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Abstract: Three-dimensional (3D) point cloud maps are widely used in autonomous driving scenarios.
These maps are usually generated by accumulating sequential LiDAR scans. When generating a
map, moving objects (such as vehicles or moving pedestrians) will leave long trails on the assembled
map. This is undesirable and reduces the map quality. In this paper, we propose MapCleaner, an
approach that can effectively remove the moving objects from the map. MapCleaner first estimates a
dense and continuous terrain surface, based on which the map point cloud is then divided into a
noisy part below the terrain, the terrain, and the object part above the terrain. Next, a specifically
designed moving points identification algorithm is performed on the object part to find moving
objects. Experiments are performed on the SemanticKITTI dataset. Results show that the proposed
MapCleaner outperforms state-of-the-art approaches on all five tested SemanticKITTI sequences.
MapCleaner is a learning-free method and has few parameters to tune. It is also successfully evaluated
on our own dataset collected with a different type of LiDAR.

Keywords: LiDAR point cloud; map cleaning; autonomous driving; dynamic object

1. Introduction

Recent advances in autonomous driving scenarios owe much to the use of high-
definition (HD) maps. These maps provide valuable and precise information about the local
environment and add redundancy to the self-driving software stack. Among different map
forms [1], a three-dimensional (3D) point cloud map is the most basic one. It is usually used
as a data source to generate other types of high-definition maps through manual annotation.
To generate the 3D point cloud map, a common practice is to assemble consecutive frames
together based on their poses. Each of these frames is captured by a LiDAR scanner
mounted on a vehicle, and poses are obtained from an integrated GNSS/IMU device
or a graph-based SLAM algorithm [2]. When assembling the frame, the moving objects,
including vehicles or walking pedestrians, leave long trails on the assembled map. These
trails degrade map quality and should be removed from the point cloud map.

In recent years, several promising methods for removing moving objects from maps
have been proposed [3–5]. These methods could remove most of the moving objects,
but usually at the cost of many false positives [6]. In this paper, we propose MapCleaner,
a novel map cleaning algorithm that efficiently removes moving objects from point cloud
maps while preserving most static parts. An illustrative example is shown in Figure 1,
which compares point cloud maps before and after the map cleaning process.

MapCleaner is mainly composed of two parts: the terrain modeling part and the mov-
ing points identification part. We believe that terrain modeling should be a preprocessing
step before distinguishing dynamic/static points, as most moving objects are standing on
the ground. Therefore, the first contribution of this paper is to propose a terrain modeling
algorithm that improves a recently published online terrain modeling method [7]. For the
moving points identification part, we draw inspiration from occupancy mapping literature.
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We treat each LiDAR scan as a local observation of the map point cloud. It compares the
map point cloud with its local observations, and votes on the dynamic/static state of each
observed map point. The votes from all local scans are then aggregated to make the final
decision on the dynamic/static state of each map point.

Figure 1. The left image shows the original point cloud map, where moving cars leave long trails on
the map. The right image shows the result after running the proposed MapCleaner on the left image,
where most of the moving objects are removed. Points are colored according to the height value.

MapCleaner is evaluated on the publicly available SemanticKITTI dataset. Exper-
imental results show that MapCleaner exhibits satisfactory map cleaning performance
and outperforms state-of-the-art methods on all five evaluated SemanticKITTI sequences.
MapCleaner is a learning-free approach. It does not require any training data, so it is
directly applicable to processing point cloud maps generated by other types of LiDAR
devices. We also tested it on a dataset collected by our own experimental platform, which
is equipped with a Robosense Ruby 128-channel LiDAR. Qualitative results show that
MapCleaner also performs well on our own dataset.

The paper is structured as follows: Section 2 presents some related work. The pro-
posed algorithm is described in Section 3. Section 4 presents experimental results on the
SemanticKITTI dataset as well as our own dataset, and Section 5 concludes the paper.

2. Related Work

Removing moving objects from point cloud maps has always been a hot topic in the
field of remote sensing [5,8,9]. In these scenarios, they usually use accurate but expensive
terrestrial LiDAR devices such as RIEGL [5], and usually capture data while the LiDAR is
stationary. For these reasons, they are seldomly used in autonomous driving scenarios [10].

The detection of moving objects is a long-standing problem in autonomous driving.
Closely related tasks include scene flow estimation [11], detection and tracking of moving
objects [12], dynamic occupancy mapping [13], etc. Existing methods can be roughly
divided into learning-free methods [14,15] and learning-based methods [6,16]. In [15],
the authors propose an online dynamic object detection algorithm and build a benchmark
with accurate motion-distorted LiDAR scans generated using CARLA. Fan et al. [14]
proposed integrating the scan-to-map front-end and the map-to-map back-end modules
for online dynamic object removal. With the popularity of deep learning and the advent of
related datasets [17], learning-based moving object detection methods have become popular
recently. The SemanticKITTI dataset proposed in [17] annotates moving objects as separate
semantic classes, so the semantic segmentation algorithms [18,19] can be directly applied
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for moving points identification. In [16], the authors propose to learn a deep network to
classify each LiDAR point as dynamic or static. In their subsequent work [6], they attempt
to use off-the-shelf object tracking methods to automatically generate training data to feed
a moving point prediction network. Results on the SemanticKITTI dataset show that the
performance of these learning-based methods is still far from satisfactory. We attribute
the reason to the inherent ambiguity of the dynamic/static distinction. For example, if a
running car stops at an intersection, should it be classified as dynamic or static? Should an
occluded moving object be classified as dynamic in the first frame when it reappears? For
these reasons, it is still a challenging task to predict the dynamic/static state of each LiDAR
point online, but in the offline case, by leveraging the information from all LiDAR frames,
we can obtain satisfactory map cleaning performance.

In recent years, several map cleaning approaches in autonomous driving scenar-
ios have been proposed. In [3], the authors propose a map cleaning method based on
multi-resolution range images. Although high-resolution range images may over-remove
dynamic points, coarse-resolution range images can still recover these false positives. In [4],
the authors propose a new method called ERASOR for removing dynamic trajectories from
point cloud maps. The method employs scan ratio test (SRT) for moving point identification
and region-wise ground plane fitting (R-GPF) to prevent erroneous deletion of ground
points. the authors also propose two new performance metrics, namely preservation rate
(PR) and rejection rate (RR), for evaluating map cleaning performance. Experiments on the
SemanticKITTI dataset show that ERASOR outperforms Removert [3], Peopleremover [5],
Octomap [20], and several other related methods, and achieves state-of-the-art performance
at the time of publication. In this paper, we propose a new map cleaning method that
outperforms ERASOR on all five tested SemanticKITTI sequences. The proposed method is
also a learning-free method. It requires no training and is directly applicable to different
types of LiDAR devices.

3. Methodology

The 3D point cloud maps are usually generated by assembling multiple LiDAR frames
together. We divide them into two parts: one is the 3D terrain model, including roads,
sidewalks, terrain [17] etc., and the other is the objects above the terrain. Therefore, the map
cleaning method we designed also includes two steps: terrain modeling and moving
points identification.

We believe that accurate terrain modeling should be a prerequisite for moving points
identification, for several reasons. First, for autonomous driving, most objects of interest
lie on top of the terrain. With terrain modeling results, we can not only filter out noise
points below the ground, but also set a region of interest above the ground. Subsequent
algorithms only need to process objects in the region of interest. Second, because points
on the terrain, especially distant ones, have a small incidence angle to the LiDAR scan
line, they are easily misclassified as moving objects by ray-casting algorithms, such as
Octomap [20]. Therefore, if the terrain can be modeled first, then the points on the terrain
can be directly regarded as static points. In this way, the false positive rate of the moving
object identification method can be reduced. Third, terrain modeling is a relatively simple
problem, and current methods, whether traditional or deep learning-based, are able to
achieve high terrain modeling accuracy.

In this section, we first introduce the terrain modeling method. The terrain modeling
results are then used to obtain the target point cloud in the region of interest above the
terrain. Next, we introduce our moving points identification algorithm, which can classify
the target point cloud into moving point cloud and stationary point cloud.

3.1. Terrain Modeling

The goal of terrain modeling is to extract a complete and dense 3D terrain model from
a point cloud. In order to achieve this goal, we can either directly process the point cloud
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map as a whole, or process a single frame of data first, and then perform result-level fusion.
This paper adopts the latter approach.

Let Li denote a LiDAR scan. We first divide it into a ground part Lg
i and a non-

ground part Lng
i using any off-the-shelf ground segmentation algorithm [21]. Then we

use the LiDAR pose Trm_li to convert the ground part Lg
i to the map coordinate frame.

By assembling all the transformed Lg
i in the map coordinate frame, we get the map ground

point cloud Mg:
Mg = {Trm_li ∗ Lg

i , i = 1, 2, . . . , m}. (1)

However, any ground segmentation algorithm that only processes a single frame of
data may produce false detections. Therefore, the assembled map ground point cloud also
has certain errors. In order to eliminate these errors, we designed the following terrain
modeling algorithm, as shown in Figure 2, which mainly includes the following steps:

Figure 2. The flowchart of the proposed terrain modeling approach. From top left to bottom left,
points are colored according to variance, height, height, slope, slope, region mask, height and height
respectively.

• Preprocess with a variance filter.

We first project the map ground point cloud Mg into a 2D XY grid plane and calculate
the mean µj and variance σ2

j for each grid cell based on all points that fall on that cell.
We believe that for a real ground cell, it has a unique elevation value that should not
change no matter where the grid cell is viewed from, so its standard deviation σ should be
small. Therefore, we threshold the standard deviation and treat grid cells with standard
deviation less than some threshold thresh_std as reliable ground cells, while the rest are
unreliable cells. By jointly considering grid cell quantization error, pose estimation error,
and ranging error of the LiDAR point cloud itself, we set this threshold to 0.1 in all
subsequent experiments and did not change it.

• BGK inference with bilateral filtering.

The variance filter enables us to find those unreliable terrain grid cells. In order to
obtain a complete and dense terrain model, we must find a suitable estimate for those
unreliable cells. To achieve this, we draw inspiration from the recently published terrain
estimation algorithm [7], where the terrain to be estimated is considered to be a locally con-
tinuous surface and the elevation of any point in the surface can be estimated from adjacent
points’ elevation by nonlinear regression. Similar to [7], we use Bayesian generalized kernel
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(BGK) inference [22] as the nonlinear regression method. To prevent the algorithm from
over-smoothing terrain edges, the bilateral filtering method introduced in [7] is also used.

• Region growing on the normal map.

The result of BGK inference is a dense surface, from which the normal direction of
each grid cell can be easily calculated [7]. Based on the normal direction, we can also
calculate the slope of the terrain. For a grid cell (u, v) in the projected 2D XY grid plane, it
can be expressed as a 3D point p = [0; 0; E(u, v)], where E(u, v) is the estimated elevation
from BGK inference. Then its four neighbors in the XY grid plane can be represented
as pl = [0;−reso; E(u, v − 1)], pr = [0; reso; E(u, v + 1)], pu = [reso; 0; E(u − 1, v)], and
pd = [−reso; 0; E(u + 1, v)], where reso is the grid resolution. Its normal direction n(u, v)
and slope value can be then calculated as:{

n(u, v) = cross(pl − pr, pu − pd)
slope(u, v) = π

2 − acos(dot(n(u, v), [0; 0; 1]))
(2)

where cross(·) and dot(·) represent the cross product and dot product of two vectors.
Based on the slope angle, we can set another threshold thresh_slope to determine the

traversability region of the vehicle. Following [23], the areas that the vehicle has traversed
are all reliable terrain areas. Therefore, we project the vehicle trajectory onto the terrain
map and find the corresponding grid cell. These grid cells are considered as terrain seed
points. From these seed points, we perform region growing operator. The region stops
growing when the slope angle of the grid cells is higher than the threshold thresh_slope.
Finally, these regions have been grown from a terrain mask. Only grid cells within this
mask are considered as terrain cells. Another BGK inference is then performed on these
cells, and the output of the BGK forms the final terrain model.

In Figure 3, we compare the input and output of the proposed terrain modeling
approach. It can be seen that, given a noisy input, the proposed algorithm can generate a
dense and accurate terrain model.

Figure 3. The input and output of the proposed terrain modeling approach. Points are colored
according to the height value.

3.2. Moving Points Identification

Based on the terrain modeling method, we can divide the entire map point cloud into
three parts: the noise part below the terrain Mn, the terrain part Mg, and the obstacle
part above the terrain Mo. An illustrative example is shown in Figure 4, where Mn, Mg,
and Mo are colored blue, green, and red, respectively. To find moving objects, we are only
interested in the obstacle map Mo.
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Figure 4. Based on the terrain modeling result, the map point cloud is divided into the noise part
below the terrain Mn (shown in blue), the terrain part Mg (shown in green), and the obstacle point
cloud above the terrain Mo (shown in red).

In this section, we aim to design a model-free method for moving point identification.
We extend the log-odds approach used in the occupancy mapping literature [20,24]. In the
log-odds method, each frame of observation is considered to be independent. Multiple
observations are then combined in a Bayesian framework. The posterior distribution is
used to determine the occupancy state of the grid cell. This idea can be easily extended for
the task of moving point identification.

By assuming an equal prior on the dynamic/stationary state, we can simply count
the number of times a map point (or the 3D voxel to which the point belongs) has been
observed as free or occupied. If the free counter is greater than the occupancy counter, then
the point is likely to be a moving point, and vice versa. Due to the efficient implementation
in Octomap [20], this method is often used as a baseline in some recently proposed moving
object identification methods [3,4,25].

Our method differs from the classic Octomap method [20] in the following ways:
First, in the Octomap method, it needs to maintain a 3D voxel map in 3D space. Each
frame observation is then projected to the voxel map, and the voxel state is updated using
ray-casting operators. In this paper, we deal with the inverse of this problem, i.e., we
already have a 3D voxel map and we need to determine which voxels are likely to be
dynamic. Instead of projecting each frame onto the map, we back project the map onto each
frame and perform a map-to-frame comparison. In this way, we can avoid the quantization
error [5,26] that occurs in the Octomap method. Second, when performing map-to-frame
comparisons, we use the range image representation for the current frame. The range
image representation implicitly models the ray casting operator in Octomap, and it enables
us to use projective association instead of nearest neighbor search to find associated points.
However, as pointed out in [27], the range image representation also introduces quantiza-
tion errors. To address this, instead of performing point-to-point comparisons, we compare
each projected point to a small neighborhood near the projected pixel.

Essentially, our method can be viewed as a voting method. Each frame can vote on the
dynamic/static state of each map point through the map-to-frame comparison. The final
state of the map point is determined by all votes. An illustrative example is shown in
Figure 5. More specifically, let Mpk denote a point in the obstacle map Mo. It is then
assigned a static counter cs

k and a dynamic counter cd
k , which counts the number of times

that this point is considered as static or dynamic by each map-to-frame comparison. This
map point is first projected to the local frame coordinate based on the frame pose Trm_li :

li pk = inv(Trm_li ) ∗
Mpk (3)

Let Ri denotes the range image representation of the ith LiDAR scan. Its width and
height are w and h, respectively. The angle range corresponding to the horizontal direction
is [0, 2π), and the angle range corresponding to the vertical direction is [θdown, θup]. For a
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3D point li pk = [xk; yk; zk], its corresponding range image coordinate [u, v] can be calculated
as [28]: 

rk =
√

x2
k + y2

k + z2
k

v =
⌊
(θup − arcsin(zk/rk))/(θup − θdown) · h

⌋
,

u =
⌊

1
2 (1 + arctan(xk/yk)/π) · w

⌋
,

(4)

where b·c is the floor operator.
When comparing rk with the values stored in the range image Ri(v, u), the following

cases might occur: 
Case A : |rk −Ri(v, u)| <= thresh_dist
Case B : rk > Ri(v, u) + thresh_dist
Case C : rk < Ri(v, u)− thresh_dist
Case D : Ri(v, u)isinvalid

(5)

where thresh_dist is a distance threshold. Among the four cases defined in Equation (5),
Case A indicates that a close-by point to the map point Mpk can be found in the current
frame. Therefore, the static counter of this map point should be increased by 1. Case B
suggests that the map point is located in the occluded area of the current observation, so
no information about whether the map point is moving or static can be inferred from this
observation. Case C suggests that the map point locates nearer than the current observation,
thus producing a strong motion evidence. The dynamic counter for the map point should
be increased by 1. Case D simply suggests that there are no corresponding observations in
the current frame. Therefore, no evidence of movement/static can be provided.

Figure 5. The obstacle point cloud map is projected into the local coordinates of each frame and com-
pared with the range image representation (shown in subfigure (a)) of each frame. The comparison
results (shown in subfigure (b)) are then combined to obtain the final result (shown in subfigure (c)).
In subfigures (b,c), the moving points are colored in red, and the static points are colored in green.

Just as pointed out in [28], different types of LiDAR devices may contain non-uniformly
distributed longitudinal resolutions. If the longitudinal angle is equally divided as in
Equation (4), it will bring a large quantization error. To decrease the quantization errors,
the height of the range image needs to be increased. A side effect of increasing the height is
that the range image will contain more empty areas, i.e., Case D in Equation (5) will appear
more frequently.
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To overcome this problem, instead of only comparing rk with Ri(v, u), it is compared
with a small neighborhood {Ri(v + ∆vj, u + ∆uj)} around Ri(v, u). The following strategy
is then used to fuse the comparison results: as long as Case A appears once in all comparison
results, it is finally judged as Case A, that is, the static counter of the map point is increased
by 1. When part of the comparison results are Case C, and the rest are Case D, the final
judgment is set to Case C, and the dynamic counter will be increased by 1. Otherwise,
the static and dynamic counters remain unchanged.

The map point cloud is projected to each frame and the map-to-frame is performed
separately. The comparison results are fused in the static counter and dynamic counter.
After all the comparisons, if the static counter is greater than the dynamic counter, the point
is considered static, otherwise it is considered as a dynamic point. The entire algorithm is
summarized in Algorithm 1.

Algorithm 1 Moving Point Identification

1: Input: Obstacle Map Point Cloud Mo = {Mpk, k = 1, 2, . . . n}, LiDAR scans {Li, i =
1, 2, . . . , m} with associated range image representation {Ri} and poses relative to the
map Trm_li ;

2: Output: Dynamic Map Point Cloud Mdo and Static Map Point Cloud Mso;
3: Initialize Mdo and Mso to empty set;
4: Assign each map point Mpk a static counter cs

k and a dynamic counter cd
k which are

initialized to 0;
5: for k=1:n do
6: for i=1:m do
7: Transform map point Mpk from map coordinate to local LiDAR coordinate li pk

using Equation (3).
8: Calculate the range image coordinate [v, u] for li pk using Equation (4).
9: for (∆v, ∆u) ∈ {∆vj, ∆uj} do

10: Compare rk = ‖li pk‖ with Ri(v + ∆v, u + ∆u) using Equation (5) and obtain the
Comparison Result.

11: if Comparison Result == Case A then
12: Fused Result = Case A
13: break;
14: else
15: if Comparison Result == Case C or Case D then
16: Fused Result = Case C
17: else
18: Fused Result = Otherwise
19: break;
20: end if
21: end if
22: end for
23: if Fused result == Case A then
24: cs

k = cs
k + 1

25: else
26: if Fused result == Case C then
27: cd

k = cd
k + 1

28: end if
29: end if
30: end for
31: if cs

k >= cd
k then

32: Mso → {Mso, Mpk}
33: else
34: Mdo → {Mdo, Mpk}
35: end if
36: end for
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4. Results and Discussion
4.1. Evaluation on the Terrain Modeling Approach

The proposed approach is quantitatively evaluated on the publicly available Se-
manticKITTI dataset. We first conduct experiments to evaluate the performance of the
proposed terrain modeling approach. We choose to use PatchWork [21] as our single-frame
ground segmentation algorithm. This approach is a fast algorithm and performs reasonably
well on the SemanticKITTI dataset.

To assemble frames together, we can directly use the poses provided by the Se-
manticKITTI dataset. These poses are generated by the SuMa algorithm [29]. Upon closer
inspection of the poses, we noticed that there exist some errors in the poses, mainly in the
loop closure scenario. For example, Figure 6 shows three examples when overlaying two
frames using the SuMa poses. Therefore, we recompute the pose using our own mapping
method developed in [2]. The generated poses are mostly consistent with SuMa poses,
but differ slightly in loop closure scenarios.

Figure 6. Overlaying two LiDAR frames in Sequence 02 according to the poses provided in the
SemanticKITTI dataset. It can be seen that the pose is inaccurate, as the two scans (colored in red and
green, respectively) are not well aligned.

Regarding parameters, we set thresh_std = 0.1 m, thresh_slope = 15 degrees, and
thresh_dist = 0.5 m. The width and height of the range image are set to 1080 and
128, respectively.

The terrain modeling method is performed on five SemanticKITTI sequences (00, 01,
02, 05, and 07), and the results are shown in Figure 7.

Figure 7. The terrain models generated for the five sequences (00, 01, 02, 05, and 07) in the Se-
manticKITTI dataset. Points are colored according to the height value.
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To quantitively evaluate the accuracy of terrain modeling, we use semantic labels
provided in the SemanticKITTI dataset. Following [21], semantic classes including lane
marking, road, parking, sidewalk, other ground, terrain, and vegetation (only points with a
z-value below −1.3 m) are considered as the ground truth for terrain modeling. Precision
and recall are used as performance metrics. The results are shown in Table 1.

The results of Patchwork in Table 1 differ slightly from those reported in [21]. In [21],
the results are evaluated frame by frame, whereas in our case the performance is evaluated
at the map level for the whole sequence. As can be seen from Table 1, our method outper-
forms Patchwork in all sequences except Sequence 01. Our method consistently achieves
high accuracy but relatively low recall. The reason is simply because our method considers
the reachability of the terrain and thus includes a region growing operator. Figure 8 shows
the comparison between the results obtained by our method and the ground truth for
Sequence 01. It can be observed that the ground truth also contains most of the terrain
located outside the main roads, and these regions are considered unreachable by the region
growing operator, so they are not treated as terrain in our method, resulting in relatively
low recall.

Table 1. Terrain modeling results on the SemanticKITTI dataset. The best results are colored in bold.

Sequence Approach Precision [%] Recall [%] F1-Measure

00 Patchwork [21] 72.94 92.00 0.8137
Ours 94.78 78.20 0.8570

01
Patchwork [21] 89.96 80.94 0.8521

Ours 98.40 69.25 0.8129

02
Patchwork [21] 82.27 93.72 0.8763

Ours 97.80 85.18 0.9105

05
Patchwork [21] 72.64 94.67 0.8221

Ours 92.10 85.19 0.8851

07
Patchwork [21] 71.92 92.03 0.8074

Ours 99.30 78.67 0.8778

Figure 8. The left figure shows the terrain modeling results from the proposed method on Sequence
01, and the right figure shows the ground truth. It can be seen that the ground truth contains terrain
outside the main road. These areas are considered unreachable to vehicles, so they are not modeled
by the proposed approach, thus resulting in a relatively low recall. The points are colored according
to the semantic lables.

Finally, it is important to point out that the aim of our terrain modeling approach is to
obtain a dense and continuous terrain on which moving objects typically stand. Modeling
terrain with high accuracy can help us segment moving objects well. For areas not covered
by the terrain model, they can all be treated as potential moving objects, and directly sent
to our moving points identification module.

4.2. Evaluation on the Map Cleaning Performance

To evaluate the performance of the entire map cleaning algorithm, we follow the
experimental protocol in [4]. Points belonging to semantic classes 252, 253, 254, 255, 256,
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257, 258, and 259 form the dynamic point set. The remaining points form the static point set.
Experiments are conducted on five subsets of SemanticKITTI datasets, including sequence
00 (4390–4530), 01(150–250), 02(860,950), 05(2350,2670), and 07(630–820).

The width and height of the range image are set to 1080 and 256, respectively. As shown
in [28], setting the range image height to a larger value is beneficial for maintaining a low
range image quantization error. We directly use the terrain modeling results generated
in the previous terrain modeling experiment. The points above the terrain constitute the
Obstacle Point Cloud Map Mo. For regions not covered by the terrain model, they are
directly added to Mo to enable a more fair comparison with state-of-the-art approaches.
The moving points identification algorithm detailed in Algorithm 1 is applied on Mo.

The results for the five SemanticKITTI sequences are shown in Figure 9, where mov-
ing points are colored in red and static points are colored in green. It can be observed
that most of the long tails generated by moving objects are correctly identified by the
proposed approach.

Figure 9. The map cleaning results for the five sequences (00, 01, 02, 05, and 07) in the Se-
manticKITTI dataset. The identified moving points are colored in red, and the static points are
colored in green.

To quantitatively assess the performance of the proposed method, we choose to use
preservation rate (PR) and rejection rate (RR) proposed in [4] as performance measures.
Compared with the commonly used precision and recall, these two metrics are more sensi-
tive for moving points identification and thus more suitable for our scenario. Quantitative
results and comparisons with state-of-the-art approaches are shown in Table 2.

As can be seen from Table 2, our proposed method outperforms state-of-the-art ap-
proaches on all five test sequences. Although our method is in principle analogous to
Octomap [20], we outperform it by a large margin. The reasons for this should be attributed
to our principled approach that combines the merits of terrain modeling, map-frame com-
parison, and range image utilization. Figure 10 also compares the errors that occurred in
our approach and in ERASOR [4]. It can be seen that our method produces many fewer
false positives than ERASOR.
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Table 2. Map cleaning results on the SemanticKITTI dataset. The best results are colored in bold.

Sequence Approach PR [%] RR [%] F1 Score

00

Octomap [20] 76.73 99.12 0.865
Peopleremover [5] 37.52 89.12 0.528

Removert [3] 85.50 99.35 0.919
ERASOR [4] 93.98 97.08 0.955

Ours 98.89 98.18 0.9853

01

Octomap [20] 53.16 99.66 0.693
Peopleremover [5] 94.22 93.61 0.939

Removert [3] 85.50 99.35 0.919
ERASOR [4] 91.48 95.38 0.934

Ours 99.74 94.98 0.9730

02

Octomap [20] 54.11 98.77 0.699
Peopleremover [5] 29.04 94.53 0.444

Removert [3] 76.32 96.79 0.853
ERASOR [4] 87.73 97.01 0.921

Ours 99.37 99.03 0.9920

05

Octomap [20] 76.34 96.78 0.854
Peopleremover [5] 38.49 90.63 0.540

Removert [3] 86.90 87.88 0.874
ERASOR [4] 88.73 98.26 0.933

Ours 99.14 97.92 0.9852

07

Octomap [20] 77.84 96.94 0.863
Peopleremover [5] 34.77 91.98 0.505

Removert [3] 80.69 98.82 0.888
ERASOR [4] 90.62 99.27 0.948

Ours 98.98 97.25 0.9811

After carefully inspecting the false detections occurred in our approach, we noticed
that some of these errors were caused by possibly erroneous intra-frame compensation
of the raw LiDAR scan. As noticed in [29], the original poses associated with the KITTI
odometry dataset are not accurate. Every LiDAR scan in this dataset has been motion com-
pensated based on these inaccurate poses. Therefore, errors may appear in the compensated
LiDAR point cloud. Figure 11 shows a zoomed-in view of our results in Figure 10. The area
enclosed by the yellow ellipse should correspond to one wall, but three walls appear in the
picture, probably due to an intra-frame compensation error. In future work, we plan to find
the raw LiDAR scans corresponding to the SemanticKITTI dataset and use our corrected
poses to perform intra-frame compensation. Care should be taken if the semantic labels
provided in SemanticKITTI can be seamlessly transferred to the original scan.

We also evaluated the running time of MapCleaner. For the terrain modeling part, it
takes approximately 7.3 s, 17.6 s, 14.7 s, 5.1 s, and 2.1 s to process sequence 00, 01, 02, 05,
and 07, respectively. For the map cleaning part, it takes around 3.6 s to process the subset
of sequence 07, which contains a total of 190 frames (frame 630–820). On average, it takes
only 18.94 ms to process a single frame (perform map-to-frame comparison).
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Figure 10. The left two figures shows the errors that occurred in ERASOR, whereas the right shows
the errors in our approach. The true positives, true negatives, false positives, and false negatives are
colored in green, gray, red, and blue, respectively.

Figure 11. Regions enclosed by the yellow ellipse should correspond to a wall, but three walls appear
in the figure, possibly due to the wrong intra-frame compensation of the original LiDAR scan.

4.3. Ablation Studies

We now present the ablation studies of our method. The proposed method has a total
of three parameters, namely thresh_std for the variance filter, thresh_slope for determining
the slope angle of the traversable region, and thresh_dist used in (5). Whereas thresh_std
and thresh_slope are related to terrain modeling, thresh_dist is directly related to the map
cleaning performance.

For thresh_std, it represents the standard deviation of the ground height value for
each grid cell. In Figure 12, we visualize this value for all grid cells in the SemanticKITTI
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sequence 07 dataset. We change thresh_std to different values and recalculate precision,
recall, and F1-measure. The results are shown in Figure 13. It can be observed that, with
an increased value of thresh_std, the precision rate decreases. The F1-measure does not
change too much when thresh_std is set between 0.1 and 0.4. Therefore, we choose to set
thresh_std to 0.1 for better precision.

Figure 12. The standard deviation value for each grid cell in the SemanticKITTI sequence 07 dataset.

Figure 13. Terrain modeling accuracy on the SemanticKITTI sequence 07 dataset by setting thresh_std
to different values.

After fixing thresh_std to 0.1, we also changed thresh_slope to different values. The ter-
rain modeling accuracy is shown in Figure 14, and a similar trend to that in Figure 13
can be observed: as the value of thresh_slope increases, the precision rate decreases and
the recall rate increases. Although setting thresh_slope to 35 degrees produces a slightly
larger F1-measure, we still prefer to set it to 15 degrees. A comparison example is shown
in Figure 15. Setting thresh_slope to 15 degrees may produce smoother terrain without
sudden changes compared to 35 degrees. In addition, the climbing ability of most vehicles
is around 15 degrees, we therefore set thresh_slope to 15 degrees in this paper.

Figure 14. Terrain modeling accuracy on the SemanticKITTI sequence 07 dataset by setting
thresh_slope to different values.



Remote Sens. 2022, 14, 4496 15 of 18

Figure 15. Terrain modeling results by setting thresh_slope to different values.

The parameter thresh_dist is directly related to map cleaning performance. We change
this value from 0.1 to 1 and evaluate map cleaning performance on the SemanticKITTI
sequence 07 dataset. The preservation rate, rejection rate, and F1 score under different
thresh_dist values are shown in Figure 16. A larger thresh_dist value will produce a higher
preservation rate and a lower rejection rate. Two comparative examples are shown in
Figure 17. From the figure, we can observe that smaller thresh_dist value produce more
false positives. Finally, we chose to set thresh_dist to 0.5 in all experiments.

Figure 16. Map cleaning performance under different thresh_dist values.

Figure 17. Moving points identification results by setting thresh_dist to different values. The red
points are those identified moving points. The static points are colored in green.

4.4. Experiments on Our Dataset

In addition to the SemanticKITTI dataset, we also evaluate MapCleaner on a dataset
collected by our own vehicle. As shown in Figure 18, the vehicle is equipped with a
Robosense Ruby 128-channel LiDAR [28]. The vertical resolution of this LiDAR is quite
different from the LiDAR (Velodyne 64) used in the SemanticKITTI dataset.

To apply MapCleaner to our own dataset, we simply change the range image width and
height to 2160 and 256, respectively. Other parameters, including thresh_std, thresh_slope, and
thresh_dist, are set to the same values used in the SemanticKITTI dataset. The map cleaning
results are also shown in Figure 18. It can be observed that MapCleaner successfully
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removes long trails of dynamic objects in the original map. This confirms the applicability
of MapCleaner to different types of LiDAR devices.

Figure 18. The left figure shows our own experimental platform equipped with a Robosense Ruby
128-channel LiDAR. The middle figure shows the original map, and the right figure shows the map
cleaning results by the proposed method. Points are colored based on the height value.

5. Concluding Remarks

In this paper, we propose MapCleaner, an efficient map cleaning algorithm that
can remove moving objects from a map point cloud. MapCleaner is mainly composed
of two modules: a terrain modeling module and a moving point identification module.
We emphasize that terrain modeling should be a pre-step for map cleaning, as almost
all the moving objects stand on the ground. We then propose a novel approach that
can estimate a dense and accurate terrain model from the map point cloud. For the
moving point identification module, we follow a similar idea to Octomap, but make several
improvements, including the map-to-frame comparison and the utilization of range image.
Experiments are conducted on the SemanticKITTI dataset, and experimental results show
that our proposed method outperforms state-of-the-art methods in both terrain modeling
accuracy and map cleaning accuracy. Our method achieves almost perfect F1 scores (0.9920
on sequence 02) on some SemanticKITTI sequences. We also analyze potential errors in
the SemanticKITTI dataset. Errors arise not only in inaccurate poses, but also in erroneous
intra-frame compensation in the original KITTI odometry dataset. Future work will try to
correct these errors for fairer evaluations.

Compared with existing methods, the proposed MapCleaner only needs to adjust a
few parameters and is easily adaptable to other types of LiDAR devices. We also evaluate
it on our own dataset collected by a Robosense Ruby 128-channel LiDAR. Qualitative
results show that MapCleaner successfully removes most moving objects without fine-
tuning parameters.
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