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Abstract: A surface-based duct (SBD) is an abnormal atmospheric structure with a low probability
of occurrence buta strong ability to trap electromagnetic waves. However, the existing research is
based on the assumption that the range direction of the surface duct is homogeneous, which will
lead to low productivity and large errors when applied in a real-marine environment. To alleviate
these issues, we propose a framework for the inversion of inhomogeneous SBD M-profile based on
a full-coupled convolutional Transformer (FCCT) deep learning network. We first designed a one-
dimensional residual dilated causal convolution autoencoder to extract the feature representations
from a high-dimension range direction inhomogeneous M-profile. Second, to improve efficiency and
precision, we proposed a full-coupled convolutional Transformer (FCCT) that incorporated dilated
causal convolutional layers to gain exponentially receptive field growth of the M-profile and help
Transformer-like models improve the receptive field of each range direction inhomogeneous SBD
M-profile information. We tested our proposed method performance on two sets of simulated sea
clutter power data where the inversion of the simulated data reached 96.99% and 97.69%, which
outperformed the existing baseline methods.

Keywords: inhomogeneous; surface-based duct; refractivity; convolutional Transformer

1. Introduction

As a kind of tropospheric duct, surface-based duct (SBD) can trap electromagnetic
waves in the duct layer and seriously interfere with actual maritime radar communica-
tions. Thus, high-precision inversion of the modified refractivity profile (M-profile) for
SBD can not only provide information about the anomalous spatial distribution of elec-
tromagnetic wave propagation but also allow for timely repair measures to correct radar
holes generated by the trapping SBD M-profile structure [1]. However, affected by intricate
meteorological factors, the distribution of the SBD M-profile in the range direction from
the sea surface is inhomogeneous, which presents formidable challenges when modeling
the considerable number of parameters of the M-profile and when inverting it through
nonlinear relationships with sea clutter. To overcome the inversion challenge caused by the
high dimensionality of the M-profile parameters, a principal component analysis (PCA)
method was first used to reduce the data dimensionality of the M-profile. However, this
standard method is laborious and fails to capture the nonlinear dependency of the SBD
M-profile. Therefore, it is urgent that an effective solution for extracting low-dimensional
representative features of inhomogeneous SBD M-profiles be developed.

The advent of deep learning caused a revolution in industrial dimensional reduc-
tion applications [2]. Typical deep learning models applied for the reduction of high-
dimensional spaces incorporate a backpropagation network (BPN), deep belief network
(DBN) [3], and stacked auto-encoders (SAE) [4]. However, the above models belong to
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fully connected networks, and when deployed for feature extraction, excessively high-
dimensional data will add too much computational complexity. Paoletti et al. [5] proposed
a deep convolutional neural network (CNN) for feature extraction and the classification
of images. Han et al. [6] proposed a different-scale two-stream convolutional network for
dimensional reduction. However, these networks still require numerous class-label samples
for supervised learning. To address this issue, Dasan proposed convolutional denoising
autoencoder unsupervised CNN-based methods for electrocardiogram (ECG) signal di-
mensional reduction [7]. Zhang et al. [8] proposed a CNN network for unsupervised
hyperspectral image feature extraction. Nevertheless, these unsupervised CNN-based
models still depend on the optimization of many connection weights. To that end, in this
study, we employ residual learning and skip the network connection to optimize the CNN
structure, and we used dilated causal convolution kernels embedded in auto-encoders for
feature learning and dimensional reduction to address this problem.

Although deep learning frameworks based on one-dimensional residual-dilated causal
convolution autoencoders (1D-RDCAE) have made remarkable progress in extracting
effective and robust features, there remains a lack of a generalized model to construct the
relationship between sea clutter and the SBD M-profile. In 2003, Gerstoft et al. employed
a genetic algorithm (GA) [9] with a radar clutter reduction technology to inverse the M-
profile. Zhang [10] employed a particle swarm optimization (PSO) algorithm to invert a
range direction inhomogeneous SBD M-profile. Moreover, a large number of researchers
have used machine learning methods in the application of atmospheric ducts and achieved
excellent inversion results [11–16]. However, both GA, PSO, SVM, and MLP algorithms
require repeatedly using parabolic equations of the atmospheric ducts, which is time-
consuming. Guo [17] proposed an approach based on deep learning to invert the height of
the range-direction homogeneous surface-based ducts in 2019. In 2020, Zhao [18] proposed
a method based on a BP neural network to predict the height of the evaporation duct.
In 2022, Ji [19] introduced a method based on a Deep Neural Network to predict the
height of the evaporation duct. Nevertheless, these models are unable to guarantee the
effective inversion of an inhomogeneous SBD M-profile, as using a fully connected layer
network that occupies the entire range-direction freedom of the inhomogeneous SBD M-
profile will engender overfitting and a large number of calculations during the training
network. In addition, inputting the long inhomogeneous sea clutter power sequence into
existing deep learning Recurrent Neural Network (RNN), CNN, and fully connected neural
networks [17] will lead to overfitting and high computational complexity when inverting a
high dimension SBD M-profile.

Recently, Transformer-based models have shown superior performance compared to
RNN and CNN-based models in the field of natural language processing. The self-attention
mechanism helps model equal availability for any input regardless of temporal distance,
allowing Transformer models more potential in dealing with long-sequence information.
Lim proposed the Temporal Fusion Transformer to learn temporal relationships at different
scales [20]. Zhou proposed the Informer model for forecasting time series [21]. Yin proposed
a rainfall-runoff model named RR-Former based on Transformer [22]. However, these deep
learning methods are mostly derived from the Vaswani Transformer [23], and they will
model quadratically computation cost and memory consumption growth according to the
long sequence input [24]. The core of the CNN network is the convolution kernel, which
has inductive biases such as translation invariance and can capture local spatiotemporal
information. One of the typical applications is the focus mechanism of YoloV5 [25], which
can get more fine-grained information, such as the shortcut map in the ResNet model [26],
with negligible extra computation costs. Thus, we apply it to the stack of self-attention
blocks within the encoder of Transformer. Apart from computer vision tasks, CNN models
also hold a foot in time series classification problems, such as TCN [27] and U-Net [28].
The core architecture of these models is to make use of the causal convolutional layer.
Instead of applying the whole TCN baseline to Transformer architecture, we only adopt
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the idea of dilated causal convolution and apply it to connect self-attention blocks to gain
exponentially receptive field growth of Transformer.

To this end, our work delves into making full use of the merits of convolutional
neural networks and Transformers. Two classic CNN architecture transformations have
been successfully applied to the Transformer architecture on the SBD M-profile inversion.
The contributions of our work are summarized as follows: (1) We addressed feature extrac-
tion from high-dimension M-profiles of inhomogeneous SBD M-profile by proposing an
unsupervised learning-based 1D-RDCAE. The experiments indicate that the 1D-RDCAE
had dramatically reduced error results, and the model achieved a better fit of the original
data compared to the PCA, BPN, SAE, DBN, 1D-CAE, and 1D-RCAE models. Furthermore,
1D-RDCAE provides a solution for extracting low-dimensional representative features of
the SBD M-profile. (2) We proposed the idea of full-coupled convolutional Transformer ar-
chitectures to establish the nonlinear relationship between sea clutter and high-dimensional
M-profile parameters. Extensive experiments demonstrate that our proposed architecture
not only enhances the Transformer’s learning capability but also cuts down the computa-
tional cost and memory usage.

2. Method
2.1. Modeling of the SBD M-Profile

The surface-based duct M-profile is divided into the surface-based duct with a base
layer and surface-based duct without a base layer. As shown in Figure 1a, the M-profile
with a base layer (three-line refractive index) includes four basic parameters: the height of
the base (zb), the thickness of the trapping layer (zthick), the refractive index of the trapping
layer (Md), and the slope of the base layer (c1). The M-profile of the three-line refractive
index is expressed by the following formula:

M(z) = M0 +


c1z z < zb

c1zb −Md
z−zb
zthick

zb < z < zthick

c1zb −Md + 0.118(z− zb − zthick) z ≥ zthick + zb

, (1)

when z = 0, that is, the height of the duct is the height of the mean sea level, the correspond-
ing value of M is M0 = 339M− units, where zb and zthick represent the height of the base
layer and the thickness of the trapping layer, respectively. c1 is the slope of the base layer,
and Md is the refractive index of the trapping layer. In our simulations, the parameters are
set, as shown in Table 1.

Figure 1. (a) Three-fold refractive index includes four basic parameters: the height of the base (zb),
the thickness of the trapping layer (zthick), the refractive index of the trapping layer (Md), and the
slope of the base layer (c1). (b) Two-fold line refractive index M-profile includes two parameters:
the thickness of the trapping layer (zthick), and the refractive index of the trapping layer (Md).
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Table 1. Parameter setting of the three-fold line refractive index M-profile.

Parameter Lower Upper

The height of the base (m) 1 100
The thickness of the trapping layer (m) 20 100
The refractive index of the trapping layer (M-units) 20 100
The slope of the base layer 1 20

As shown in Figure 1b, the M-profile without a base layer (two-line refractive index)
includes two basic parameters: the height of the base (zb), and the refractive index of the
trapping layer (Md). The M-profile of the two-line refractive index is expressed by the
following formula:

M(z) = M0 +

{
kz 0 < z < zthick

kzthick + 0.118(z− zthick) z ≥ zthick
, (2)

The parameters of the SBD M-profile can be modeled through a Gauss—Markov
process [1]. Figure 2 presents the simulation results obtained after using Markov chains
with one sample of SBD M-profile parameters for a range of 0–100 km and a range interval
of 0.1 km.

Figure 2. Parameters of the surface-based duct M-profile modeled with a Markov chain. The initial
values of the height of the base, the thickness of the trapping layer, the refractive index of the
trapping layer, and the slope of the base layer are set to 10 m, 5 m, 5 M-units, and 2.5, respectively.
The corresponding standard deviations are 0.5 m, 0.5 m, 0.5 M-units, and 0.1, respectively.

2.2. Forward Sea Clutter Power Calculation

The premise of employing radar sea clutter to implement duct inversion is to model
the forward propagation of radar electromagnetic waves in the ocean environment. The for-
ward calculation of radar sea clutter power is to reconstruct the parameters of the range
direction inhomogeneous M-profile by the low-degree-of-freedom parameters, which is
brought into the parabolic equation (PE) and radar sea clutter power calculation formula to
calculate the radar sea clutter power. The forward simulation accuracy of radar sea clutter
directly determines the inversion quality of the duct. The radar sea clutter is the radar
backscatter echo of the rough sea surface [1].

Applying the fundamental principle of radar, we can determine the power of the radar
receptance from a target with a distance r and radar cross-section δ1:

Pc =
PtGtλ

2F4δ1

(4π)3r4 (3)



Remote Sens. 2022, 14, 4385 5 of 22

where Pt and Gt are the transmit power and transmit antenna gain, respectively, λ is the
wavelength, δ1 is the sea radar cross-section, F is the propagation factor, and r is the distance
between the radar and the target. The propagation factor and the loss during propagation
have the following relationship:

L =
(4πr)2

λ2 \ F2 (4)

The sea radar cross-section δ1 can be represented by the scattering coefficient of the
sea surface δ1 according to δ1 = Acδ0, where Ac is the sea illumination area. Therefore,
(3) can be represented by (5):

Pc =
PtGt4πAcδ0

L2λ2 (5)

where the illumination area and distance have the following relationship:

Ac =
rΘ3dBτc
2cosΘg

(6)

Here, Θ3dB is the horizontal radar lobe width, τc
2 is the resolution of the radar distance,

and Θg is the grazing angle. When the grazing angle Θg has a small value, cosΘg is almost
a constant. Therefore, the relationship between Ac and r is linear. The power of the radar
sea clutter can be represented by (7):

Pc =
C1δ0r

L2 (7)

Here, C1 is a constant that depends upon the wavelength of the electromagnetic wave,
transmit power, and antenna gain, and it is defined as follows:

C1 =
2πPtGtΘ3dbτc

λ2 (8)

Finally, the power of the radar sea clutter can be represented by the following equation:

Pc,dB = −2LdB + δ0
dB + 10log(r)10 + CdB (9)

Among them, LdB is the propagation loss and is solved using a parabolic equation
model, and δ0

dB is the radar scattering coefficient and is retrieved applying the Georgia
Institute of Technology (GIT) empirical model [1].

2.3. SBD M-Profile Dimension Reduction

The high dimensionality of the SBD M-profile results in great computational costs
for the forward propagation of sea clutter and the backward inversion process, leading to
low efficiency and large errors. To address this issue, we use a 1D-RDCAE to reduce the
dimensions of the SBD M-profile parameters.

First, we construct a one-dimension dilated causal convolutional autoencoder network
using high-dimensional SBD M-profile parameters as inputs. The optimal mapping of
the high-dimensional space into the low-dimensional feature layer is actualized through
various dilated causal convolution and pooling layers, thus obtaining a parameter matrix
with fewer degrees of freedom. Then, we use a decoder network to perform deconvolution
and upsampling so that the outputs coincide with the parameters of the SBD M-profile
in the range direction. Third, a residual learning block is embedded in the encoder and
decoder networks to resolve feature learning on the range-direction vibration of the SBD
M-profile. The root mean square error (RMSE), mean absolute error (MAE), and R-square
(R2) are minimized by network training, established as the objective of the 1D-RDCAE, the
minimization of the reconstruction error.

The proposed 1D-RDCAE network structure is illustrated in Figure 3. The learning of
the 1D-RDCAE network comprises two phases: the encoder and decoder phases. In the



Remote Sens. 2022, 14, 4385 6 of 22

encoder stage, dilated causal convolution (that is, Dconv1, Dconv2, . . . , Dconv4) and
pooling layers (that is, Maxpooling1, Maxpooling2, . . . , Maxpooling4) are applied to encode
the SBD M-profile parameters to the low-degree-of-freedom parameter matrix. During the
decoding step, de-dilated convolution (that is, Dedeonv1, Dedeonv2, . . . , Dedeonv4) and
upsample layers (that is, Upsample1, Upsample2, . . . , Upsample4) are used to restore
the SBD M-profile. In parallel, the residual block’s (that is, Bottleneck1, and Bottleneck2)
learning mechanisms are incorporated into the network to improve its gradient conduction,
thus controlling the reconstruction error and enhancing the capacity of the network to
extract the features. The detailed steps are as follows.

Figure 3. One-dimensional-RDCAE network structure.

2.3.1. Encoder Network

The encoder network comprises four one-dimensional dilated causal convolutional
layers, four one-dimensional pooling layers, and one bottleneck layer. Figure 4 presents
the detailed structure of the encoder and decoder network; for the ith dilated causal
convolutional layer, the dilated causal convolutional operation DConv1d of kernel size h
on the xn ∈ Rd is defined as

DConv1d(xn) =


xn

xn−i
...

xn−(h−1)×i

Wd×dout , (10)

where dout is the output dimension, and i is the dilation factor. When i = 1, the dilated
causal convolution is degraded to canonical causal convolution.

Figure 4. Encoder and decoder of 1D-RDCAE.
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The one-dimensional pooling layers reduce the dimensionality of the input data.
For the feature of the (n + 1)-th layer, the output after pooling is defined as:

xn+1 = MaxPool
(

RELU
(
DConv1d(xn)

))
(11)

where DConv1d(.) indicates a 1D dilated causal convolutional filter with the RELU(.)
activation function. The bottleneck layer is a specific convolutional layer with a convolution
kernel size and stride size of 1. This 1× 1 convolution connection performs dimensionality
reduction over the channel, and the parameters of the bottleneck layer become feasible.
Accordingly, the bottleneck layer can reduce neurons in an FC layer network.

2.3.2. Decoder Network

The decoder network consists of four dilated causal convolution layers, four upsam-
pling layers, and one bottleneck layer, whose function is the inverse of that of the encoder
network. From Equation (10), the output of the de-dilated causal convolution layer can be
deduced as follows:

DeDconv1d(xn) =


xn

xn−j
...

xn−(h−1)×j

Wd×dout , (12)

where Wd×dout represents the de-dilated causal convolution kernel. dout is the output
dimension, and j is the dilation factor.

The one-dimensional upsampling layers reduce the dimensionality of the input data.
For the feature of the (n + 1)-th layer, the output after pooling is defined as:

xn+1 = Upsample(RELU(DeDconv1d(xn))) (13)

where DeDconv1d(.) indicates a 1D dilated causal convolutional filter with the RELU(.)
activation function. We add an upsampling layer with stride 2 that is then used to down-
sample x into its half slice after stacking a layer and providing a more focused feature map
for the following attention block.

2.3.3. Residual Block

The residual block module transfers data features by jumping connections. For the
residual block module in Figure 3, the input of the upsample layer 2 (Upsample2) is:

Xu2 = D1(Xd1) + p3(Xp3)

= D1
(

U1(Xu1)
)
+ p3

(
C3(X)

)
,

(14)

where D1 is de-dilated causal convolution layer 1, p3 is pooling layer 3, U1 is upsample
layer 1, C3 is dilated causal convolution layer 3, and X is the input data of pooling layer 3.

The output of upsample 2 is:

yu2 = U2(Xu2), (15)

where U2 represents upsample layer 2, and yu2 is the output of upsample layer 2.

Xu3 = D2(Xd2) = D2(yu2), (16)

where D2 refers to Deconv 2 layer, Xd2 is the input to Deconv 2, and Xu3 is the input data
of upsample layer 3.
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The reconstruction error is normally determined using the MAE, RMSE, and R2, which
are defined as:

RMSE =

√
∑n

i=1(g(h(x))− x)2

n
. (17)

MAE =
1
n

n

∑
i=1
|g(h(x))− x|. (18)

R2 = 1−

(
∑n

i=1

(
x− g

(
h(x)

))2
)/

n(
∑n

i=1

(
x− g

(
h(x)

))2
)/

n
, (19)

where x is the initial network status observation matrix input data, g
(
h(x)

)
is the recon-

structed data, which has the same dimensions as the initial input data, and n is the total
number of samples.

The reconstructed matrix of the height of the base, the thickness of the trapping layer,
the refractive index of the trapping layer, and the slope of the base layer are generated
pertaining to the decoded network. The training network aims to minimize the error of
the backpropagation to the hidden layer, making the reduced dimension data closer to the
original SBD M-profile parameters.

2.4. Inversion of SBD M-Profile

The inversion of the M-profile for the surface-based duct is the inverse of the forward
analysis of the radar sea clutter. We proposed a full-coupled convolutional Transformer to
establish the nonlinear relationship between sea clutter and the low-dimensional feature
representations of M-profile parameters. Figure 5 illustrates the overview structure; see the
following sections for details.

Figure 5. Flow chart of inversion of the M-profile for surface-based duct from sea clutter.
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2.4.1. Input Representation

To accommodate the dimensionality of our input to the model, an input transformation
layer is given at the beginning of the encoder and decoder. Since the Transformer model
itself does not have a distance label for the SBD M-profile inversion; we employ a linear
operation to embed the learnable position to give positional information. We have taken
the clutter power xL of length L-th as input, the global length stamp of the clutter power
range, and the feature dimension after input representation is dmodel. We first preserve
local contextual information by employing a fixed position embedding:

PE(pos,2k) = sin(pos/(2Sx)
2k/dmodel) (20)

PE(pos,2k+1) = cos(pos/(2Sx)
2k/dmodel), (21)

where k ∈ {1, . . . , [dmodel/2]}. The range of the clutter power length stamp is employed by
a learnable stamp embedding SE(pos). To align the dimensions, we project the scalar context
xL

i into dmodel-dim vector wL
i with a 1D convolutional filter (kernel width = 3, stride = 1).

Thus, the input feeding vector is as follows:

xL
feed[i] = ∂wL

i + PE(Tx×(l−1)+i) + SE(Tx×(l−1)+i), (22)

where i ∈ {1, . . . , Tx}, and ∂ is a factor that balances the size between the scalar projection
and the local/global embedding.

2.4.2. Multi-Head-Attention Mechanisms

Attention mechanisms in the fields of image and natural language processing repre-
sent focusing attention on certain words or target regions in an image. In other words,
the attention mechanism is a weighted sum mechanism that assigns different weights to
different positions; that is, to give more important positions of clutter power larger weights.
Assume that we have canonical attention defined based on a set of key-value pairs (k, v)
and queries (q) in which the dimensions of keys, values, and queries are dk, dv, and dq,
respectively. By weighing the similarity between the queries and keys, the weights are
assigned to the values; then the output can be described as:

ATTN(Q, K, V) = f (Similarity(Q, K), V), (23)

where Q indicates a matrix by packing a set of queries (vector q), K indicates a matrix
by packing a set of keys (vector k), and V indicates a matrix by packing a set of values
(vector v).

Vaswani Transformer performs the scaled dot-product attention as follows:

ATTN(Q, K, V) = softmax
(

QKT
√

dk

)
V. (24)

However, traversing all the queries for measuring M(qi, K) requires calculating each
dot-product pair. Instead of the Vaswani Transformer self-attention mechanism, ProbSparse
self-attention allows each key to focus on the dominant query when performing a scaled
dot product. The way to judge the dominant query is through the Kullback–Leibler
divergence and uniform distribution of the query-key attention probability distribution.
Queries with larger KL divergences are considered to be more dominant. Due to the
long-tailed distribution of self-attention scores, ProbSparse self-attention only needs to
compute O

(
ln LQ

)
dot-product in typical self-attention instead of O

(
LQ
)
. By ProbSparse

self-attention, the model can simultaneously focus on different features from multiple
subspace representations. The outputs from each head will be connected and then followed
by a linear transformation operation. Figure 6 illustrates muti-head attention work steps.
The pseudocode of ProbSparse multi-head attention is exhibited in Algorithm 1.
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Figure 6. The structure of multi-head attention.

Algorithm 1: Pseudocode of ProbSparse Multi-Head-Attention

Input Require : Q ∈ Rm×d, K ∈ Rm×d, V ∈ Rn×d

Output :Oattn
Hyper-Parameters: c, u = c ln m, U = m ln n, h: number of heads

1 randomly selected U dot-product pairs from K as K

2 set the sample score S = QKT

3 compute the measurement M = max
(
S
)
−mean

(
S
)

by row
4 set Top-u queries under M as Q

5 set S1 = softmax
(

QKT /
√

d
)
· V

6 set S0 = mean(V)
7 set attn = {S1, S0} by their initial rows
8 Oattn = W · concat(attn1 + attn2 + . . . + attnh)
9 return Oattn

2.4.3. Encoder for Processing Longer Length Ranges Clutter Power Inputs

The encoder is designed to extract robustness against long-range SBD clutter power
inputs in the range direction. To illustrate this part more clearly, we give a sketch of an
encoder in Figure 7.

Figure 7. A single Informer’s encoder stacking self-attention blocks cooperates with FCCT architectures.

(1) Self-attention distilling with dilated causal convolution:
The Vaswani Transformer obtains deeper feature maps by stacking multiple self-

attention blocks through fully connected layers, but it will bring more time and space
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complexity. To further reduce the complexity of the Vaswani Transformer model, the
Informer employs a convolutional layer and a max-pooling layer between the two self-
attention modules to prune the input length. However, when canonical convolutional layers
are applied to the SBD M-profile inversion, the canonical convolutional neural network
can only capably review the linear size history as the depth network grows. Therefore,
it is not enough to handle the long sequences of clutter power. Moreover, the canonical
convolutional network layer does not consider the range perspective of the clutter power,
which will inevitably lead to information leakage in the inversion of the range direction
sequence. To address this problem, we use dilate causal convolutions to replace traditional
convolutional networks. For the jth convolutional layer following the jth attention block,
the dilated causal convolutional operation DConv1d of kernel size h on the xn ∈ Rd, n ∈ L
of the input clutter power X ∈ RL×d is defined as

DConv1d(xn) =


xn

xn−k
...

xn−(h−1)×k

Wm×mout , (25)

where mout is the output dimension, and k is the dilation factor. When k = 1, the dilated
causal convolution is degraded to canonical causal convolution.

As illustrated in Figure 8, we can clearly notice that dilated causal convolution used
padding on the temporary front side to prevent future information leakage. Benefitting
from the dilated causal convolution, our “self-attention distilling” procedure from the n-th
layer to the (n + 1)-th layer as:

xn+1 = MaxPool(ELU(DConv1d(xn))), (26)

where DConv1d(.) indicates an 1D convolutional filters (kernel size = 3) with the ELU(.)
activation function. We add a max-pooling layer with stride 2 that is then used to down-
sample x into its half slice after stacking a layer and providing a less but more focused
feature map for the following attention block.

Figure 8. A visualization of a self-attention network stacking three self-attention blocks connected
with dilated causal convolutional layers and max-pooling layers.

(2) Focus mechanism:
The focus mechanism, proposed by the YoloV5 object-detection CNN network, takes

feature maps from the previous network and concatenates them with the final feature map
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to get more fine-grained clutter power without affecting the model’s parameters. As shown
in Figure 9, to perform the inversion of the SBD M-profile from all different global and
local scales, we employed a focus mechanism to merge different scales of the clutter power
feature maps in a Transformer network. Suppose an encoder stack with n self-attention
blocks; each self-attention block would produce a feature map of clutter power. To integrate
all the different characteristic maps of clutter power from a more fine-grained perspective,
we divide the Qth feature map into 2n−Q feature maps with a length 1/2n−1. Then, we
concatenate all the splice feature maps by dimension, which was calculated by (2n−1)× d.
Moreover, we employ a transition layer to ensure the whole output global feature map has
appropriate dimensions.

Figure 9. A network stacking three ProbSparse Attention (pink) blocks. Dilated causal convolution
(blue) and focus mechanisms are employed.

2.4.4. Decoder: Generating SBD M-Profile Parameter Outputs by Forward Procedure

The decoder network structure consists of four sub-layers: feed the decoder inputs,
masked muti-head ProbSparse self-attention layers, encoder and decoder attention layers,
and a fully connected layer.

We feed the decoder network with the following clutter power vectors as

Xdecoder = Concat(Xtoken, X0) ∈ R(Ltoken+Ly)×dmodel , (27)

where Xtoken ∈ R(Ltoken+Ly)×dmodel is the start of the token, X0 ∈ RLy×dmodel indicates a
placeholder for the target SBD M-profile sequence, which sets the scalar as 0.

A masked muti-head ProbSparse self-attention layer constructs a long-range depen-
dence position inside a decoder, which can avoid network auto-regression. An encoder-
decoder attention layer constructs long-range dependence between the encoder and the
inputs of the decoder. A fully connected network is employed to output the last decoder
layer, followed by linear transformation. The output of the last decoder layer, followed
by linear transformation, is the final SBD M-profile parameter inversion. For performance
evaluation, we employ the MAE and RMSE loss functions on the inversion of the target
SBD M-profile parameters.

2.4.5. One-dimensional-RDCAE Decoder Network: Reconstructing Full-Space
SBD M-Profile

The low-degree-of-freedom feature representation SBD M-profile parameter matri-
ces output by the FCCT is used as the input to the decoder network of the 1D-RDCAE.
The decoder network includes a bottleneck layer, four deconvolutional layers, and four
upsampling layers. The size of the first, second, third, and fourth deconvolution layers was
set to 12, 62, 250, and 1000, respectively. According to the decoder network, a full-space
SBD M-profile parameter matrix is reconstructed to realize its high-dimension inversion.
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In this paper, we employ MAE and RMSE as loss functions and design the following
three training strategies. First, we want to show the effectiveness and necessity of the
1D-RDCAE for feature extraction from an inhomogeneous surface-based duct. Thus, we
evaluate the 1D-RDCAE and benchmarks and compare their performance by using root
mean square error (RMSE), mean absolute error (MAE), and R-square (R2). RMSE and
MAE indicate the accuracy of the inversion model. The smaller the value is, the higher the
accuracy is. R2 is used for linear regression to represent the number of variables described
by the regression. If the value is 1, the model perfectly predicts the value of the target
variable. For further comparisons of the FCCT method with state-of-the-art Transformer-
based models, we employed 5-fold and 10-fold cross-validation MAE, model parameters,
running time, and calculation complex, five times to verify the inversion model. Finally,
to verify the effectiveness of the proposed FCCT deep learning model using the measured
data, we used the radar sea clutter power data measured in the Wallops’98 experiment in
the United States to invert and verify the inhomogeneous surface-based duct M-profile [9].

3. Results and Discussion
3.1. Dataset

The data used for the experiments on dimension reduction from the SBD M-profiles
comprised 5000 sets of parameters, including the height of the base, the thickness of the
trapping layer, the refractive index of the trapping layer, and the slope of the base layer for
a range of 0–100 km and a range interval of 0.1 km simulated with the aid of a Markov chain.
The clutter power for the inversion SBD M-profile experiments includes 5000 sets of data
computed by bringing SBD M-profile parameters into PE and radar sea clutter formulas.
The train/val is 80%/20% data sample by default. The accuracy of the inversion model
was validated using two sets of simulated sea clutter power data and four sets of measured
sea clutter power [9]. The parameters of the radar system applied in the calculation are
shown in Table 2.

Table 2. Radar properties.

Parameter Value

Radar Transmitting Frequency (GHz) 2.84
Power (dBm) 91.40
Antenna gain (dB) 52.80
Polarization Mode VV
Antenna Height (m) 30.78
Antenna elevation angle (deg) 0.0
Beam Width (◦) 0.39
Distance resolution (m) 600

The computer system used in the experiments was a Windows Server 2016 Standard
with Intel (R) Xeon(R) CPU E5-2650 V4@2.20 GHz and two GPUs named TESLA.

3.2. One-dimensional-RDCAE Used for SBD M-Profile Dimension Reduction

The network structure and parameters setup of the 1D-RDCAE are presented in
Table 3. The four dilated causal convolution kernel layers, and one bottleneck layer reduce
the M-profile parameters of the 1000-dimension range direction set to 250, 62, and 15 to
3 degrees of freedom. In parallel, one bottleneck layer, four de-dilated causal convolution
kernel layers, and one fully connected layer reconstruct the SBD M-profile.
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Table 3. 1D-RDCAE structure.

Layer Value

Dconvolutional 1 Kernel Size = 2, Filter = 128
Max-pooling 1&2&3&4 Strides = 4, Pooling Size = 4

Dconvolutional 2 Kernel Size = 2, Filter = 64
Dconvolutional 3 Strides = 2, Filter = 16
Dconvolutional 4 Strides = 2, Filter = 8

Bottleneck 1&2 Strides = 2, Filter = 8

DeDconvolution 1 Strides = 2, Filter = 8
Upsampling 1&2&3&4 Strides = 4, Pooling Size = 4

DeDconvolution2 Strides = 2, Filter = 16
DeDconvolution3 Strides = 2, Filter = 64
DeDconvolution4 Strides = 2, Filter = 128

Flatten& Fully Connected Units = 1000

Learning Rate 0.0001
Batch Size 256

3.2.1. One-dimensional-RDCAE Parameter Analysis

Figure 10 shows the RMSE and R2 during the 1D-RDCAE model testing and training
phases. While the number of the training epochs increases, the RMSE consistently con-
verges. To further verify the accuracy of the network training and testing, we use R2, which
is employed in linear regression to represent the number of variables described by the
regression. If the value is one, the model perfectly predicts the value of the target variable.
As illustrated in Figure 10b, the model converges to one with the increase in the number
of epochs.

(a) (b)
Figure 10. Testing and training results of 1D-RDCAE. (a) RMSE and (b) R2 value.

In the process of model training, the reasonable division of datasets will have an
important impact on the model training. The division of the training/test set should
be as consistent as possible in terms of the data distribution to avoid additional biases
introduced by the data partitioning process that affect the final result. As shown in Figure 11,
we compare the RMSE of the three classical training/testing set division ratios of 60:40,
75:25, and 80:20 in the model’s training and tuning phases. These results indicate that the
training/testing ratio of 80:20 converges faster and more accurately than the other two
ratios. Therefore, the training and test datasets of this article are divided into 80:20.

The residual learning block plays an essential part in the 1D-RDCAE network. As in-
dicated in Figure 12, while the number of epochs increases, the model with the residual
learning block converges asymptotically, whereas the one without the residual learning
block exhibits an obvious oscillation and a slower systematic convergence.
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Figure 11. RMSE of 1D-RDCAE when the training and test ratios are 60:40, 75:25, and 80:20.

(a) (b)
Figure 12. (a) RMSE and (b) R2 of 1D-RDCAE with and without the residual learning block.

As demonstrated in Figure 13, we compare the average accuracy of the M-profile of
each parameter with a canonical convolution layer and a dilated causal convolution layer.
It is obvious that the model with a dilated causal convolution layer reconstructs the original
M-profile parameters more accurately. The result clearly demonstrates the effectiveness
and necessity of the dilated causal convolution for feature extraction from inhomogeneous
surface-based ducts.

Figure 13. Accuracy of M-profile parameters with a canonical convolution layer and dilated causal
convolution layer.

The final dimensions of the feature extraction model affect the accuracy of the recon-
structed M-profile. As demonstrated in Figure 14, we compare the RMSE of the training
and tuning phases with target dimensions of one, two, and three. These results illustrate
that a faster convergence rate is achieved for a target dimension of three than for a target
dimension of one or two, and the RMSE in the latter cases is not as small as in the three-
dimensional case. This indicates that when the dimension is increased to three, 1D-RDCAE
can achieve more accurate data reconstruction.
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Figure 14. RMSE of 1D-RDCAE when the final dimensions are one, two, and three.

3.2.2. Comparisons of Dimensional Reduction Results

In this section, we first compare the proposed method with the traditional PCA
method. To further verify the effectiveness of our proposed method, we compare the
classical dimensionality reduction models in the field of deep learning.

As demonstrated in Table 4, 1D-RDCAE achieved the best performance in terms of all
the evaluated metrics.

Table 4. The performance of 1D-RDCAE and baseline methods.

Model
Dimension = 2 Dimension = 3

RMSE MAE R2 Time (s) RMSE MAE R2 Time (s)

Zb = 20

PCA 3.62 2.47 0.91 48 3.57 2.38 0.92 49
BPN 0.72 0.61 0.94 43 0.51 0.41 0.95 43
SAE 0.69 0.59 0.94 43 0.44 0.35 0.95 42
DBN 0.56 0.51 0.95 43 0.38 0.31 0.96 42

1D-CAE 0.49 0.49 0.95 41 0.36 0.33 0.97 40
1D-RCAE 0.35 0.39 0.96 40 0.28 0.29 0.97 39

1D-RDCAE 0.32 0.29 0.97 40 0.23 0.22 0.98 39

For the PCA, when the target dimension increased from 2 to 3, the RMSE, MAE, and
R2 did not significantly change. Considering that the PCA merely discards some features by
approximation and does not consider any information related to the outcome parameters,
the most significant features may be lost. For the BPN, SAE, and DBN models, when the
target dimension increased, the RMSE, MAE and R2 first decreased. Notwithstanding
that the accuracy of dimension reduction can be enhanced by increasing the number
of dimensions, this improvement is insufficient to simulate larger datasets because its
inherent fully connected architecture engenders overfitting and high computational cost
during the training of the network. Regarding 1D-CAE, 1D-RCAE, and 1D-RDCAE, when
the target dimensions increased, the results of the three models exhibited considerably
better precision. Compared with 1D-CAE and 1D-RCAE, the 1D-RDCAE model can process
the original data more meticulously and achieves the best performance. Thus, our proposed
model achieved excellent results, and the reconstructed output data were identical to the
original sample data.

3.3. FCCT Used for Inversion SBD M-Profile Parameters
3.3.1. FCCT Parameters

The details of the proposed FCCT structure are summarized in Table 5. For the input
layer, to align the dimension, we embed the input data into a 512-dim vector with 1D
convolutional filters (kernel size = 3, stride = 1). For the ProbSparse self-attention block,
we let d = 32 and n = 8, and add residual connections, a feed-forward network layer (inner-
layer dimension is 256) and a dropout layer (p = 0.1). Between every-two ProbSparse
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Self-attention blocks, a dilated causal convolutional layer and a maxpooling layer are used
for connection; we set ELU (p = 0.1) and Dropout (p = 0.1). We employ a focus layer to
merge different feature maps in the Transformer network; we set the kernel size = 3 and
stride = 1.

Table 5. The full-coupled convolutional Transformer network components in detail.

Encoder:

Input 1× 3Conv1d Embedding (d = 128)

ProbSparse
Self-attention

Block

Multi-head ProbSparse Attention (h = 8, d = 32)

Add Layer Norm, Dropout(p = 0.1)

FFN (dinner = 256), GELU

Dropout (p = 0.1)

Distilling
1× 3DeConv1d, BatchNorm1d,
ELU(p = 0.1), Dropout(p = 0.1),

Maxpooling (Kernel size = 1, stride = 2, padding = 1)

Focus Layer 1× 3Conv1d, BatchNorm1d

Decoder:

Input 1× 3Conv1d Embedding (d = 128)

Masked Layer Add Mask on Attention Block

ProbSparse
Self-attention

Block

Multi-head ProbSparse Attention (h = 8, d = 32)

Add, Layer Norm, Dropout(p = 0.1)

FFN (dinner = 256), GELU

Add, Layer Norm, Dropout (p = 0.1)

Final:

Output Fully Connected & Reshape(4× (2000, 3))

Learning Rate 0.0001

3.3.2. Comparisons of SBD M-Profile Inversion Results

To verify the effectiveness of the deep learning inversion model, we first compare
DNN with four classic machine learning inversion models based on a set of simulated
clutter power data. The results of the model are shown in Table 6. The DNN model
is superior to the traditional GA, PSO, SVM, and MLP algorithms in terms of time and
final accuracy of the task. Using the same 16 hidden layers and model hyperparameters,
the accuracy and running time of the DNN model are better than the BPNN model.

Table 6. Comparison of classical inhomogeneous inversion models.

Model Year zb c1 zthick Md Time (s)

GA [9] 2003 90.95 91.27 90.32 90.37 155512
PSO [5] 2012 91.34 91.56 92.31 91.39 136753

SVM [29] 2013 91.25 91.93 92.12 91.56 927
MLP [30] 2018 91.29 91.99 92.93 92.09 759

BPNN [18] 2020 93.92 92.32 93.96 94.03 682
DNN [19] 2022 94.59 94.97 95.29 95.31 697

For the fair comparison of our proposed method with state-of-the-art Transformer-
based models, we employed 5-fold and 10-fold cross-validation methods, model param-
eters, running time, and calculation complex, five times to verify the inversion model.
For the default training settings, which are widely adopted in classic Transformers, we use
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standard preprocessing to train the network for approximately 200 epochs, all models are
trained using the same dataset. Specifically, all the hyperparameters are set to this in the
official implementation without any additional adjustments.

Similarly, our proposed FCCT model is trained in an end-to-end style. We set the batch
size to 128.

Although DNN can achieve a relatively high accuracy compared with the other
classical methods, it is still unable to achieve significant results in the inversion of the high-
dimensional M-profile. As demonstrated in Table 7, in the five- and ten-fold MAE cross-
validation on simulated datasets, our proposed FCCT network obtains better performance
compared to the other state-of-the-art Transformer-based models, including its runtime
and lightweight model parameters. Specifically, in DNN models, as the number of network
layers increases, excessive network parameters in the training process make the model
require plenty of training time and memory consumption, which seriously affects its
efficiency. Transformer has better performance than the DNN model, but the performance of
Transformer and other state-of-the-art models are still lower than the stronger Transformer-
based FCCT structure that strengthens the capacity to elaborate upon the multi-head
attention, self-attention distilling with dilated causal convolutional, and focus mechanism
design of SBD M-profile.

Table 7. Comparison of deep learning models.

Model MAE
K = 5

MAE
K = 10

Params
(M)

GFLOPS
(G)

Time
(s)

DNN [19] 5.71 2.69 563.91 0.86 697
Transformer [23] 0.84 0.67 9.932 2.931 681
LogTrans [31] 0.83 0.67 9.821 2.832 569
INFORMER [21] 0.57 0.46 6.358 2.759 539
FCCT 0.47 0.37 6.028 2.532 491

As shown in Figure 15, we compare our proposed FCCT model with other state-of-the-
art Transformer-based methods using two sets of simulated clutter power data. First, it is
easily observable that our proposed inversion method is more consistent with the reference
simulated data and achieves the best performance. Second, the inversion of the two sets of
simulated sea clutter power data reached 96.99% and 97.69%, which reflects the benefit of
using the tailored inversion method of surface-based duct M-profile.

Figure 15. Inversion results of (a) measured Three-line SBD M-profile and (b) simulated Two-line
SBD M-profile through Transformer, LogTrans, Informer, and FCCT. (c) Accuracy (%) of inversion
of clutter power using Transformer, LogTrans, Informer, and FCCT with base layer (Y) and without
base layer (N) surface-based duct M-profile.
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3.3.3. Measured Data Inversion Results

To verify the effectiveness of the proposed FCCT deep learning model, we used the
radar sea clutter power data measured in the Wallops’98 experiment in the United States to
invert and verify the inhomogeneous surface-based duct M-profile.

Detailed descriptions of Wallops’98 experiments and data can be found in Refs. [9]
and [32], this section mainly presents a brief introduction to the data used in this paper.
The Wallops’98 experiment used the reception and processing of sea clutter data by Space
Range Radar (SPANDAR). The system parameters of the radar are shown in Table 1.

To verify the effectiveness of the proposed deep learning FCCT model, we used the
trained inversion model and the same computer hardware conditions; all inversion results
can be completed within 5 s, and the measured sea clutter profile (12:50 UT, 13:00 UT,
13:40 UT, and 14:00 UT from top to bottom, respectively) are marked in blue, the inversion
refractive index profile and the inverted clutter power profile are marked in red, the
refractive index M-profile of a helicopter (from top to bottom corresponds to 12:26 UT-12:50
UT, 12:52 UT-13:17 UT, 13:19 UT-13:49 UT, and 13:51 UT-14:14 UT, respectively) and the
clutter power profile of the helicopter is marked in blue.

It can be clearly concluded from the left column of Figure 16 that the modified refrac-
tive index profile of the inversion can reflect the profile characteristics of the surface-based
duct structure observed by the helicopter as a function of distance. However, the inversion
and measured profiles do not exactly match each other. The main reason for this phe-
nomenon is that the refractive index profiles of each group of helicopters were observed
over a time frame of 25 min, but the inverted profiles reflect the instantaneous refractive
index profile information corresponding to each clutter measurement.

Figure 16. The inversion results are compared with the measured data. The left column (a1–d1)
are the comparison of the inversion refractive index profile (red) and the refractive index M-profile
of a helicopter (from top to bottom corresponds to 12:26 UT−12:50 UT, 12:52 UT−13:17 UT, 13:19
UT−13:49 UT, and 13:51 UT−14:14 UT, respectively) and the clutter power profile of the helicopter is
marked in blue. The right column (a2–d2) are the comparison of the inversion clutter power (red)
and the measured radar clutter power (12:50 UT, 13:00 UT, 13:40 UT, and 14:00 UT from top to bottom,
respectively) are marked in blue.
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In the right column of Figure 16, the calculated clutter power based on the inverted
refractive index profile basically agrees with the observed results, but there are still some
errors. The inversion power of a2 and d2 are in good agreement with the measured
power; however, the measured power of c2 is in poor agreement with the measured power,
because, for the propagation of tropospheric electromagnetic waves, the propagation char-
acteristics are mainly determined by the refraction conditions. The c2 invention refractive
index structure is in error with the measured refractive index structure; however, small
differences can lead to large errors in EM propagation simulations. From the comparison
of the overall clutter power of the four groups, it can be inferred that the inversion results
of the four groups are basically consistent with the information of the refractive index
profile and the information of the sea clutter power profile, indicating the effectiveness and
stability of the proposed method.

4. Conclusions

When inverting high-dimension inhomogeneous SBD M-profile parameters, the classic
GA and PSO models render low productivity and large errors. To tackle these problems,
a deep-learning model for addressing the computational complexity and large inversion
errors of the SBD M-profile was proposed. Specifically, we first proposed a one-dimensional
residual dilated causal convolutional autoencoder (1D-RDCAE) to extract the SBD M-
profile feature representations from high-dimension range-direction M-profiles. Second,
the inversion efficiency and precision were enhanced using a fully coupled convolutional
Transformer (FCCT) that transforms two CNN architectures into a Transformer model to
establish a network mapping between sea clutter and the low-dimensional representative
M-profile parameters. To show the advantages of FCCT, we tested its performance on
two sets of simulated sea clutter power data where the inversion of the simulated data
reached 96.99% and 97.69%, which outperformed the existing baseline methods. To verify
the effectiveness of the proposed FCCT deep learning model, we used the radar sea clutter
power data measured in the Wallops’98 experiment in the United States to invert and verify
the inhomogeneous SBD M-profile. The results show the power of our proposed model;
however, it is worth discussing the limitations of the model. As a data-driven model,
the FCCT learns the nonlinear relationship between the SBD M-profile and clutter power
purely from data. There remains a lack of physical explanations in the inversion process,
although we try to explain the entire physical process. Second, the FCCT model has less
measured data, so the inversion accuracy of the measured data is not ideal, although we
obtained the best inversion results from the simulated data. Therefore, future work will
focus more on an explanatory inversion model and conducting more experiments to collect
more measured data to continuously improve the accuracy of the model.
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