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Abstract: Hyperspectral image (HSI) super-resolution aims at improving the spatial resolution of
HSI by fusing a high spatial resolution multispectral image (MSI). To preserve local submanifold
structures in HSI super-resolution, a novel superpixel graph-based super-resolution method is
proposed. Firstly, the MSI is segmented into superpixel blocks to form two-directional feature tensors,
then two graphs are created using spectral–spatial distance between the unfolded feature tensors.
Secondly, two graph Laplacian terms involving underlying BTD factors of high-resolution HSI are
developed, which ensures the inheritance of the spatial geometric structures. Finally, by incorporating
graph Laplacian priors with the coupled BTD degradation model, a HSI super-resolution model
is established. Experimental results demonstrate that the proposed method achieves better fused
results compared with other advanced super-resolution methods, especially on the improvement of
the spatial structure.

Keywords: hyperspectral image; multispectral image; super-resolution; tensor block term decomposition;
graph Laplacian regularization; superpixel segmentation

1. Introduction

Hyperspectral remote sensing has been widely used in the fields of geological explo-
ration, agricultural production, urban planning, environmental monitoring and so on. Due
to the limitation of the optical imaging mechanism of airborne spectrometers, hyperspectral
image (HSI) with high spectral resolution is often accompanied by lower spatial resolution,
which brings inconvenience to the applications, such as classification, anomaly detection,
and object recognition [1,2]. Therefore, improving the spatial resolution of HSI has become
an urgent issue. Fortunately, multispectral image (MSI) has high spatial resolution but with
low spectral resolution. Therefore, the fusion of HSI and MSI (HSI–MSI), also called HSI
super-resolution, provides an effective and efficient way to improve the spatial resolution of
HSI and results in a high-resolution hyperspectral image (HR-HSI). Furthermore, by fusing
HSI–MSI, the shortcoming of a single imaging device in spatial-spectral resolution has
been overcome, and a more comprehensive and accurate understanding of the observed
environment can be obtained [3,4].

1.1. Relates Works

In general, the HSI–MSI fusion methods can be categorized as four classes [5–7],
pansharpening-based methods [8,9], matrix-based methods [10–12], tensor-based meth-
ods [13–17], and deep CNN-based methods [18,19]. Among them, matrix and tensor
methods depend on the degradation model of high-resolution HSI combined with priors of
the decomposition matrix or tensor factors. Regularization priors, such as low-rank [20–24],
sparsity [25–27], or graph Laplacian [28,29], are widely used in HSI–MSI fusion models.
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However, in matrix-based methods, the HSI is unfolded into matrices, which ignores
the inherent three-dimensional features. Tensor, as a multi-dimension array, provides a
flexible representation of HSI and has made tensor-based HSI super-resolution methods
popular recently.

In tensor-based HSI super-resolution, the HSI is modeled as a third-order tensor
with two spatial dimensions and one spectral dimension, which can fully exploit the
dependence across different dimensions or modes. Moreover, tensor has more flexible
decomposition forms, such as canonical polyadic decomposition (CPD) [30], Tucker decom-
position (TD) [23], singular value decomposition (t-SVD) [31,32], tensor ring decomposition
(TRD) [33,34], tensor block term decomposition (BTD) [35,36], etc. Each decomposition
leads to a different perspective in understanding the correlation between the different
modes of the tensor. Canonical polyadic decomposition (CPD) represents a tensor with a
sum of R tensors, in which each tensor is rank-1. Kanatsoulis et al. [37] first formulated a
coupled tensor CPD-based HSI–MSI fusion model by establishing the relations between ten-
sor mode-product and the HSI degradation model. Furthermore, the blind and semi-blind
HSI–MSI fusion models were solved by the alternative optimization algorithm, which is a
well-known STEREO algorithm. Xu et al. [38] proposed a HSI super-resolution model based
on non-local coupled tensor patches, in which the constructed fourth-order low-rank tensor
is guided by MSI, and the HR-HSI and MSI share the same nonlocal tensor CPD factor
matrices. Although CPD can represent the three-dimensional data structure, it has a high
computational complexity and the CP rank R is hard to compute. Tucker decomposition
(TD) provides a flexible decomposition with a core tensor and three matrix factors. Each
factor of TD is easy to compute. Assuming the HR-HSI has a low Tucker multilinear rank,
a coupled TD-based HSI–MSI fusion model with blind and semi-blind SCOTT algorithms
is proposed in [16]. Furthermore, the decomposed core tensor was estimated by solving
the generalized Sylvester equation, and three factor matrices were computed by truncated
singular value decomposition. In addition, TD factors can be viewed from spatial and
spectral dimensions, so a dictionary learning strategy was introduced to train spatial and
spectral dictionaries from MSI and low-resolution HSI, respectively [13]. Furthermore, by
considering the spectral smoothness and spatial consistency as priors, a graph regularized
low-rank tensor fusion method was developed in [17]. Borsoi et al. [39] assumed that there
is spectral variability in HSI–MSI fusion and introduced the variability into the TD fusion
model with an additive term. In general, tensor CPD and TD can be unified as tensor BTD.
Specifically, tensor BTD provides a clear physical explanation for the factor matrices from
the perspective of unmixing, and makes the prior of the abundance and endmember easy
to model [40–42]. Therefore, a coupled BTD-based HSI–MSI fusion technique has become
popular for the linear unmixing model involved [43,44]. The endmember and low-rank
abundance map are represented by potential factor matrices under BTD. However, due
to the lack of constraints on the factor matrix, the quality of the fused HSI is reduced.
Therefore, other regularization terms have the potential to be combined with BTD in fusion
models to improve the recovery performance.

1.2. Motivations and Contributions

In terms of regularization, factors such as total variation [45], low-rank, sparse, graph
Laplacian [46], etc. have been widely exploited combined with tensor decomposition
as mentioned. Among them, manifold Laplacian is an effective strategy to improve the
spatial structure of images. In [46], a graph Laplacian is integrated with BTD for HSI–MSI
fusion, resulting in an impressive performance. However, the local weight matrix of the
graph is calculated in a pixel-wise manner, which can easily be affected by noise and
cannot describe the local geometry of the image well. Therefore, to exploit the spatial
neighborhood structure by generating homogeneous segmented regions and reduce the
sensitivity to noise and outliers, a superpixel-guided graph Laplacian regularization is
constructed in this paper. Furthermore, considering the merits of the BTD, the graph
Laplacian is introduced to the BTD-based HSI–MSI fusion framework, resulting in the
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regularization of the proposed superpixel-based graph Laplacian with the BTD fusion
method, named as SGLCBTD for short. The main contributions are as follows.

(1) The MSI is segmented by regional clustering according to spectral–spatial
distance measurements;

(2) Two-directional tensor graphs are designed via the features of the segmented MSI
superpixel blocks, whose local geometric structure is consistent with HSI;

(3) The similarity weights of the superpixel blocks are calculated and graph Laplacian
matrices are constructed, which is used to convey the spatial manifold structures from
MSI to the factor matrices of HSI;

(4) The proposed superpixel graph Laplacian BTD model is solved by the block coordinate
descent algorithm, and the experimental results are displayed.

2. Background

For convenience, some necessary definitions and preliminaries of tensor are introduced
first. A scalar, a vector, a matrix, and a tensor are denoted as x, x, X and X , respectively.
xi, Xij and X ijk denote the i-th, (i, j)-th and (i, j, k)-th element of x ∈ RI , X ∈ RI×J and
X ∈ RI×J×K, respectively. The n-mode unfolding of tensor X is represented by X(n).
The one-mode product of tensor X ∈ RI×J×K with a matrix A ∈ RM×I is denoted by
Y = X ×1 A = AX(1), thus, for the n-mode products, n = 1, 2, 3. A ◦ x stands for the outer
product of a matrix A ∈ RM×N and a vector x ∈ RI , resulting in an M× N × I tensor. For
two matrices A ∈ RI×K and B ∈ RI×K, the Khatri–Rao product is A� B ∈ RI J×K, and �p
stands for the column-wise Khatri–Rao product along the column.

2.1. Block Term Decomposition

The block term decomposition (BTD) in rank-(Lr, Lr, 1). terms is defined that a third-
order tensor X ∈ RI×J×K . can be decomposed as the sum of rank-(Lr, Lr, 1) terms [35]

X ≈
R

∑
r=1

(
ArBT

r

)
◦ cr (1)

where Ar ∈ RI×Lr Br ∈ RJ×Lr are full-column matrices with rank-Lr, and cr ∈ RK, R is the
rank of the tensor X .

Let = BT
r ∈ RI×J and replace it into formula (1), so

X ≈
R

∑
r=1

Sr ◦ cr (2)

Furthermore, unfolding the tensor along the third mode results in the following
expression from the matrix point of view:

X(3) = CS + ε (3)

where X(3) ∈ RK×I J is the three-mode unfolding of tensor X , matrices C = [c1, · · · , cR] ∈
RK×R and S = [S(1, :), · · · , S(R, :)] ∈ RR×I J have rank-R, each element S(r, :) ∈ RI J of S
constitutes the matrix Sr with size of I × J, the error term ε is the Gaussian noise.

The Formula (3) can be easily connected with the linear unmixing model (LMM) of
HSI. Specifically, matrix C is the endmember matrix containing the spectral signatures of R
endmembers c1, c2 , . . . cR, matrix S represents the abundance coefficient matrix, each Sr is
the abundance corresponding to endmember cr. Therefore, decomposition factors Ar and
Br of matrix Sr also represent the spatial abundance information.

2.2. Problem Formulation

Let Yh ∈ RIh×Jh×KH ,Ym ∈ RIM×JM×Km represent the low spatial resolution hyperspec-
tral image (LR-HSI) and MSI, respectively. Let Ys ∈ RIM×JM×KH be the super-resolution
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hyperspectral image (SRI) to be estimated. Ih, IM and Jh, JM represent the dimensions
of the spatial width and height, respectively, KH , Km represent the spectral dimension,
and Ih � IM, Jh � JM, Km � KH . It is often assumed that LR-HSI is obtained by spatial
degradation of SRI, and MSI is the spectral degradation of SRI, namely,

Yh = YS ×1 P1 ×2 P2 (4)

Ym = YS ×3 P3 (5)

where P1 ∈ RIh×IM and P2 ∈ RJh×JM are the spatial blurring and downsampling matrices,
P3 ∈ RKm×KH is a spectral response matrix.

Then, the HSI–MSI fusion can be formulated as

minYS

∣∣∣∣∣∣Yh −YS ×1 P1 ×2 P2

∣∣∣|2F+∣∣∣∣∣∣Ym −YS ×3 P3

∣∣∣|2F (6)

By assuming YS follows the rank-(Lr, Lr, 1) model as shown in (1), the HSI–MSI fusion
model (6) can be rewritten as follows:

minAr ,Br ,Cr‖Yh −
R

∑
r=1

(
P1Ar(P2Br)

T
)
◦ cr‖2

F + ‖Ym −
R

∑
r=1

(
ArBT

r

)
◦ P3cr‖2

F (7)

Formula (7) tells us that estimating SRI YS with BTD is equal to estimating the high-
resolution abundance map

{
ArBT

r
}R

r=1 and endmember matrix Cr. The theorem in [44,45]
gives the recoverability of a hyperspectral super-resolution problem under the BTD of
rank-(Lr, Lr, 1).

3. Proposed Methods

Generally, the HSI–MSI fusion model (7) is often added with more constraints to
achieve a stable and accurate solution, such as total variation, sparsity, low-rank, graph
Laplacian, etc. Among them, graph Laplacian can preserve the local manifold structure
of high-dimensional image data. Moreover, considering that the superpixel provides
local homogeneous regions with geometric structure involved, a superpixel-based graph
Laplacian combined with a coupled BTD HSI–MSI fusion model (SGLCBTD) is proposed.

The flowchart is given in Figure 1. As it shows, the core idea of the proposed method
is the construction of two graph Laplacian. To achieve this goal, four steps are performed:
(1) segmenting the MSI to generate superpixel blocks; (2) extracting the features of the
superpixel blocks to form two feature tensors; (3) constructing two graphs based on feature
tensors, including compute the weights; and (4) establishing two graph Laplacian terms.
Finally, the regularized graph Laplacian terms are introduced to the HSI–MSI fusion
framework with the BTD formula.

3.1. Superpixel-Based Graph Laplician Construction
3.1.1. Regional Clustering-Based Superpixel Segmentation

Compared with the pixel-wise segmentation method, the superpixel segmentation
method shows faster speed and more accurate segmentation results. One of the most
popular superpixel segmentation methods is the simple linear iterative clustering (SLIC)
algorithm. Inspired by the SLIC method, a regional clustering superpixel segmentation
method is designed for HSI unmixing by integrating spatial correlation and spectral sim-
ilarity at clustering procedure [47]. Specifically, the combination of spectral information
divergence (SID) and spectral angler mapper (SAM) is employed as a spectral distance
measurement, and Euclidean distance is used as a spatial distance. Taking this merit of
the superpixel segmentation method into account, in this paper, the regional clustering
superpixel segmentation method is employed to generate superpixel blocks.
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Figure 1. Flowchart of the proposed SGLCBTD method.

3.1.2. Two-Directional Feature Tensors Extraction

Similarly to the MSI, the resultant superpixel block shows geometric spatial structure
as well as spectral information. Along horizontal and vertical spatial directions, the
superpixel has different features. Therefore, it is necessary to design two-directional feature
tensors to represent the geometric structure.

For each irregular superpixel block Sk, along the horizontal direction, feature tensor
Sk

h is constructed by its horizontal feature vectors (such as average, maximum, median or
difference, etc.). Then, all horizontal feature tensors are arranged according to the second
dimension, resulting in a feature tensor Sh with a size of IM × N × Km, where N is the
number of the superpixel block. Meanwhile, the vertical feature tensor SV ∈ RIM×JM×Km is
generated in the same manner.

3.1.3. Two Graph Generation

A horizontal graph Gh = (Vh, Eh) with vertex Vh and edge Eh is defined by horizontal
feature tensor Sh derived from superpixel blocks. To be specific, taking the one-mode
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factorization of tensor Sh as elements of the vertex Vh =
(

S(1)
h (1, :) , · · · , S(1)

h (IM, :)
)

, the

weigh wpq
h of the edge Eh =

{
eh

p,q

}
can be calculated as follows

wpq
h = e−

||S(1)h (p,:)−S(1)h (q,:) ||2

σ2 (8)

where S(1)
h (p, :) and S(1)

h (q, :) represents the p-th row and q-th row of S(1)
h , respectively, and

σ is the bandwidth of Gaussian kernel.
Meanwhile, a vertical graph = with vertex Vv and edge Ev can be defined according

to the vertical feature tensor Sv in the same way.

3.1.4. Two Graph Laplacian Construction

The graph shows the spatial correlation between superpixels, which is the same as
that of SRI, for the fused SRI and MSI have the same spatial structure. The manifold
structure in MSI is incorporated into SRI as illustrated in Figure 2, where Ar and Br are the
decomposition factor of BTD. With the BTD factorization, the factor matrix Ar represents
the spatial information along the horizontal direction (first mode of the tensor), so the
row relationship of HR-HSI and MSI is the same as that of Ar. Similarly, factor matrix Br
represents the vertical (second mode of tensor) information, so the relationship between
columns in HR-HSI and MSI is the same of that of the columns of Br.
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Therefore, the similarity between rows in Ar can be formulated as:

∑IM
p=1 ∑IM

q=1

∣∣∣∣∣∣Ar (p, :)−Ar (q, :) ‖2wpq
h (9)

where Ar (p, :) and Ar (q, :) represents the p-th row and q-th row of Ar, respectively, wpq
h is

the weight of the horizontal graph.
Let Wh =

(
wpq

h

)
∈ RIM×IM , which stands for the horizontal weighted adjacency

matrix. Then, the horizontal graph Laplacian matrix Lh can be defined as Lh = Dh −Wh ,
where Dh is a diagonal matrix with diagonal elements dii

h = ∑j wij
h .

Therefore, Formula (9) can be rewritten as follows:

∑IM
p=1 ∑IM

q=1

∣∣∣∣∣∣Ar (p, :)−Ar (q, :) ‖2wpq
h = Tr

(
AT

r LhAr

)
(10)
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Extending this constraint to A = [A1, · · · , AR], the horizontal graph Laplacian can be
written as

∑R
r=1 Tr

(
AT

r LhAr

)
= Tr

(
ATLhA

)
(11)

In the same way, the vertical graph Laplacian related to Br is defined as

∑R
r=1 Tr

(
BT

r LvBr

)
= Tr

(
BTLvB

)
(12)

where Lv is the vertical graph Laplacian matrix, B = [B1, · · · , BR].

3.2. Proposed SGLCBTD Model and Algorithm

Incorporating the two mentioned graph Laplacian terms (11–12) with the coupled
BTD super-resolution model (7), a superpixel graph Laplacian regularization with coupled
BTD fusion model is proposed (SGLCBTD):

minAr≥0,Br≥0,cr≥0‖Yh −∑R
r=1

(
P1Ar(P2Br)

T
)
◦ cr‖2

F + ‖Ym −∑R
r=1
(
ArBT

r
)
◦

P3cr‖2
F + λ1Tr

(
ATLhA

)
+ λ2Tr

(
BTLvB

) (13)

where λ1 and λ2 are regularization parameters.
Let us define the objective function in Equation (13) as J (A, B, C), the above super-

resolution model is solved alternately by block coordinate descent (BCD) algorithm [48],
i.e., the matrices A, B, C are iteratively updated via solving subproblems w.r.t. while fixing
other variables as follows

At+1 ← argminA≥0 J
(
A, Bt, Ct) (14a)

Bt+1 ← argminB≥0 J
(

At+1, B, Ct
)

(14b)

Ct+1 ← argminC≥0 J
(

At+1, Bt+1, C
)

(14c)

where t is the number of current iteration steps.
Each subproblem is a quadratic optimization problem, which leads to the general-

ized Sylvester equation and can be transformed into a large-scale sparse linear system of
equations by Kronecker product.

Consider the subproblem (14a), fix B and C, the subproblem of A can be rewritten as

minA≥0

∣∣∣∣∣∣Y(1)
h −

(
C�p P2B

)
(P1A)T

∣∣∣|2F+∣∣∣∣∣∣Y(1)
m −

(
P3C�p B

)
AT
∣∣∣|2F + λ1Tr

(
ATLAA

)
(15)

The optimization problem is quadratic, and its solution is equivalent to compute the
following general Sylvester equation [49]:

PT
1 P1AQTQ + AKTK + 2λ1LAA = PT

1 Y(1)T
h Q + Y(1)T

m K (16)

where Q = C�p P2B, K = P3C�p B.
For the solution of subproblem of matrices B and C, the algorithms are the same as

that of matrix A.

4. Experimental Results
4.1. Experiment Setup

In this section, to demonstrate the effectiveness of the proposed HSI super-resolution
method, numerical experiments are carried out on two popular datasets: Indian Pines and
Pavia University datasets (https://www.ehu.eus/ccwintco/index.php/Hyperspectral_
Remote_Sensing_Scenes, accessed on 20 March 2022). Both qualitative and quantitative
analysis are used in our experiments.

https://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
https://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
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4.1.1. Quality Assessment Indices

For quantitative performance, seven indices are employed to evaluate the perfor-
mance [7].

(1) Normalized mean square error (NMSE) is defined as

NMSE =

∣∣∣∣∣∣Y − Ŷ
∣∣∣|2F∣∣∣∣Y ∣∣|2F (17)

where Y ∈ RI×J×K is the ideal HSI and Ŷ ∈ RI×J×K is the resulted SRI.

(2) Reconstruction signal-to-noise ratio (R-SNR) is inversely proportional to NMSE with
the formulation as follows:

R-SNR = 10lg

( ∣∣∣∣Y ∣∣|2F∣∣∣∣Y −Y
∣∣|2F
)

(18)

(3) Spectral angle mapper (SAM) evaluates the spectral distortion and is defined as

SAM =
1
I J

I J

∑
n=1

arccos

 Y(3)(n, :), ˆY(3)(n, :)∣∣∣∣∣∣Y(3)(n, :)
∣∣∣∣∣∣2·∣∣∣∣∣∣ ˆY(3)(n, :)T

∣∣∣∣∣∣
2

 (19)

where Y(3)(n, :) is the spectral vector, 〈.〉 is inner product of two vectors.

(4) Relative global dimensional synthesis error (ERGAS) reflects the global quality of the
fused results and is defined as

ERGAS = 100d

√√√√ 1
K

K

∑
k=1

∣∣∣Y(:, :, k)− Ŷ(:, :, k)
∣∣∣|2F

µ2
k

(20)

where d is spatial upsampling factor, µk is the mean of Ŷ .

(5) Correlation coefficient (CC) is computed as follows

CC =
1
K

K

∑
k=1

ρ
(
Y(:, :, k), Ŷ(:, :, k)

)
(21)

where ρ is the Pearson correlation coefficient.

(6) Peak signal-to-noise rate (PSNR) for each band of HSI is defined as

PSNR = 10lg

 max
(∣∣∣∣Y(:, :, k)

∣∣|2F )∣∣∣∣∣∣Y(:, :, k)− Ŷ(:, :, k)
∣∣∣|2F
 (22)

(7) Structural similarity index measurement (SSIM) for each band of HSI is defined as
follows:

SSIM =

(
2µYµŶ + c1

)
(2σ + c2)(

µ2
Y + µ2

Ŷ + c1

)(
σ2
Y + σ2

Ŷ + c2

) (23)

where µ1, µ2 and σ2
1 , σ2

2 are the mean and variance of the k-th band image Y(:, :, k)
and Ŷ(:, :, k), respectively, σ is the covariance between Y(:, :, k) and Ŷ(:, :, k), and
c1, c2 are constant.
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4.1.2. Methods for Comparison

The proposed SGLCBTD method is compared with the state-of-the-art HSI–MSI fusion
methods, including: coupled nonnegative matrix factorization (CNMF) [3], super-resolution
tensor-reconstruction (STEREO) [37], STEREO with non-negative CP decomposition (CNN-
CPD) [37], coupled non-negative tensor block term decomposition (CNN-BTD) [43], and
graph Laplacian regularization with coupled block term decomposition (GLCBTD) [46].

In the experiment, the optimal parameters involved in different methods are set
according to the author’s suggestion. Specially, in tensor-based method, considering that
the Pavia University dataset has rich spatial structures, the rank of tensor R is set to 15, but
for the Indian Pines dataset, the rank is 10. Meanwhile, in the related BTD rank-(Lr, Lr, 1)
methods, including CNN-BTD, GLCBTD and SGLCBTD, the rank of the factor matrices
is Lr = 10. In addition, regularization parameters λ1 and λ2 in SGLCBTD are set to 10−5.
More details about the parameters are shown in Section 4.3.

4.2. Performance Comparison of Different Methods
4.2.1. Indian Pines Dataset

The Indian Pines dataset was captured by the NASA AVIRIS instrument. The size of
the underlying SRI YS is 145 × 145 × 220 and the wavelength covers 400–2500 nm. The
HSI and MSI are obtained according to the Wald protocol [50]. The degradation from SRI
to HSI is that blurring with 9 × 9 Gaussian and downsampling with factor 5, resulting in
Yh with size of 29 × 29 × 220. The size of the MSI is 145 × 145 × 4. Finally, zero-mean iid.
Gaussian noise is added to HSI and MSI, and the signal-to-noise ratio (SNR) is set to 30 dB.

Table 1 lists the values of R-SNR, NMSE, SAM, ERGAS and CC of the compared
methods on the Indian Pines dataset, and the best values are marked in bold. It can
be shown that the tensor-based methods outplay matrix-based methods. The indexes
of BTD fusion methods are much better than that of CPD. Moreover, the regularized
models, CNN-CPD, GLCBTD and SGLCBTD are more advantageous than STEREO and
CNN-BTD methods, for the latter two have rather low indices. Most of indices of the
proposed SGLCBTD achieve first place, which shows that the method performs well in
spatial detail and spectral preservation. In addition, compared with the GLCBTD, the
R-SNR is significantly improved by about 1.76 dB.

Table 1. Quantitative indices comparison on the Indian Pines dataset.

Algorithm R-SNR NMSE SAM ERGAS CC

CNMF 25.24 0.0546 0.0398 1.3320 0.7589

STEREO 26.25 0.0487 0.0413 1.1254 0.7970

CNN-CPD 26.41 0.0478 0.0365 1.0891 0.7980

CNN-BTD 27.32 0.0430 0.0346 1.0394 0.8070

GLCBTD 28.02 0.0397 0.0319 0.9507 0.8193

SGLCBTD 29.78 0.0324 0.0277 0.9610 0.8128

The PSNR and SSIM values for each spectral band of various fusion methods are
compared in Figure 3. As it can be seen, most of CNMF’s curves achieve the lowest values
in each band, which means the performance of the matrix-based method is significantly
lower than that of tensor-based methods. The curves of SREREO and CNN-CPD are very
similar except for a higher SSIM index of CNN-CPD. Three BTD-based methods, CNN-BTD,
GLCBTD and SGLCBTD perform better than other methods. The overall performances
of GLCBTD and SGLCBTD are excellent, especially in SSIM curves, which shows that the
graph-based method can preserve the geometric structure well. It should be mentioned, in
the PSNR curve, from the 100-th band, the curve of SGLCBTD has unsatisfactory results,
which is likely due to the water absorption, noise and parameters’ setting in our view. Even
so, the curve is the most stable in each band of all compared methods. In general, the
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PSNR and SSIM curves show that the proposed SGLCBTD method has the superiority of
preserving geometric structures.
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Figures 4 and 5 show the fusion results on the Indian Pines dataset in 10-th and 100-th
bands, respectively. From the visual effect, it can be seen that SGLCBTD is closer to the
original image with reduced red areas and increased blue areas, moreover, the edge details
are clearer than those of other methods.
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4.2.2. Pavia University Dataset

The Pavia University dataset was captured by the ROSIS instrument. The size of the
original HSI is 610 × 340 × 115, where the spectral band is from 430 nm to 860 nm. The
spatial size of 200 × 200 is cropped due to hardware limitations, and the spectral band
is 103 after removing the vapor absorption bands. Therefore, the underlying SRI YS is
200 × 200 × 103. A 9 × 9 Gaussian blurring and downsampling factor 4 are performed
as degradation to obtain a HSI Yh with size of 50 × 50 × 103. The size of MSI Ym
is 200 × 200 × 4. Finally, zero mean iid. Gaussian noise is added to HSI and MSI, the
signal-to-noise ratio (SNR) is set to 25 dB.

Table 2 shows the numerical results of several comparison methods on the Pavia
University dataset. It can be seen that for the Pavia University dataset with tensor rank-10,
the fusion performance fusion of CNN-BTD and GLCBTD have been improved. GLCBTD
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is still better than CNN-BTD due to the regularization term, while SGLCBTD improves the
R-SNR value of GLCBTD by 0.3 dB, and other indices have also been improved, which
shows that the proposed SGLCBTD method can improve the spatial–spectral assessment
values effectively.

Table 2. Quantitative indices comparison on the Pavia University dataset.

Algorithm R-SNR NMSE SAM ERGAS CC

CNMF 17.36 0.1355 0.1105 1.0453 0.9526

STEREO 18.21 0.1228 0.1465 1.0154 0.9624

CNN-CPD 18.75 0.1154 0.1052 0.8867 0.9652

CNN-BTD 19.41 0.1070 0.1042 0.8447 0.9702

GLCBTD 21.08 0.0883 0.0873 0.7100 0.9792

SGLCBTD 21.38 0.0853 0.0855 0.6919 0.9807

Figure 6 shows the comparison of PSNR and SSIM curves on the Pavia University
dataset of different fusion methods, in which the red solid line represents the proposed
SGLCBTD method. It can be seen that the PSNR and SSIM curves of GLCBTD and
SGLCBTD are roughly similar, and both of them have higher values than that of other
methods. Furthermore, it should be noticed that the overall curves of SGLCBTD are the
highest and most stable, which means the proposed SGLCBTD performs best among the
compared methods.
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As shown in Figures 7 and 8, the 10-th band and the 80-th band of the fusion results
on the Pavia University dataset image are displayed, respectively. CNMF, CNN-CPD
and STEREO have more noise unremoved as well as more blur. Relatively, BTD-based
methods achieve better fusion results, among them, regularized GLCBTD and SGLCBTD
methods achieve better visual effects than that of CNN-BTD. In addition, the spatial edge
and texture structures of the fused image of SGLCBTD is clearer with less noise, which
shows the effectiveness of SGLCBTD fusion method.
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4.3. Discussions
4.3.1. Parameter Analysis

The parameters involved in the SGLCBTD including the number of superpixel N, the
tensor rank R, the rank of factor matrices L, and λ1, λ2. The main contribution of this
paper is the tensor BTD with a superpixel-based graph. Therefore, the parameter analysis
is performed on R, L and N.

(1) Analysis of R and L

Taking the Indian Pines dataset as an example, R-SNR is used to evaluate the per-
formance of parameters R and L as shown in Figure 9. Given the range of R and L form
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7–13 with increment 1. It can be seen that both of two curves reach the highest peak values
around 10. In addition, with R or L decrease, the performance becomes worse. Considering
the high computational complexity with high rank increase, for the Indian Pines, R = L = 10,
while for the Pavia University dataset, R = 15, L = 10 on account of the complex geometric
structures in the image.
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pared methods converge quickly after 10 to 25 iterations. In addition, for each dataset, the 
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those of other methods due to the massive calculation of superpixel segmentation and 
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(2) Analysis of N

The proposed SGLCBTD method is a superpixel-based method, the number of super-
pixel N is crucial to the efficient as well as effectiveness. For two datasets, the parameter
N is selected from the set {225, 324, 400, 625, 841, 900} and {225, 324, 400, 484, 625,784},
respectively, by experience. Figure 10 shows R-SNR curves as parameter N changes. From
the Figure, for the Indian Pines dataset, R-SNR reaches the highest value when N = 400.
When N > 400, the curve drops down then rises at the point N = 625. For the Pavia Univer-
sity dataset, R-SNR is relatively stable in the data range. In addition, when N ∈ [400, 700],
the highest value is reached at N = 625. Compared to the Indian Pines dataset, the Pavia
University dataset has a richer geometry, and the segmentation results should be finer,
resulting in a larger number of superpixel blocks. It is also noted that large superpixel num-
bers increase the time computation and do not lead to better performance. Therefore, 400
and 625 are set as superpixel numbers for the Indian Pines and Pavia University datasets,
respectively. More adaptive and accurate estimation of the parameter is still an open issue
to be researched further.
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4.3.2. Time Complexity Analysis

The computational time of the compared methods on the two datasets is listed in
Table 3. The running time results are recorded in MATLAB R2018b, using a GPU server with
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NVIDIA RTX 2080Ti/11GB. Owing to the advantages of the block coordinate descent (BCD)
algorithm or the alternating direction method of multipliers (ADMM), all the compared
methods converge quickly after 10 to 25 iterations. In addition, for each dataset, the time
given in Table 3 is obtained by averaging the five times. As can be seen, the STEREO is the
fastest method. GLCBTD and the proposed SGLCBTD methods cost more time than those
of other methods due to the massive calculation of superpixel segmentation and adjacency
matrix of the graph, which is a progressive work to be considered for us in the future.

Table 3. Computational time of the compared methods (seconds).

Method Indian Pines Dataset Pavia University Dataset

CNMF 9.02 11.34

STEREO 2.97 4.76

CNN-CPD 5.05 5.60

CNN-BTD 65 89

GLCBTD 534 771

SGLCBTD 1023 1245

5. Conclusions

In this paper, a HSI super-resolution method is proposed based on tenor block term
decomposition, known as SGLCBTD. To preserve the spatial manifold structure of the
fused HSI, two-directional spectral–spatial graphs are constructed according to feature
tensors induced by the MSI segmented superpixel. Then, the manifold graph Laplacian is
utilized to regularize the super-resolution HSI, resulting in the proposed HSI–MSI fusion
method. In addition, the model is solved alternately by block coordinate descent algorithm.
Stimulation experiments are conducted on different datasets. Compared with the state-
of-the-art methods, the proposed SGLCBTD obtains better fusion performance with more
spatial details retained.

For future work, two aspects should be taken into consideration. On one hand, the
feature of superpixel blocks is limited, more powerful features can be exploited to further
improve the preservation of the manifold structures of the HSI. On the other hand, as
mentioned in Section 4.3.2, more efficient optimization algorithms need to be developed to
reduce time complexity.
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