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Abstract: Near-surface humidity (Qa) is a key parameter that modulates oceanic evaporation and
influences the global water cycle. Remote sensing observations act as feasible sources for long-term
and large-scale Qa monitoring. However, existing satellite Qa retrieval models are subject to apparent
uncertainties due to model errors and insufficient training data. Based on in situ observations
collected over the China Seas over the last two decades, a deep learning approach named Ensemble
Mean of Target deep neural networks (EMTnet) is proposed to improve the satellite Qa retrieval
over the China Seas for the first time. The EMTnet model outperforms five representative existing
models by nearly eliminating the mean bias and significantly reducing the root-mean-square error
in satellite Qa retrieval. According to its target deep neural network selection process, the EMTnet
model can obtain more objective learning results when the observational data are divergent. The
EMTnet model was subsequently applied to produce 30-year monthly gridded Qa data over the
China Seas. It indicates that the climbing rate of Qa over the China Seas under the background of
global warming is probably underestimated by current products.

Keywords: near-surface humidity; remote sensing; deep learning; China Seas

1. Introduction

As the primary source of global evaporation and precipitation, the ocean plays an
important role in the transportation and redistribution of water resources on Earth [1–3].
On this basis, the near-surface humidity (Qa) over global oceans is crucial, as it modulates
oceanic evaporation and influences the global water cycle [4–6]. Nevertheless, there are non-
negligible uncertainties in Qa estimates in satellite-derived products [7,8] and reanalysis
products [9,10]. The imperfection of Qa data quality has been reported as one of the leading
error sources of uncertainties in freshwater exchanges across the air–sea interface and in
global water budgets [11–14]. Even in coupled general circulation models, the performance
of Qa is highly related to simulations of oceanic evaporation [15]. Accurate estimates of Qa
are thus necessary for studies on the global water cycle, air–sea interactions, and climate
change [16].

The measurements of Qa can be generally divided into two approaches: in situ ob-
servations and remote sensing observations. The former are direct measurements of Qa
and have relatively high credibility, but these observations are subject to poor continuity in
time and space. The latter have the advantage of long-term and large-scale Qa monitoring.
Still, remote sensing is an indirect approach that requires a relevant retrieval model to
convert satellite measurements into Qa. With the development of space-borne technology
and microwave radiometers, the last several decades have experienced the prosperity of
investigations in model development for satellite Qa retrieval. Considering that a large
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portion of the total column precipitable water (TPW) is confined in the atmospheric surface
layer, pioneering work by [17,18] (hereafter L86) linked the TPW to Qa in light of the
Qa–W relation. It was reported that the Qa–W relationship has excellent performance with
training data on a monthly scale [18] and can also work well with synoptic-scale data [19].
Considering the decoupling of the atmospheric boundary layer from the upper troposphere,
Ref. [20] proposed replacing the TPW data in the Qa–W relation with the precipitable water
constrained in the lowest 500 m, which can be derived from brightness temperature (TB)
measurements. To reduce the propagation of uncertainties within input data, Ref. [21]
established a direct linear regression between Qa and TB. Under the scheme of the Qa–W
relation, Ref. [22] developed an empirical orthogonal function method for satellite Qa
retrieval. A neural network combining TPW and sea surface temperature (SST) was first
developed to estimate Qa by [23]. Subsequently, estimates of Qa with multichannel TBs
as input data by multivariate linear regression [24–27] or nonlinear regression [16,28,29]
prevailed in the last two decades.

The models above were primarily designed for global oceans. However, Ref. [28]
reported that satellite Qa retrieval differed in regions of the tropics and high latitudes, and a
high-latitude enhancement was considered in their model. It indicates that attention should
be given to different regional features of satellite Qa retrieval. The China Seas, consisting of
the Bohai Sea, Yellow Sea (YS), East China Sea (ECS), and South China Sea (SCS), are the
largest marginal group of seas in the northwestern Pacific and are strongly influenced by
complex continental environments. Previous investigations have pointed out that the Qa
data in this region suffer from significant uncertainties and are the leading error source of
air–sea heat fluxes [30,31].

In recent years, machine learning, especially deep learning, has been widely used to
provide new insights into traditional and/or emerging research in earth science [32–36].
With the accumulation of high-quality in situ observations of Qa over the China Seas in
the last two decades, the main objective of this study is to develop a deep-learning-based
model to improve the satellite Qa retrieval over the China Seas. The data and methods are
introduced in Section 2. The main results are presented in Section 3. Section 4 discusses
the interpretability of the deep-learning-based model. Finally, Section 5 draws the main
conclusion of this study.

2. Data and Methods
2.1. In Situ Observations

In situ observation information from this study is listed in Table 1. There are
20 observational stations in the coastal and open oceans (Figure 1a), including 18 buoys,
1 offshore platform, and 1 flux tower on an island. Compared to ship observations, these
fixed-point observations usually have more stable data quality performance. The data
collected in coastal areas are valuable touchstones to validate the performance of remote
sensing observations, including Qa, surface wind, and sea surface temperature. The data
span from 1998 to 2018, and the sampling intervals vary from 1 min to 30 min. All the raw
data were processed with quality control procedures as suggested by [31,37,38]. For all
stations, the Qa and surface wind data were adjusted to standard heights of 2 m and 10 m,
respectively, according to the COARE 3.0 algorithm [39].
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Table 1. Information on in situ observations collected in this study. The station names with prefixes
“DH” and “HH” are located in the ECS and the YS, respectively. The remaining 13 stations are located
in the SCS. The data span from 1998 to 2018 and the sampling intervals vary from 1 min to 30 min.

Name Location Ocean Depth Type Sampling
Interval Period

Maoming 111.66◦E, 20.75◦N ~100 m buoy 1 min 26 May 2010–28 September 2011

Shantou 117.34◦E, 22.33◦N ~100 m buoy 1 min 16 October 2010–16 May 2011

Bohe 111.32◦E, 21.46◦N ~15 m offshore
platform 10 min

26 November 2009–15 May 2010
4 January 2011–28 April 2011
13 March 2012–3 June 2012

Xisha flux tower 112.33◦E, 16.83◦N island tower 1~10 min 26 April 2008–6 October 2008
19 July 2013–31 January 2017

Xisha buoy 112.33◦E, 16.86◦N ~1000 m buoy 10 min 19 September 2009–7 April 2013
14 May 2018–12 June 2018

Kexue 1 110.26◦E, 6.41◦N ~1300 m buoy 15 min 7 May 1998–20 June 1998

Shiyan 3 117.40◦E, 20.60◦N ~1000 m buoy 15 min 6 May 1998–23 June 1998

SCS1 115.60◦E, 8.10◦N ~3000 m buoy 15 min 19 April 1998–29 April 1998

SCS3 114.41◦E, 12.98◦N ~4500 m buoy 15 min 8 June 1998–16 June 1998

SCS3+ 114.00◦E, 13.00◦N ~4000 m buoy 15 min 13 April 1998–29 May 1998

QF301 115.59◦E, 22.28◦N ~100 m buoy 30 min 1 March 2011–31 May 2011

QF302 114.00◦E, 21.50◦N ~100 m buoy 30 min 1 March 2011–31 May 2011

QF303 112.83◦E, 21.12◦N ~100 m buoy 30 min 1 March 2011–31 May 2011

DH06 123.13◦E, 30.72◦N <100 m buoy 30 min 29 March 2012–30 December 2013

DH10 122.00◦E, 31.37◦N <100 m buoy 30 min 1 September 2013–2 December 2015

DH11 122.82◦E, 31.00◦N <100 m buoy 30 min 1 January 2014–30 December 2016

DH20 122.75◦E, 29.75◦N <100 m buoy 30 min 6 November 2014–1 November 2016

HH07 122.58◦E, 37.01◦N <100 m buoy 30 min 29 March 2012–31 December 2013

HH09 120.27◦E, 35.90◦N <100 m buoy 30 min 1 January 2014–31 December 2016

HH19 119.60◦E, 35.42◦N <100 m buoy 30 min 6 November 2014–31 December 2016

The basic characteristics of in situ observations of Qa are examined to check their
representativeness, considering many missing data and the uneven sampling in time and
space. As shown in Figure 1b–d, Qa varies from 5.5 to 24.0, 1.5 to 24.5, and 0.8 to 24.8 g/kg
in the SCS, ECS, and YS. Qa’s mean values plus/minus one standard deviation (STD) are
16.6 ± 4.1, 10.1 ± 5.5, and 8.5 ± 5.7 g/kg in the SCS, ECS, and YS. For the probability
density distributions (PDDs) of Qa, a left-skewed distribution in the SCS and right-skewed
distributions in the ECS and YS can be observed. These lower limits, mean values, and
PDDs of Qa in the three seas coincide well with the latitudes they locate in, as Qa usually
decreases from low to high latitudes. With the data in the three seas considered as a whole,
Qa presents a fairly even distribution in the range of 2~22 g/kg, which varies basically
around a steady density across each bin (Figure 1e). The highly uniform PDD of Qa shows
an acceptable representativeness of in situ observations collected here. Therefore, it is
expected that the analyses based on those data could be relatively objective and with
high significance.
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Figure 1. (a) Geographical distribution of observational stations. Shading denotes the ocean depth.
(b–d) The PDDs of in situ observations of Qa over the SCS, ECS, and YS. (e) The mean results for all data.
The range, mean value, and STD of the data in each panel are shown in blue text with unit of g/kg.

2.2. Remote Sensing Data

Remote sensing observations of TPW, wind speed (U), cloud liquid water (CLW), and
SST from various satellite microwave radiometers are utilized in this study. The sensors
include the Special Sensor Microwave Imager (SSM/I), the Special Sensor Microwave
Imager Sounder (SSMIS), the Advanced Microwave Scanning Radiometer series (AMSR-
E and AMSR-2), the WindSat Polarimetric Radiometer, the Tropical Rainfall Measuring
Mission (TRMM) Microwave Imager (TMI), and the Global Precipitation Measurement
Microwave Imager (GMI). For SSM/I and SSMIS, the instruments are referred to by satellite
number starting with F08. Here, F15 from SSMI/I and F16 to F18 from SSMIS are employed
because of their relatively long time coverage. Detailed descriptions for each sensor can be
found at the Remote Sensing Systems (RSS; www.remss.com, accessed on 30 June 2022).
Due to the satellite swath width and orbit seam, banded gaps exist in the ascending and

www.remss.com
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descending daily maps of satellited-derived variables. To facilitate the matching of satellite
data and in situ data, the products incorporating both the ascending and descending data
by using 3-day running average are utilized, which can achieve more homogeneous spatial
distributions for these variables. Note that there exist differences in data from various
sensors (Figure 2), and uncertainties in results may be caused by a single data source.
Consequently, multi-sensor inputs from SSM/I F15, SSMIS F16, SSMIS F17, SSMIS F18,
AMSR-E, AMSR-2, WindSat, TMI, and GMI are utilized in the following study.
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Figure 2. Comparison of 3-day running averaged TPW data on 1 June 2014, from various types of
sensors. (a–f) Sensors SSM/I F15, SSMIS F18, WindSat, AMSR, TMI, and GMI, respectively. Red dots
are stations located in coastal areas. Note that different sensors have different scopes of data coverage
in coastal areas.

TB data from six channels are used for the models listed in Table 2 that directly retrieve
Qa from multichannel TBs. These channels are 19 H, 19 V, 22 V, and 37 V GHz from SSMIS
F17 and 52 V GHz from Advanced Microwave Sounding Unit-A (AMSU-A), where H
and V denote the horizontal and vertical polarizations, respectively. As underscored by
RSS, TBs from the SSMIS are produced using uniform processing techniques. They are
intercalibrated by considering the differences in sensor frequencies, channel resolutions,
instrument operation, and other radiometer characteristics [40]. The AMSU-A is a multi-
channel microwave radiometer that performs atmospheric sounding of temperature and
moisture by passively recording atmospheric microwave radiation at multiple wavelengths.
Detailed descriptions of how TBs from the AMSU-A are processed can be found in [41,42].
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The collocating strategy between satellite data and in situ observations for each station is
as follows:

(i) For variables TPW, U, and CLW, which are already in daily values, first, average the
high-frequency in situ observations to daily values with the local standard time adjusted
to Coordinated Universal Time and then apply a 3-day running average. Second, locate
the 0.25◦ × 0.25◦ box in the satellite data where the corresponding observational station
lies. Subsequently, the mean value of the four corners of that box is used as a proxy for
satellite data. Attempts such as extending the search area to 1◦ × 1◦ box and/or applying
an inverse-distance-weighted average present similar results.

(ii) For TBs with ascending and descending measurements per day, temporal and
spatial windows of 90 min and 50 km following Yu and Jin (2018) are used. If multiple
points of satellite data meet the criterion, the average of those points is taken. If no satellite
data match the in situ observations, a missing value is set.

Table 2. Summary of the methods of surface humidity retrieval validated in this study. Here, the W
denotes the parameter TPW in the main text.

Algorithm Equation RMSE (g/kg)

Liu et al. (1986) [18]
Qa = C1 ×W +C2 ×W2 +C3 ×W3 +C4 ×W4 +C5 ×W5,
where C1 = 0.006088244, C2 = 0.1897219, C3 = 0.1891893,

C4 = −0.07549036, and C5 = 0.006088244.
0.40 in tropics and 0.80 in globe

Jones et al. (1999) [23]
Qa = C0 + C1 × SST + C2 × SST2 + C3 × W1 + C4 × W2,
where C0 = 2.1052, C1 = −0.0551, C2 = 0.0138, C3 = 0.2435,

and C4 = −0.0019.
0.77 ± 0.39

Bentamy et al. (2003) [24]
Qa = C0 + C1T19V + C2T19H + C3T22V + C4T37V , where
C0 = −55.9227, C1 = 0.4035, C2 = −0.2944, C3 = 0.3511,

and C4 = −0.2395.
1.40

Jackson et al. (2006) [25]
Qa = C0 + C1T52V + C2T19V + C3T19H + C4T37V , where

C0 = −105.117, C1 = 0.31743, C2 = 0.62754, C3 = −0.12056,
and C4 = −0.33940.

0.83

Yu and Jin (2018) [28]

Qa = a0 + a1T19v + a2T22v + a3T37v + a4T52v + b1T19v
2 + b2T22v

2

+b3T37v
2 + b4T52v

2 ,

where a0 = 1423.34, a1 = 0.46967, a2 = 0.43401,
a3 = −0.92292, a4 = −11.494, b1 = −0.00071, b2 = −0.00072,

b3 = 0.00155, and b4 = 0.02336 for the global model,
a0 = −127.10, a1 = −0.21113, a2 = 0.71712, a3 = −0.78268,
a4 = 1.1918, b1 = 0.00062, b2 = −0.00139, b3 = 0.00153, and

b4 = −0.00222 for the high-latitude model.

0.82

2.3. Reanalysis Data

Two reanalysis products are employed to make comparisons with the Qa data derived
from the model proposed in this study. They are the European Centre for Medium Range
Weather Forecast (ECWMF) fifth generation (ERA5) reanalysis product [43] and the Na-
tional Centers for Environmental Prediction/Department of Energy Global Reanalysis 2
(NCEP2) product [44]. Both products are the latest versions of their corresponding series
and improvements have been made in their data assimilations and model physics. Monthly
Qa data from 1990 to 2019 are extracted from the two reanalyses and are interpolated onto
1◦ × 1◦ grid maps.

2.4. Existing Satellite Qa Retrieval Models

Five representative satellite Qa retrieval models are employed to intercompare with
the deep-learning-based model proposed in this study. Table 2 summarizes the basic
information of these five models. The L86 model uses a fifth-order polynomial regression
approach to estimate Qa with TPW data. The model reported in [23] (hereafter J99) uses
a nonlinear neural network approach to estimate Qa with TPW and SST. The models
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reported in [24] (hereafter B03) and [25] (hereafter J06) use multivariate linear regression to
estimate Qa with multichannel TBs. Recently, the model reported in [28] (hereafter Y18)
uses multivariate nonlinear regression to estimate Qa with multichannel TBs and considers
enhancement in high latitudes.

2.5. Ensemble Mean of Target Deep Neural Network Development

A model named Ensemble Mean of Target deep neural networks (EMTnet) was pro-
posed to improve the satellite Qa retrieval over the China Seas (Figure 3). The tool to build
and perform the EMTnet model is TensorFlow (https://tensorflow.org/, accessed on 30
June 2022), an open-source machine learning library. The EMTnet model is generated
from a large number of deep neural networks (DNNs). Each DNN is based on the error
backpropagation (BP) algorithm [45] and consists of an input layer, three hidden layers,
and an output layer. The BP algorithm takes advantage of the gradient descent and error
backpropagation methods to adjust the connection weights of corresponding neurons to
achieve its nonlinear learning ability. The EMTnet model works via the following steps:
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Figure 3. Architecture of the EMTnet. Each DNN_n (n = 1, 2, 3, . . . ) uses 75% randomly sampled
data from all in situ observations as training data, while the remaining 25% are used as testing data.

(i) Four satellite-derived variables, TPW, CLW, U, and SST, are put in the input layer
of each DNN. Note that different combinations of input variables can lead to different
learning abilities of the EMTnet model, which are discussed in Section 4. Attempts using
pure multichannel TBs or the mix of level-3 variables and multichannel TBs show similar
or even slightly worse results.

(ii) Normalize these four input variables to the range between 0 and 1 according to
their maximum and minimum values. It is known that the DNNs are quite sensitive to the

https://tensorflow.org/
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magnitude difference in various input variables. Therefore, normalizing the input variables
in advance can lead to better computational efficiency and results.

(iii) Determine the specific configuration of each DNN. The EMTnet model does not
necessarily use the DNN approach. We have also tried other machine learning approaches
such as the support vector machine (SVM) and the random forest (RF). It is found that the
results of SVM and RF were comparable with those of the DNN, or sometimes slightly
worse. The DNN approach is eventually employed to build the EMTnet model considering
its better abilities in big data processing efficiency and nonlinear learning ability. Critical
parameters are eventually determined through a number of tests to make the DNNs suitable
for the learning task here. For instance, three hidden layers, each with ten neurons, are used.
The number of iterations is set to 5000, and the learning rate is set to 0.005. In addition, the
activation function is essential in forming nonlinear learning abilities for the DNNs. Three
widely used activation functions, sigmoid, rectified linear units (ReLU), and hyperbolic
tangent function (tanh), have been tested and compared. These activation functions have
some defects, for example, the neuronal death for the ReLU activation function and a
vanishing gradient for the sigmoid activation function. Activation function tanh is free of
neuronal death, and the vanishing gradient problem has been alleviated to some extent. In
addition, tanh has a faster convergence speed and a lower number of iterations. Preliminary
tests show that the sigmoid and tanh activation functions perform better than the ReLU
activation function in this study. Further inspections find that the accuracy of the result
using the tanh activation function is 2~4% higher than that using the sigmoid activation
function. Therefore, the tanh activation function is employed in this study. Note the current
hyper-parameter tuning for each DNN is not unique. It only aims to make each DNN
suitable for the learning task here. For those who are interested in the EMTnet model, they
can adjust these hyper-parameter tunings according to specific tasks.

(iv) A total of 75% of Qa observations are randomly sampled as training data, while
the remaining 25% are used as independent testing data. As for traditional DNN training
and testing, this operation is usually conducted once. However, it is found that samplings
of different training and testing data can result in different uncertainty levels for the DNNs.
To reduce the uncertainty of learning results caused by man-made operations in setting
training and testing data, the Ensemble Mean approach is adopted. The EMTnet model
trains n different DNNs with randomly sampled n sets of training and testing data to
produce an ensemble of DNNs. In this study, the n is set to 1000. For each DNN, the
testing data are used to compute the mean bias and root-mean-square error (RMSE). The
sum of absolute values of mean bias and RMSE, that is, the absolute error, is taken as the
uncertainty of each DNN.

According to the PDD of uncertainties constructed by the DNN ensemble, the top
10% DNNs with uncertainties falling into the highest density intervals are selected as
target DNNs. The Ensemble Mean of Target DNNs is then used to produce the EMTnet
model outputs.

3. Results
3.1. EMTnet Model Validation

The Qa predictions from the EMTnet model and five existing models are intercom-
pared with respect to Qa observations. Three representative stations from the three China
seas are selected according to their data quality, continuity, and integrity to facilitate the
intercomparison. They are the Xisha Tower station in the SCS, the DH11 station in the ECS,
and the HH09 station in the YS. A whole year of data from 2016 is used for each station to
reduce the possible seasonal dependence of the results.

Figure 4 shows the scatter diagram between the Qa predictions and observations and
the corresponding correlation coefficient (CC), mean bias, and RMSE for each model in
each sea. The CCs all exceed the 99% confidence level, varying from 0.59–0.91, 0.89 to 0.98,
and 0.92 to 0.98 in the SCS, ECS, and YS, respectively. Among them, the EMTnet model
has the highest CCs at each station. The mean biases and RMSEs present a large spread



Remote Sens. 2022, 14, 4353 9 of 18

in different models and stations. In the SCS, the EMTnet model slightly overestimates
Qa by 0.06 g/kg, while the rest of the models underestimate Qa from 1.07 (L86 model) to
7.33 (Y18 model) g/kg. In the ECS, except for the EMTnet model and the L86 model which
overestimate Qa by 0.13 and 0.78 g/kg, all the models underestimate Qa by 0.41 (B03 model)
to 4.12 (J06 model) g/kg. In the YS, except for the J99 and B03 models which underesti-
mate Qa by 3.22 and 1.37 g/kg, all the models overestimate Qa by 0.06 (EMTnet model) to
4.32 (J06 model) g/kg. The RMSEs of these models in the SCS, ECS, and YS are varying from
1.10 (EMTnet model) to 2.72 (Y18 model) g/kg, 1.17 (EMTnet model) to 3.36 (Y18 model) g/kg,
and 1.22 (EMTnet model) to 3.08 (J99 model) g/kg.
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Figure 4. Comparisons between Qa predictions (ordinate) and observations (abscissa). (a–f) The
results for the Xisha buoy station in the SCS using the EMTnet model and five existing models
summarized in Table 2. (g–l) and (m–r) The same as (a–f) but for the DH11 station in the ECS and the
HH09 station in the YS, respectively. Bars on the rightmost side show the mean results of the three
stations for each model. The units of mean bias and RMSE are g/kg.

The absolute values of the mean bias and RMSEs from the three seas are averaged
for each model to compare their overall uncertainty level. The mean biases plus/minus
RMSEs are 0.08 ± 1.16, 0.72 ± 1.77, 4.35 ± 2.56, 1.64 ± 2.09, 5.26 ± 2.49, and 3.39 ± 2.61 for
the EMTnet, L86, J99, B03, J06, and Y18 models. Quantitatively, the EMTnet model has the
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lowest mean bias and RMSE on average. The EMTnet model also shows the least mean
absolute percentage error (MAPE) at each station.

3.2. EMTnet Model Application

All the Qa observations collected here are subsequently used to fully train the EMTnet
model. Qa predictions of the L86 model, which has the best performance among these five
existing models, are used as a reference here. It is noted that both the EMTnet model and the
L86 model take TPW as an input variable, which confirms the good relationship between
TPW and Qa over the China Seas. Figure 5a compares the Qa predictions of the EMTnet
model and the L86 model in the form of the Qa–W relation. The dots determined by Qa and
TPW data cluster around the classical curve of the L86 model. The data density distribution
shows that the majority of the data coincide well with the L86 model. Compared to the
medians of Qa observations, however, biases of the L86 model occur primarily under
moderate Qa values. For example, in the range of 10~20 g/kg, the L86 model overestimates
Qa from 0.44 to 1.98 g/kg, while the biases of the EMTnet model are almost negligible.
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Figure 5. Comparisons of the EMTnet model and the L86 model. (a) The scatter diagram of Qa

(ordinate) and TPW (abscissa), while the bars show the model biases. In (a), the red dot denotes the
data density in each 0.5 cm bin of TPW and 0.5 g/kg bin of Qa with units of ‰. The blue square and
error bar are the median and one STD of Qa observations in each 0.5 cm bin of TPW. (b,c) The PDDs
of the mean bias and RMSE in 1000 sets of DNN computations. Black and green lines and bars are
the results of the L86 model and the EMTnet model. The units of mean bias and RMSE are g/kg.

Figure 5b,c depict the PDDs of the mean biases and RMSEs of the EMTnet model and
the L86 model according to the 1000 samples of testing data used in the EMTnet model.
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The mean biases of the L86 model are concentrated from 0.60 to 0.80 (87% data). The mean
biases of the EMTnet model have two peaks, which are around 0.10 to 0.30 g/kg and −0.10
to −0.30 g/kg. On average, the mean biases of the L86 model and the EMTnet model
are 0.72 ± 0.06 and −0.02 ± 0.19 g/kg. The RMSEs of the L86 and EMTnet models are
concentrated from 2.45 to 2.65 (94% data) and 1.55 to 1.70 (95% data) g/kg, which are on
average 2.56 ± 0.05 g/kg and 1.64 ± 0.04 g/kg. Thus, the EMTnet model reduces the mean
bias and RMSE of the L86 model by approximately 0.70 and 0.90 g/kg, respectively. The
mean bias for the EMTnet model in satellite Qa retrieval is almost zero, reducing the RMSE
of the L86 model by 36%.

Monthly gridded Qa data over the China Seas were produced with satellite multi-
sensor inputs by applying the fully trained EMTnet model. Both the input and output
data are on 0.25◦ × 25◦ gridded maps and span from 1990 to 2019. Figure 6a–d show
the climatologies of Qa from two satellite Qa retrieval models (EMTnet and L86) and two
reanalyses (ERA5 and NCEP2). Except for some differences in detail, apparent gradients
from south to north in the mean state and seasonal variation in Qa can be observed in all
four data sources, which is higher in the south and lower in the north. Here, the intensity
of seasonal variations is defined by the standard deviation from January to December.
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Figure 6. (a–d) Climatology of Qa distributions (shading) over the China Seas from the EMTnet, L86,
ERA5, and NCEP2. Contours denote the intensity of seasonal variation, which is defined by one
standard deviation from January to December on each grid. (e) The time series of Qa anomalies over
the China Seas. (f,g) The same as (e) but for the southern (SCS) and northern (ECS and YS) sections
of the China Seas. The time series in (e–g) have been applied to 13-point running average operations.
The values in parentheses denote the long-term trend of Qa during the period from 1990 to 2019 with
unit of g/kg per decade. The units are g/kg.
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The atmosphere’s capacity to hold water vapor will increase in a warming climate
according to the Clausius–Clapeyron relation [46]. The long-term trend of Qa over the
China Seas is depicted in Figure 6e–g. With the global warming in recent decades, the
four data sources show consistent upward trends of Qa (Figure 6e). However, the L86 model,
ERA5, and NCEP2 have relatively lower climbing rates of Qa, which are 0.08, 0.11, and
0.10 g/kg per decade, compared to the results of the EMTnet model (0.23 g/kg per decade). It
is found that the long-term trends of Qa are probably underestimated in both the southern
(the SCS) and northern (the ECS and YS) sections, especially for the latter. In the southern
section, the long-term trends of Qa are 0.22, 0.20 0.18, and 0.13 g/kg per decade in the EMTnet
model, L86 model, ERA5, and NCEP2 (Figure 6f). Except for NCEP2, all the data show quite
similar climbing rates of Qa. In contrast, the long-term trends of Qa show larger spread in
the northern section, which are 0.21, −0.04, 0.04, and 0.07 g/kg per decade in the EMTnet
model, L86 model, ERA5, and NCEP2 (Figure 6g). Therefore, the possible underestimation of
upward trends of Qa in the L86 model, ERA5, and NCEP2 can be mainly attributed to their
too-weak trends of Qa variations in the northern section.

4. Discussions

The interpretability of deep learning is of great significance for its development and
application. The EMTnet model and the L86 model, which take TPW as an input variable,
are the top two best performing models investigated here. The possible reasons why the
EMTnet model can further improve the satellite Qa retrieval compared to the L86 model are
discussed. Taking the result of the L86 model as a reference, eight sensitivity experiments
(Exp1 to Exp8) are designed to examine whether the improvement of the EMTnet model is
due to the model itself or the additional training data such as CLW, U, and SST compared
to the L86 model. All the sensitivity experiments employ TPW as a fixed variable and
adopt the eight combinations of CLW, U, and SST to construct their training data. Note
that Exp1, including the full CLW, U, and SST information, is the result shown in Figure 5.
The statistical results for Exp1 to Exp8 are shown in Table 3. As revealed in Table 3, all
the experiments show improvements in satellite Qa retrieval compared to the L86 model.
They reduce the mean biases and RMSEs to varying extents. If only TPW data are used as
training data as in the L86 model, the absolute error is reduced by 23% (Exp8). Taking into
account CLW, U, and SST, the absolute errors are reduced by 35% (Exp5), 24% (Exp6), and
42% (Exp7). The three pairwise combinations of CLW, U, and SST are considered in Exp2
to Exp4. The reductions in absolute error in Exp2 to Exp4 are 42%, 47% and 48%.

Table 3. The mean bias and RMSE of each sensitivity experiment with EMTnet model. “Reference”
refers to the result of the L86 model. In the nomenclature of Exp1 to Exp7, postfixes C, U, and S
denote parameters CLW, U, and SST considered in the corresponding experiment, respectively. In
Exp8, the postfix “none” means no additional information is considered. The percent change means
the ratio of changes in absolute error compared to the reference value. The units of mean bias, RMSE,
and absolute error are g/kg.

Reference Exp1_CUS Exp2_CU Exp3_CS Exp4_US Exp5_C Exp6_U Exp7_S Exp8_None

Bias 0.72 −0.02 0.08 0.13 −0.05 −0.31 −0.22 −0.08 −0.18
RMSE 2.56 1.64 1.81 1.62 1.64 1.81 2.28 1.83 2.36

Absolute
error 3.28 1.66 1.89 1.75 1.69 2.12 2.50 1.91 2.54

Percent
change - −49% −42% −47% −48% −35% −24% −42% −23%

The results of Exp2 to Exp7 suggest that factors CLW, U, and SST are helpful to
improve the deep learning for satellite Qu retrieval. If these three factors are superimposed
together, a most significant improvement of 49% (Exp1) can be archived. The abilities
of CLW, U, and SST in improving satellite Qa retrieval are probably due to their roles in
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reflecting the environmental information. In the following, examples of the Qa–W relation
under different CLW, U, and SST conditions are shown in Figures 7–9, respectively.
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Figure 7. Scatter diagram of Qa (ordinate) and TPW (abscissa) for data under conditions of CLW (a)
below and (b) above 50 µm. The black line denotes the L86 model. The red dot denotes the data
density in each 0.5 cm bin of TPW and 0.5 g/kg bin of Qa with units of ‰. The blue square and error
bar are the median and one STD of Qa in each bin of 0.5 cm of TPW, respectively. The bar plot is
the probability density distribution of CLW, with red bars representing the data range used in the
corresponding panel.

The CLW is a measure of the total liquid water contained in a cloud in a vertical
column of the atmosphere. As a component of TPW, the content of CLW will undoubtedly
have an impact on the determination of the Qa–W relation. However, none of the existing
models for satellite Qa retrieval incorporate cloud information. Figure 7 shows the Qa–W
relation under two conditions, one under CLW less than 50 µm (46% data) and the other
greater than 100 µm (54% data). Note that the criterion of 50 µm here is only determined by
the PDD of CLW, which ensures the data balance in both cases. Under a relatively low CLW
(Figure 7a), the reference curve of the L86 model passes through most of the medians of Qa
observations, presenting high consistency with observations. Under a relatively high CLW
(Figure 7b), however, the reference curve of the L86 model is nearly above all the medians of
the Qa observations. This result indicates that a relatively high CLW condition can interfere
with the determination of the Qa–W relation and lead to evident overestimations in satellite
Qa retrieval if no CLW information is considered.
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The surface wind plays a vital role in reflecting the weather conditions near the sea
surface and influencing the Qa variations. Consequently, the surface wind is expected to be
a potential factor that may improve the skill of satellite Qa retrieval, which has not been
considered in existing models. Figure 8 shows the Qa–W relation with U less than 10 m/s
(90% data) and greater than 10 m/s (10% data). It can be observed that the reference curve
of the L86 model fits the Qa observations well under lower to moderate U (Figure 8a). In
contrast, the L86 model overestimates Qa in almost all ranges of Qa under relatively high
U (Figure 8b). The different performances of the L86 model here imply that the Qa–W
relation is sensitive to surface wind conditions. One possible reason is that the water vapor
distributions in the vertical column of the atmosphere are relatively stable under relatively
weak U, which is conducive to the estimation of Qa from TPW. As a portion of water vapor
can be carried away by horizontal advection under relatively high U, the observed Qa will
be smaller than the model-predicted Qa.

SST is an important variable that reflects information on the marine environment and
underlying atmospheric surface. For example, under a relatively warm SST (Figure 9b), the
predictions of the L86 model are more consistent with the observations. In contrast, Qa is
overestimated in the range of Qa from 10 to 20 g/kg under rather cold SSTs (Figure 9a). A
colder SST means weaker sea surface evaporation, which might lead to less actual moisture
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than predicted values. Therefore, it is suggested that attention should be given to the Qa–W
relation under different SST conditions.
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5. Conclusions

Previous satellite Qa retrieval models suffer significant uncertainties due to factors
such as model errors, scarce in situ observations, environmental interference, and so on.
In this study, a deep learning approach, the EMTnet model, is proposed to improve the
satellite Qa retrieval over the China Seas. The EMTnet model is based on multiple DNNs,
and the ensemble mean of target DNNs is used to produce output predictions, which can
obtain more objective learning results when the observational data are quite divergent.
The Qa predictions from the EMTnet model outperform five existing models by nearly
eliminating the mean bias and significantly reducing the RMSE. Compared to the L86
model, which has the best performance among five existing models, the outperformance
of the EMTnet model can be attributed to two aspects. Firstly, if only TPW data are used
as training data as in the L86 model, the EMTnet model reduces the absolute error by
23% (Table 3). This level of improvement can be attributed to the EMTnet model itself.
Secondly, if CLW, U, and SST are added, the EMTnet model reduces the absolute error by
49% (Table 3). The approximately doubled increase in absolute error reduction benefits
from the good interpretability of CLW, U, and SST on the determination of the Qa–W
relation. Note that the in situ observations are with uneven distribution in time and space,
which could cause errors to the performance of the EMTnet model to a certain extent. The
further development of the EMTnet model needs more in situ observations.
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The fully trained EMTnet model has been applied to learn from remote sensing data
to produce a 30-year monthly gridded Qa data over the China Seas. It is found that
current products perform well in depicting the mean state and seasonal variations in Qa.
However, they show much weaker upward trends of Qa in the context of global warming,
which are less than half of the EMTnet model result. As a locally well-trained and well-
validated model, the different perspectives on the long-term variations in Qa suggested
by the EMTnet model may help to provide new understandings for humidity-related
multi-disciplinary research over the China Seas. In addition, the EMTnet model is capable
of merging Qa observations from other regions as training data, which is to be applied to
more oceans globally.
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