
the generated visual/semantic features, to produce the reconstruction loss. This way of
generating reconstruction loss may be not suitable for measuring the reconstruction quality.
For example, when making some kind of transformation to the images, people may not
notice the transformation; however, a large square error is produced. In light of that, this
paper proposes to integrate the generative adversarial network (GAN), another kind of
generative model, with the VAE models towards a cross-modal feature alignment for zero-
shot remote sensing image scene classification. Our concept is augmentation of the dual
VAEs with the GAN discriminator, and adopt it to learn a suitable reconstruction quality
metric for VAE [20]. For two different VAE models of the dual VAEs used for two different
modalities, i.e., the visual and the semantic modalities, we propose to equip each VAE
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with a discriminator while using one cross-modal discriminator for both VAEs. Moreover,
considering the characteristics of intraclass differences and interclass similarities among the
remote sensing images, we have also designed the matching loss between the cross-modal
latent features, to improve the feature alignment performance. With the cross-modal feature
matching loss, our purpose is to enable the visual features of one class to be aligned with
its semantic features and separated from those of other classes. We have taken the dataset
presented by [19] to validate the improvements of our paper. The main contributions of
this paper are as follows.

(1) We augment the VAE models with the discriminator of GAN to better measure the
reconstruction quality in the zero-shot remote sensing image scene classification. Our
experiments show that the discriminators contribute to the image scene classification
under a zero-shot setting.

(2) We propose the cross-modal feature matching loss to address the intraclass differences
and interclass similarities challenge among the remote sensing image scenes. Our
experimental results have shown the effects of the cross-modal feature matching loss,
and it is better to measure the matching loss with cosine distance compared with
Euclidean distance and distance based on dot production.

(3) The visual features of image scenes are often extracted by different ResNet models in
different works. But how about their different impact on the zero-shot image scene
classification have not been investigated. Taking the three typical ResNet models
of ResNet18, ResNet50, and ResNet101 for testing, our experiments show that the
ResNet18 has achieved better performance. This indicates that more layers of the
extractors and larger dimensions of the extracted features may not contribute to image
scene classification under a zero-shot setting.

The structural arrangement of this paper is as follows: Section 2 mainly introduces
the background and related works; Section 3 presents the details of the proposed method;
Section 4 introduces the experiments and the results; Finally, Section 5 summarizes the
conclusions of our study.

2. Background and Related Work

This paper involves deep learning-based generative models, zero-shot learning, and
zero-shot learning for remote sensing image scene classification. In this section, we present
a brief introduction about their background and related works.

2.1. Generative Model

The generative model mainly refers to the learning of data distribution through neural
networks to generate new data. At present, there are two typical generative models, VAE
and GAN.

2.1.1. VAE

VAE is the variational autoencoder [21] where the autoencoder (AE) is an encoder–
decoder network. In an autoencoder, the encoder maps the input data to a latent feature,
and the decoder intends to reconstruct the input data from the latent feature. In this
process, the distribution of the input data will be learned. Because AE has no requirement
for the data distribution in the latent space and can not be used to generate new data, the
variational autoencoder (VAE) is introduced to require that the data distribution in the
latent space obeys the standard Gaussian distribution. Then, giving different noises, the
VAE decoder can produce a variety of new data which are related to the input data.

As shown in Equation (1), the VAE loss function consists of two parts, namely, the
reconstruction loss and the Kullback–Leibler (KL) divergence loss. The reconstruction
loss, i.e., the first item of Equation (1), refers to the difference between the input data
and the reconstructed data, where pE(z|x) indicates the distribution of the latent variable
z generated by the encoder, and pD(x|z) is the data distribution of reconstructed data
generated by the decoder. The KL divergence loss, i.e., the second item of Equation (1),
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measures the difference between the distribution pE(z|x) of the generated latent variable z
in the latent space and the Gaussian distribution unit p(z).

loss(θE, θG) = EpE(z|x)[logpD(x|z)]− DKL(pE(z|x)||p(z)) (1)

2.1.2. GAN

GAN is a neural network model for generating data using an adversarial learning
approach [22]. It is usually composed of a generator and a discriminator. The main
task of the generator is to generate fake samples based on the random noise input. In
the meantime, the discriminator’s role is to judge whether the input samples are real or
not. In a game-adversarial manner, the generator wants to generate real samples to cheat
the discriminator, while the discriminator strives to accurately identify the fake samples
generated by the generator. In the process, the generator and the discriminator constantly
improve themselves until the discriminator cannot tell whether the generated sample is
real or fake. It is then assumed that the generator has learned the distribution of the input
data.

GAN takes the idea of minimax algorithm to construct objective function which is
shown in Equation (2).

min
G

max
D

V(D, G) = Ex∼pdata(x) [logD(x)] + Ez∼pnoise(z) [log(1− D(G(z)))] (2)

In Equation (2), x represents the real data, and z represents the random noise input.
pdata(x) represents the data distribution of real data and pnoise(z) represents the data distri-
bution of input noise. G(z) indicates the data generated by the generator when given the
random noise input z. D(x) represents the score given by the discriminator to the real data,
while D(G(z)) is the score given to the fake data. The discriminator wants to maximize
the objective function, that is, identify the fake data if at all possible. At the same time, the
generator aims to minimize the objective function so that it can generate better fake data
to confuse the discriminator. The parameters of the generator and the discriminator are
optimized alternately and iteratively. Generally, the discriminator is optimized first before
the generator.

2.2. Zero-Shot Learning

In daily life, humans can identify emerging objects easily based on already acquired
knowledge. For example, a child has never seen a zebra, but he has seen a panda, a tiger, a
horse. When he has acquired this perception that the zebra has the stripe of the tiger, the
shape of the horse, and the color of the panda, he will immediately recognize the zebra
when he sees the zebra. The process of reasoning about the unknown category of zebra
by the known categories of tiger, horse, and panda, is that of zero-shot learning. In this
process, the seen classes (i.e., panda, tiger, horse) constitute the training set, and the unseen
classes (i.e., the zebra) form the test set. Meanwhile, the prior knowledge (i.e., color of
pandas, stripes of tigers, shapes of horses) is the semantic information [23] related to the
training set and the test set.

Zero-shot learning approaches can be divided into three categories, i.e., attribute-based
zero-shot learning [24,25], embedding-based zero-shot learning [26–29], and generative
model-based zero-shot learning [14,15,23,30,31]. The main idea of the attribute-based
approaches is to learn an attribute classifier for each seen class and use the attribute
classifiers as the space shared with unseen classes. The embedding-based methods adopt
the embedding manner to map the visual features into the semantic space, semantic features
into the visual space, or visual features and semantic features into a common space, and
use the mappings to predict the categories of the data of unseen classes. In recent years,
with the development of generative models like VAE and GAN, more and more generative
methods are applied to zero-shot learning. These kinds of approaches mainly generate the
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samples of unseen classes, and transform the zero-shot learning problem into a supervised
learning problem.

There are two typical problems in zero-shot learning, domain shift [13] and the hubness
problem [12]. Domain shift refers to the fact that the model trained from seen classes can’t
adapt well to unseen classes. Meanwhile, the hubness problem refers to the fact that some
points will become near to most points while projecting between high dimensional spaces,
resulting in poor performance when applying the nearest-neighbor searching algorithms.
To address these problems, many methods have been presented in different works. For
example, the SAE model [23] adds constraints to the process of embedding the semantic
features into image space, to preserve the information in the image space as much as
possible. Rostami et al. [32] developed a new ZSL algorithm based on coupled dictionary
learning, providing attribute-aware and transductive formulations to tackle the domain-
shift and the hubness challenges. Liu et al. [33] formulate a discriminative cross-aligned
variational autoencoder to collect principal discriminative information from visual and
semantic features to construct latent features which contain the discriminative multi-modal
information associated with unseen samples.

2.3. Zero-Shot Learning for Remote Sensing Image Scene Classification

In recent years, zero-shot learning technology has been applied for the classification
of remote sensing image scenes. For example, Chen et al. [34] proposed a zero-shot
classification algorithm for remote sensing image scenes based on image feature fusion.
It adopts the analytical dictionary learning method and introduces the fusion of image
features to improve the zero-shot classification performance. To address the problems of
the inconsistency of visual and semantic space structure and domain shift, Quan et al. [35]
proposed to use the Sammon embedding and spectral clustering methods for the zero-shot
remote sensing image scenes classification. Chen et al. [36] further used the analytical
dictionary method to obtain the sparse coefficients of each semantic word vector, and
adopted complementarity between the word vectors to obtain new word vectors.

Based on cross-domain mapping and progressive semantic benchmark modification,
Li et al. [37] presented a method based on the depth feature extractor, self-coding cross-
domain mapping model and modified unseen-class semantic vector to alleviate the domain
drift problem. Further, Li et al. [16] proposed locality-preservation deep cross-modal
embedding networks that can fully assimilate the pairwise intramodal and intermodal
supervision in an end-to-end manner, so as to alleviate the problem of class structure
inconsistency between two hybrid spaces. Recently, they [19] made use of the knowledge
graph to enhance semantic connections between remote sensing image scene categories for
the first time.

3. Method

In this section, we detail the proposed method of cross-modal feature alignment for
zero-shot remote-sensing image scene classification. We will first give an overview of the
method, and then introduce the architecture of the model integrating VAE with GAN.
Finally, the training process of the proposed model is clarified.

3.1. The Overview

For zero-shot remote-sensing image scene classification, its purpose is to obtain a
model trained from the image scenes of seen classes and use it to make correct predictions
for unseen images. For this purpose, the cross-modal feature alignment method is used to
train a model which projects both the visual features and semantic features of the image
scenes into the latent space and make visual features in the latent space as close to their
semantic features as possible. With the trained model, the visual features and semantic
features of the image scenes of unseen classes can be also projected into the latent space.
Then, in the latent space, a classifier will be trained with the generated semantic latent
features which can classify the semantic latent features of different unseen classes. Because
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the visual features in the latent space are aligned with their semantic features, the classifier
obtained can be also used to classify the visual features of unseen image scenes. In this way,
the classes of the unseen image scenes can be predicted. The framework of the proposed
method is illustrated in Figure 1.

Figure 1. The overview of the cross-modal feature alignment method for zero-shot remote sensing
image scene classification.

As shown in Figure 1, the semantic information of unseen image scene classes are
embedded with the NPL model such as Word2vec [38] or Bert [39] to obtain their semantic
features su. Then su are mapped into the latent features zu

s by the encoder Es. At the same
time, the image scenes are embedded with a pretrained feature extractor, such as ResNet18,
to obtain their visual features vu, which will be further mapped into the latent features zu

v
by the encoder Ev. In the latent space, the visual features zu

v are aligned with their semantic
features zu

s . That is, the visual features zu
v of each class are close to their sematic features

zu
s and far from those of other classes. Using the semantic features zu

s , whose classes are
known, a classifier can be trained. Since the visual features in the latent space are aligned
with their semantic features, such a trained classifier can be also used to classify visual
features and predict their classes.

It can be seen that the key of the cross-modal feature alignment method is to obtain the
two modality encoders Es and Ev which project the semantic features and visual features
into the latent space, respectively, and make sure that they are aligned with each other. In
this paper, we propose to integrate the VAE and GAN models to train such encoders. We
detail the network architecture and the training process as follows.

3.2. The Network Architecture

To obtain encoders which can project the visual and semantic features of image scenes
into the latent space and make sure that they are aligned, this paper proposes to augment a
VAE model with a GAN to integrate their strengths for better cross-modal feature alignment.
The overall architecture of the integrated model can be seen in Figure 2.
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Figure 2. The model architecture of the proposed method.

It can be seen that there are two main components in the model, namely, DVAE and
Discriminator of GAN. With two different VAEs for different modalities, the DVAE is to
project the visual features and semantic features of image scenes into the latent space and
then reconstruct them. Each VAE consists of an encoder and a decoder. The encoders
map the visual features and the semantic features of the image scenes into the latent space.
Then, the decoders reconstruct the visual features and the semantic features from the
mapped latent features. The two encoders are what we want, as shown in Figure 1. In the
meantime, there are three discriminators which measure the performance of the DVAE. The
discriminators of D1 and D2 correspond to two VAEs, respectively, and the discriminator
D3 is for both VAEs. Particularly, the decoder Dv and the discriminator D1 constitute a
GAN in which the decoder Dv functions as the generator of the GAN. Similarly, the decoder
Ds and the discriminator D2 constitute another GAN. In these GANs, the discriminators
measure the quality of the reconstructed visual features and semantic features, and produce
the probabilities that the reconstructed features are the original ones. Different from the
discriminators of D1 and D2, the input to the discriminator D3 are the cross-modal pairs of
the visual features and the semantic features. It is to further judge whether the features in
the pairs are the original ones or the reconstructed ones by measuring the compatibility or
alignment between the cross-modal features.

Specifically, given a batch of image scenes, their visual features v and corresponding
semantic features s are extracted in advance. Then, the encoders project them into the latent
space. Following that, the mean and variance of the distributions of the visual features
and the semantic features are estimated. They are the µv, µs, δv, and δs. Through sampling
from the estimated distributions, the visual and semantic features zv and zs of the image
scenes in the latent space are generated. For reconstruction purposes, the latent features
of zv and zs will be input into the decoders Dv and Ds to obtain the reconstructed ones of
v′ and s′. For feature alignment purposes, the latent visual features zv will be input to the
semantic decoder Dv to obtain the new reconstructed semantic features s”. At the same
time, the latent semantic features zs will be input into the visual decoder Ds to obtain the
new reconstructed visual features v”. Further, all the reconstructed visual and semantic
features v′, v”, s′, and s” are input into the discriminators of D1 and D2 to predict the
probabilities that the reconstructed features are the true features. For the discriminator
D3, the visual-semantic pairs of (v,s), (v,s′), (v,s”), (v′,s), (v”,s) are input to predict the
cross-modal matching degrees between the recontracted features and the true features.

Due to the application of the adversarial generative network, the proposed model
will be trained step-by-step. That is, the discriminators are trained first in one epoch, and
the DVAE is trained subsequently. The DVAE and the discriminators evolve through the
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adversarial learning. We detail the training process of the DVAE and the discriminators
as follows.

3.3. The Training of DVAE

Given the visual and semantic features of the image scenes, the DVAE module maps
the two modality features into the latent space and then reconstructs them. With the
reconstructed visual and semantic features, the discriminators measure the effect of the
reconstruction. In this process, the losses are computed for training the DVAE module. In
the work of Schonfeld et al. [15], three kinds of losses have been used. They are the VAE loss
LVAE, the cross-modal feature-reconstruction loss LCMFR, and the matching loss between
the visual and semantic feature distribution in the latent space LVSDM. Besides these losses,
another two kinds of losses are introduced in this paper. They are the adversarial loss
LADV and the cross-modal feature matching loss LCMFM. The overall loss of the DVAE is
defined as Equation (3), where λi(i = 1, 2, 3, 4) is the weight factor of each kind of loss. We
introduce these kinds of losses as follows.

LDVAE = LVAE + λ1LCMFR + λ2LVSDM + λ3LADV + λ4LCMFM (3)

3.3.1. The VAE Reconstruction Loss

The VAE reconstruction loss function used in this paper is defined as Equation (4). It
is the intrinsic loss function of the VAE model. By minimizing the VAE reconstruction loss,
the reconstructed features are closer to the original features. In the definition, pE denotes
the data distribution generated by the encoder, and the pD represents the data distribution
generated by the decoder. In particular, pv

E(zv|v) refers to the data distribution of the latent
features zv generated by the encoder Ev when given the visual features of v.

LVAE = Epv
E(zv |v)[logpv

D(v|zv)] + Eps
E(zs |s)[logps

D(s|zs)]−

DKL(pv
E(zv|v)||pv

D(zv)) + DKL(ps
E(zs|s)||ps

D(zs))
(4)

3.3.2. The Cross-Modal Feature Reconstruction Loss

The definition of the cross-modal feature-reconstruction loss is shown in Equation (5).
Its purpose is to constrain two encoders to enable that their generated latent features to
be aligned in the latent space. For this purpose, the latent semantic features are input
into visual decoder to reconstruct the visual features, the latent visual features are input
into semantic decoder to reconstruct the semantic features, and the distance between the
reconstructed features and the original features are calculated as the loss. The N denotes
the number of training samples, and vi and si represent the visual feature and semantic
feature of i-th image scene.

LCMFR =
N

∑
i=1
|vi − Dv(Es(si))|+ |si − Ds(Ev(vi))| (5)

3.3.3. The Feature-Distribution Matching Loss

The feature-distribution matching loss is also to enable the latent feature alignment by
ensuring the cross-modal distribution alignment. Its definition is shown in Equation (6),
where µi and

√
Ei represent the the mean and standard deviation of the feature distribution

in the latent space corresponding to i-th image scene. Specifically, µi
v and

√
Ei

v represent
the mean and standard deviation of the distribution of visual feature.

LVSDM =
N

∑
i=1

√
||µi

v − µi
s||22 + ||

√
Ei

v −
√

Ei
s||22 (6)
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3.3.4. The Adversarial Loss

The adversarial loss comes from the discriminators. When inputting the reconstructed
features from the DVAE into the discriminators of D1 and D2, we expect that the dis-
criminators can’t recognize them as the reconstructed ones from the perspective of the
decoders of Dv and Ds. This means that we expect them to predict the probabilities that
the reconstructed features are the original ones as much as possible. Thus, the adversarial
losses from the discriminators of D1 and D2 are defined as follows.

LADV(D1, D2) = E[D1(v′)− 1]2 + E[D1(v”)− 1]2 + E[D2(s′)− 1]2 + E[D2(s”)− 1]2 (7)

For the discriminator D3, the inputs are the visual-semantic pairs of (v,s′), (v,s”), (v′,s),
and (v”,s) . We also expect that the discriminator will not recognize these input features
as the reconstructed ones and predict the probabilities that the features are compatible as
much as possible. Thus, the adversarial loss function for the discriminator of D3 is defined
as follows.

LADV(D3) = E[D3(v, s′)− 1]2 + E[D3(v, s”)− 1]2+

E[D3(v′, s)− 1]2 + E[D3(v”, s)− 1]2
(8)

Therefore, the total adversarial losses coming from the discriminators are as follows:

LADV = LADV(D1, D2) + LADV(D3)

= E[D1(v′)− 1]2 + E[D1(v”)− 1]2 + E[D2(s′)− 1]2 + E[D2(s”)− 1]2+

E[D3(v, s′)− 1]2 + E[D3(v, s”)− 1]2 + E[D3(v′, s)− 1]2 + E[D3(v”, s)− 1]2
(9)

3.3.5. The Cross-Modal Feature Matching Loss

Considering the characteristics of intraclass differences and interclass similarities
among the remote sensing image scenes, we introduce the cross-modal feature matching
loss to further narrow the intraclass differences between the visual features and the semantic
features of the same classes in the latent space, and enlarge the interclass distance between
the visual features and the semantic features of different classes. The definition of the
cross-modal feature matching loss is shown in Equation (8) where czi

v
denotes the class of

the i-th latent feature of zi
v, and cos means the matching metric of cosine distance. N1 is the

number of the cross-modal feature pairs in which both the visual feature and the semantic
feature come from the same classes. Meanwhile, N2 is the number of the cross-modal
feature pairs in which the visual feature and the semantic feature are from different classes.

LCMFM =
1

N1
∑

c
zi
v
=c

zj
s

cos(zi
v, zj

s)−
1

N2
∑

c
zi
v
6=c

zj
s

cos(zi
v, zj

s) (10)

3.4. The Training of Discriminators

Once the visual features and the semantic features are reconstructed by the decoders
of the VAEs, the discriminators measure the performance of the reconstructed features by
judging whether there are reconstructed features in the inputs. Particularly, when training
the discriminator of D1, we input the original visual features v and the reconstructed visual
features v′ and v” into the discriminator of D1. And we expect that the discriminator has
the ability to distinguish the reconstructed visual features v′ and v” from the original visual
features v. That is, we expect that the discriminator produces the probability that the input
features are the original ones as much as possible for v, but, on the contrary, as small as
possible for v′ and v”. Thus, the loss function for the discriminator of D1 can be defined
as follows.

LADV(D1) = E[D1(v)− 1]2 + E[D1(v′)]2 + E[D1(v”)]2 (11)
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Similarly, the loss function of the discriminator of D2 can be defined as follows.

LADV(D2) = E[D2(s)− 1]2 + E[D2(s′)]2 + E[D2(s”)]2 (12)

For the discriminator of D3, we will input the pairs of (v, s), (v, s′), (v, s”), (v′, s), and
(v”, s) into it for training. The discriminator of D3 will produce the probabilities indicating
whether there are reconstructed features in the pairs. Then, when inputting the pairs of
(v, s), we expect that the discriminator of D3 predicts the portability as much as possible.
In contrast, we expect that the discriminator of D3 predicts the probabilities as small as
possible for these kinds of pairs of (v, s′), (v, s”), (v′, s), and (v”, s). Therefore, the loss
function of the discriminator of D3 can be defined as follows:

LADV(D3) = E[D3(v, s)− 1]2 + E[D3(v, s′)]2 + E[D3(v, s”)]2

+ E[D3(v′, s)]2 + E[D3(v”, s)]2
(13)

Finally, the loss function for training these three discriminators is as follows:

LADV(D1, D2, D3) = LADV(D1) + LADV(D2) + LADV(D3) (14)

4. Experiments

In this section, extensive experiments are conducted to evaluate the effectiveness of
the proposed method by attempting to answer the following four research questions.

RQ1. How do the different kinds of losses defined in Equation (3) contribute to model
performance?

RQ2. Does the proposed method achieve better performance when compared with re-
lated methods?

RQ3. Does each improvement, i.e., the three discriminators and the cross-modal feature-
matching loss, actually work as expected?

RQ4. What is the impact of different visual feature extractors on zero-shot image scene
classifications performance?

4.1. Experimental Setup
4.1.1. Data for Experiments

This paper takes the dataset which has been used in the work of Li, et al. [19] for exper-
iments. This dataset is the integration of five public remote sensing image scenes datasets
including UCM [40], AID [41], NWPU-RESISC [42], RSI-CB256 [43], and PatternNet [44].
The merged dataset realizes the complementarity between different classes and increases
the diversity. This contributes to the validation of the zero-shot classification performance.
There are 70 classes in the dataset, and 800 images with the size of 256 pixel × 256 pixel for
each class. Some images of the dataset are shown in Figure 3.

4.1.2. Metric of the Experiment

To measure the performance of the proposed method, this paper adopts the metric of
overall accuracy (OA) which is defined as follows.

OA =
1
m

m

∑
c

correct predictons in c
total samples in c

(15)

In the above equation, we adopt the widely used average per-class top-1 accuracy
to evaluate the performance of each model where m represents the number of unseen
classes. For each class of image scenes for testing, the accuracy is calculated by dividing
the number of image scenes correctly classified by its total number of image scenes. The
overall accuracy is the average of the accuracy of each class.
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Figure 3. The examples of the remote sensing image scenes of the dataset.

4.1.3. The Implementation

For the implementation of the proposed method, all the encoders and decoders are
neural networks with only one layer. For the encoder and the decoder of the visual modality,
their dimensions are set to 512. As the semantic feature dimension is smaller than that of
visual features, the dimensions of the encoder and decoder for the semantic modality are
set to 256. The discriminator D1 is designed as a neural network with only one hidden layer
where the dimension is 1200. The discriminator D2 is also designed as a neural network
with only one hidden layer where the dimension is 256. The discriminator D3 is designed
as a neural network with two fully connected layers, where the dimensions are 1200 and
600. We set the batchsize to 50, the dimension of the latent feature vector to 32, and take
50 epochs to train the model. When using the generated latent semantic features to train a
classifier for predicting the classes of unseen image scenes, the softmax classifier is applied.
Our implementation is based on that of [15].

We used the classical CNN backbone of the ResNet network, such as ResNet101,
ResNet50, and ResNet18 models [45], to extract the visual features of image scenes. They
are pretrained on the ImageNet dataset. The 2048-dimensional features are extracted from
the remote-sensing image scenes by using ResNet50 and ResNet101, and 512-dimensional
features are there when using ResNet18. Regarding the extraction of semantic features,
we adopted two kinds of sematic features used by the work of Li et al. [19] for experi-
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ments, (1) the 300-dimensional features which are extracted from the class labels by using
Word2Vec; (2) the 1024-dimensional features which are extracted by using BERT from a set
of sentences describing the image scene classes.

4.2. Hyperparameter Analysis

To evaluate the effect of the hyperparameters and answer RQ1, we analyzed the
sensitivity of the hyperparameters of λ1, λ2, λ3, and λ4 shown in Equation (3). They are
the weight factors of cross-modal feature reconstruction loss, feature-distribution-matching
loss, adversarial loss, and cross-modal feature-matching loss. The experiment has been
conducted under the seen/unseen ratio of 60/10, and the visual features from ResNet18
and the semantic features from Bert are adopted. The average of the classification accuracies
over five random seen/unseen splits are recorded.

As shown in Figure 4, while setting λ2, λ3, and λ4 to 1, we tested the values in the set
of [0.001, 0.01, 0.1, 1, 10, 100] for λ1, and found that best performance was achieved when
λ1 = 1. In the same way, we set λ1, λ3, and λ4 as 1, our proposed method achieved the best
performance when λ2 = 0.01. By setting λ1 as 1, λ2 as 0.01, and λ4 as 1 to test the values
of λ3, best performance was there when λ3 = 0.1. When testing the values of λ4, we set
λ1 as 1, λ2 as 0.01, and λ3 as 0.1, with the results indicating that it is better to set λ4 to 0.1.
Therefore, in our following experiments, we have set the hyperparameters of λ1, λ2, λ3,
and λ4 shown in Equation (3) to 1, 0.01, 0.1, and 0.1, respectively.

Figure 4. The sensitivity analysis of the weight factor assigned to the different losses.

4.3. Comparison with Related Methods

To validate the performance of our method and answer RQ2, we have compared it with
several classical zero-shot methods. These methods include the embedding-based method
of SPLE [46] and the generative model-based methods of SAE [23], CIZSL [47], GDAN [14],
and CADA-VAE [15]. SPLE [46] introduced the idea of semantically preserving positional
embedding, and achieved better matching between visual features and semantic features.
SAE [23] adopted the semantic feature representation as the hidden layer, and followed
the AE model to learn the mapping from semantic space to visual space. CIZSL [47]
used generative adversarial network for zero-shot learning and introduced hallucinated
text to the generator, encouraging the generated visual features to deviate from the seen
classes and thus making the generated samples more diverse. GDAN [14] built a dual
generative adversarial networks and used dual adversarial loss and cycle consistency
loss to bidirectionally map visual and semantic features. CADA-VAE [15] proposed the
construction of visual and semantic variational autoencoders to reconstruct features and
align them in the latent space so that the constructed features contain basic multimodal
information related to unseen classes. We have divided the dataset according to the ratios
of 60/10, 50/20, and 40/30 to obtain the training set and the testing set. And both the
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semantic features from Word2vec and Bert are taken into consideration. The results of the
comparison are shown in Table 1.

Table 1. The results of the comparison with related zero-shot methods.

Semantic
Features Types Word2Vec Bert

Seen/Unseen
Ratios 40/30 50/20 60/10 40/30 50/20 60/10

SPLE [46] 9.8% ± 1.4% 13.2% ± 1.9% 20.1% ± 3.7% 8.3% ± 2.0% 13.2% ± 2.6% 19.0% ± 3.8%
SAE [23] 9.6% ± 1.4% 13.7% ± 1.7% 23.5% ± 4.2% 8.8% ± 1.3% 12.4% ± 1.9% 22.0% ± 1.7%

CIZSL [47] 6.0% ± 1.2% 10.6% ± 3.7% 20.6% ± 0.4% 6.2% ± 2.1% 10.3% ± 1.9% 20.4% ± 4.1%
GDAN [14] 8.1% ± 1.1% 13.6% ± 4.7% 27.6% ± 5.9% 9.8% ± 0.9% 13.8% ± 1.1% 32.1% ± 8.2%

CADA-VAE [15] 8.23% ± 2.7% 14.68% ± 1.87% 23.37% ± 1.85% 11.45% ± 0.36% 15.56% ± 1.3% 32.85% ± 2.51%
Ours 9.31% ± 1.56% 16.56% ± 3.5% 27.98% ± 1.35% 11.42% ± 0.42% 17.86% ± 1.09% 35.08% ± 1.23%

As can be seen from Table 1, our method achieved the optimal performance in most
cases, which showed its effectiveness. Generally speaking, the embedding-based method
of SPLE has not shown competitive performance when compared with these generative
model-based methods. But, among these generative-based methods, the CIZSL method
has the worst results. This may be because that the remote sensing image scenes are
complex, usually containing a variety of objects. The generative adversarial network
may not generate high-quality samples well due to its training instability, resulting in
unsatisfactory ZSL classification results. Meanwhile, compared with the methods of SAE
and GDAN, CADA-VAE has achieved better performance. This may be due to the fact that,
unlike SAE and GDAN, CADA-VAE adopts the cross-modal latent feature alignment for
zero-shot image scene classification instead of following the generative models to generate
samples for unseen classes. Our method improved the CADA-VAE method by augmenting
the VAEs with the discriminators of GAN, and the cross-modal feature matching loss. It
can be seen that our method outperforms the CADA-VAE method, which validates the
contribution of our improvements.

Moreover, when comparing the results under the semantic features from Word2vec
and Bert, our method has better performance when adopting the semantic features from
Bert, especially under the dividing ration of 60/10. This may be because that the semantic
features from Bert with 1024 dimensions contain more information about the characteristics
of image scenes. Further, similar to other methods, the proposed method obtained the best
results under the dividing ratio of 60/10. This is because there are more classes for training
and more knowledge can be leveraged for unseen classes.

4.4. Ablation Experiments

There are several new components (i.e., the discriminators of D1, D2, D3, and the cross-
modal matching loss) we have introduced, compared with the CADA-VAE method [15].
To validate the benefits of these components so as to answer RQ3, we conducted ablation
experiments by using semantic features from Bert. In the experiment, we have also vali-
dated the ways of dot production and Euclidean distance for calculating the cross-modal
matching loss as well as the cosine distance. As shown in Table 2, we have constructed the
following model variants.

DVAE-DGAN augment the dual VAEs model with two discriminators of D1 and D2,
that is, equipping each VAE with one discriminator.

DVAE-GAN augment the dual VAEs model with one single cross-modal discriminator
of D3 for both VAEs.

DVAE-TGAN augment the dual VAEs model with all the discriminators of D1, D2,
and D3.

DVAE-TGAN-LCMFM1 , while adopting all the discriminators D1, D2, and D3, adopt
the dot production to calculate the cross-modal matching loss.
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DVAE-TGAN-LCMFM2 while adopting the discriminators D1, D2, and D3, adopt the
Euclidean distance to calculate the cross-modal matching loss.

DVAE-TGAN-LCMFM3 while adopting the discriminators D1, D2, and D3, adopt the
cosine distance to calculate the cross-modal matching loss.

Table 2. Ablation experiments.

Variants D1 + D2 D3 Dot_production Euclidean_distance Cosine_distance 40/30 50/20 60/10

DVAE-DGAN X 5 5 5 5 10.67% ± 0.83% 15.74% ± 0.01% 34.16% ± 2.57%
DVAE-GAN 5 X 5 5 5 10.22% ± 0.85% 15.49% ± 0.6% 32.3% ± 2.41%

DVAE-TGAN X X 5 5 5 11.3% ± 0.79% 16.2% ± 1% 34.42% ± 1.75%
DVAE-TGAN-

LCMFM1
X X X 5 5 9.79% ± 0.47% 16.92% ± 1.46% 34.48% ± 0.54%

DVAE-TGAN-
LCMFM2

X X 5 X 5 10.89% ± 0.63% 16.99% ± 1.77% 34.79% ± 1.2%

DVAE-TGAN-
LCMFM3

X X 5 5 X 11.42% ± 0.42% 17.86% ± 1.09% 35.08% ± 1.23%

It can be seen from Table 2 that DVAE-TGAN achieves best result compared with the
variants of DVAE-DGAN and DVAE-GAN. This shows the benefits of all these discrimina-
tors. When applying all these discriminators, more constraint information will be obtained.
The constraint information can improve the encoders to better map the visual and semantic
features of image scenes, and the decoders to better reconstruct them. Meanwhile, it is
obvious that the strategy of equipping each VAE with a discriminator (i.e., DVAE-DGAN)
is superior to that of applying a single cross-modal discriminator for both VAEs (i.e., DVAE-
GAN). The reason may be that the different discriminators for different modalities will
measure the reconstruction error more accurately than the cross-modal discriminator.

In addition, when comparing DVAE-TGAN with the variants of DVAE-TGAN-LCMFM1 ,
DVAE-TGAN-LCMFM2 , and DVAE-TGAN-LCMFM3 , it can be seen that better performance
is provided by the cross-modal feature-matching loss in most cases. This demonstrates the
effectiveness of the cross-modal feature-matching loss. Among these methods of calculating
the cross-modal feature-matching loss, it is better to use the cosine distance. This may be
because it is better able to validate the alignment between the cross-modal features which
are located in the high-dimensional space.

4.5. The Impact Evaluation of the Visual Feature Extractors

To achieve the cross-modal feature alignment in the latent space, the visual and
semantic features are often extracted in advance by applying some extractors. It is obvious
that these extractors play an important role for zero-shot image scene classification. The
impact of the semantic feature extractors such as Word2Vec and Bert has been evaluated
in related works. However, the impact of these visual feature extractors has not been
investigated. Thus, taking the extractors of ResNet18, ResNet101 and ResNet50 as example,
we have done an experiment to validate their different impact on our method and answer
the research question RQ4. Figure 5 shows the results of this experiment. It can be seen
that for both two kinds of semantic features, better performance is there when ResNet18
is used as the visual feature extractor. In comparison, the features extracted by ResNet18
are smaller in dimension, i.e., 2048 dimensions for ResNet50 and ResNet101, and 512
dimensions for ResNet18. And from Resnet18 to Resnet50 and to Resnet101, there are
more and more layers in each model. The results shown in Figure 5 indicate that larger
dimensions and more layers may not contribute to the image scene classification under a
zero-shot setting. This may be because the shallow features will make a greater contribution
to zero-shot image scene classification but are lost with the increase of layers.
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Figure 5. The results of the experiment of evaluating the impact of different visual feature extractors.

4.6. Visualization of the Latent Visual and Semantic Feature Alignment

The proposed method attempts to achieve better feature alignment between the visual
and semantic modalities, that is, each class of visual features are closer to their own semantic
feature and farther from other classes of semantic features. In order to provide a qualitative
evaluation of the proposed method, we have visualized the latent visual and semantic
features of the unseen image scenes to observe the cross-modal feature alignment in the
latent space. Figure 6 shows one of the results, where Figure 6a is the visualization of cross-
modal feature alignment without our improvements, while Figure 6b is the visualization
of the results of our method. Since there are more unseen classes under the seen/unseen
ratios of 50/20 and 40/30, we have only used the latent features under the seen/unseen
ratio of 60/10 for better visualization. Thus, there are 10 unseen classes of image scenes
in the visualization. And there are 800 latent visual features (denoted by �) and 1 latent
semantic feature (denoted by N) for each unseen class. The original visual features of the
image scenes are extracted by ResNet18 and the original semantic features are extracted by
Bert. The tool of t-SNE [48] is used for the cross-modal feature alignment visualization.

Figure 6. T-SNE visualization of the cross-model feature alignment between the visual (�) and
semantic (N) features of unseen image scenes in the latent space.

From Figure 6a, we can see that the latent visual features of the classes of basketball
_court (i.e., purple color), palace (i.e., pink color), and school (i.e., light grey color) are
far apart from the latent semantic features of these classes. By comparison, as shown in
Figure 6b, the latent semantic features of these classes are surrounded by the latent visual
features. In addition, it can be also seen that for the classes of baseball_field (i.e., green color),
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airplane (i.e., red color), and beach (i.e., orange color), the latent visual features become
closer to the latent semantic features of their classes after applying the proposed method.
But for the classes of airport (i.e., blue color) and overpass (i.e., khaki color), it seems that
the latent visual features of these classes become further from the semantic features of
these classes. On the whole, these visualization results also indicate the contribution of our
proposed method to the cross-modal feature alignment.

5. Conclusions

This paper proposes augmentation of the dual VAEs with a GAN, for cross-modal
feature alignment for zero-shot remote-sensing image scene classification. The concept is
to make use of the GAN’s discriminator in order to learn a suitable reconstruction quality
metric for the VAE. Given that there are two VAEs for the visual and semantic modalities,
respectively, we propose to equip each VAE with a discriminator while adding another
cross-modal discriminator for both VAEs. To promote feature alignment in the latent space
and address the challenge of intraclass differences and interclass similarities, we have also
proposed the cross-modal feature-matching loss to make sure that the visual features of
one class are aligned with the semantic features of the class and unaligned with those of
other classes. Based on the public dataset, our experiments have shown the contributions
of the discriminators and the cross-modal feature-matching loss. In light of the fact that the
visual and semantic features are often extracted in advance by applying some extractors
and the impact of the different visual feature extractors has not been investigated, we have
taken the ResNet models of ResNet18, extracting 512-dimensional visual features, and
ResNet50 and ResNet101, both extracting 2048-dimensional visual features, for testing.
The experimental results show that better performance is achieved by ResNet18, which
indicates that more layers of the extractors and larger dimensions of the extracted features
may not contribute to the image scene classification under zero-shot setting.
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