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Abstract: Location awareness is crucial for underwater applications; without it, gathered data would
be essentially useless. However, it is impossible to directly determine the location of an underwater
target because GPS-reliant methods cannot be utilized in the underwater environment. To this end,
the underwater target localization technique has become one of the most critical technologies in
underwater applications, wherein GPS-equipped autonomous surface vehicles (ASVs) are typically
used to assist with localization. It has been proved that, under the assumption of Gaussian noise,
an appropriate geometry among ASVs and the underwater target can enhance localization accuracy.
Unfortunately, the conclusion may not hold if outliers arise and the closed-form expression of
Cramér–Rao lower bound (CRLB) cannot be established. Eventually, it becomes hard to derive
the accepted geometry, particularly for the received signal strength (RSS)-based ranging scenario.
Therefore, this work optimizes the trajectory of ASVs with RSS-based ranging and in the presence
of outliers to optimally estimate the location of an underwater target. The D-optimality criterion is
applied in conjunction with the Monte Carlo method to determine the closed-form expression of
the function, which then transforms the problem into an optimized framework. Nevertheless, the
framework cannot be solved in the absence of the target location. In this case, the paper presents two
methodologies to overcome the issue and achieve the optimum configuration without identifying the
target location. (1) A min–max strategy that assumes that the target location drops in an uncertain
region for a single or two ASVs is proposed; and (2) a two-phase localization approach (TPLA) that
calculates the target location at each time slot for three ASVs is developed. Finally, the optimal
trajectories of ASVs are constructed by a series of waypoints based on an analytically tractable
measurement model in various conditions.

Keywords: received signal strength (RSS); autonomous surface vehicle (ASV); Fisher information
matrix; optimal trajectory; D-optimality criterion; outliers

1. Introduction

As one of the most effective technologies for ocean exploration, autonomous under-
water vehicles (AUVs) have been deployed in scientific or commercial missions such as
ocean data collecting, remote sensing, and monitoring [1,2]. The acceptance of AUVs
has increased as a result of the successful execution of a variety of applications utilizing
AUVs [3]. Additionally, people would like to use these AUVs to collect ocean data or
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sources in order to study the earth’s evolution. Notably, the acquired data are only usable
when georeferenced [4–6]. However, obtaining the AUV (target) location is challenging
because typical GPS-reliant approaches cannot be used in an underwater setting with
severe signal attenuation [7–10].

Fortunately, as a result of significant advancements in sensors and embedded comput-
ers, interest in range-based target localization approaches via underwater acoustic sensor
networks (UASNs) has increased. To provide a proper communication environment for
localization, significant efforts have been made regarding the construction of UASNs [11].
For example, the authors in [12] reviewed the current UASN techniques in multiple ac-
cess, media access, and routing methods for communication networks, then designed
an energy-efficient network topology. Gradually, these localization techniques based on
UASNs have replaced the inertial navigation system (INS)-based localization that was
susceptible to drifting error [7,13–19]. The AUV (as the target) could be located using a
series of observations, such as angle of arrival (AOA) [20,21], time of arrival (TOA) [22,23],
time difference of arrival (TDOA) [24], and received signal strength (RSS)-based measure-
ments [25]. Since localization accuracy might be influenced by many factors underwater,
the authors in [26] have presented a simulative and statistical analysis of the error sources
for the underwater localization system. In [27], the authors have surveyed the advanced
localization techniques in UASNs by dividing them into estimated or prediction-based
localization approaches in a centralized and distributed manner.

It should be noted that, compared to TOA-, TDOA-, and AOA-based approaches,
the RSS-based approach appears to be a competent method for localization because it
is cost-effective and synchronization-free [4,28,29]. Additionally, some state-of-the-art
algorithms can enhance the localization accuracy for RSS-based ranging [30]. To name a
few, the authors in [31] have converted the RSS-based localization problem into a convex
semidefinite programming (SDP) expression using semidefinite relaxation. Then, the target
location was derived using an iterative method. In [32], the authors derived a new steering
vector by analyzing the wave propagation in an inhomogeneous underwater medium, with
which an array RSS underwater target localization approach has been presented. Moreover,
it has been well recognized that a relatively satisfactory geometry among buoys or ASVs and
the target would positively impact localization performance [13,33–35]. Critical research in
this field may also be found in [36–41], in which the authors investigated the conditions
that optimize some indicators based on the Fisher information matrix (FIM) or Cramér–Rao
lower bound (CRLB) or the eigenvalue of the inverse of FIM, known as D- or A- or E-
optimality, respectively, to determine the optimal sensor positions in 2D/3D scenarios.

Nevertheless, the control of ASVs to fulfill the criteria of an acceptable geometry is
more difficult than the deployment of buoys because the operation requires three steps,
namely motion planning, motion control, and target estimate. Moreover, buoy-target
systems have limited scalability [13]. An intriguing instance with a single ASV and a target
is presented in [16]. The problem is a combination of the single-beacon navigation problem,
for which the optimal trajectory was determined using D-optimality with a known target
position. In [7], the authors formulated conditions for the target/ASV localization system
based on an enlarged study of the case of unknown but constant currents. For the optimal
geometry issue, it should be highlighted that the target position information must be
determined. In this regard, the authors of [42] analyzed various estimation techniques,
such as the extended Kalman filter (EKF), the unscented Kalman filter (UKF), and the
particle filter (PF), for estimating the target location at each time slot. Since a single ASV
could not provide sufficient localization accuracy for the multiple targets scenario, the
authors in [23] investigated a scheme of two ASVs, one named tracker and the other named
companion, and further, three conditions of companion were considered, i.e., (1) the motion
is not defined a priori, (2) the motion is fixed a priori and known to the tracker, and (3) the
motion is unknown a priori. In addition, an observability study was conducted for range-
based underwater target localization utilizing ASVs to make the problem mathematically
tractable [43].
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However, the preceding works make the simplification assumption that range-based
observations contain no outliers. In addition, the noise is assumed to have a Gaussian
distribution, which is believed to be the most effective statistical method for estimating the
cumulative effect of noise from multiple sources. Unfortunately, this assumption does not
always hold true in practice, as it has been widely acknowledged in the literature, since
at least in [44–47], that outliers may occur frequently and unavoidably in the presence
of acoustically reflecting surfaces or unpredicted factors. The presence of outliers causes
non-Gaussian noise in the measurements, rendering inappropriate the standard techniques
based on Gaussian noise. Meanwhile, receivers designed with such a noise model may not
perform well in the non-Gaussian noise case [48], where it is difficult to obtain a closed-form
expression for the FIM or CRLB, particularly for the RSS-based scenario [4,35,49]. Therefore,
it is difficult to determine the optimal geometry of ASVs for underwater target localization.

In this case, a strategy of optimal trajectories for ASVs to cater to the geometry
using RSS measurements is investigated. Prior to obtaining the closed-form expression
of FIM where outliers exist, the Monte Carlo approach is employed. The problem is then
translated into an optimum framework accompanied by the restricted yaw rate of ASVs
and certain conditions. Further, two methods are presented for determining the optimal
configuration in the absence of the target location. Regarding a single ASV or two ASVs,
a min–max method is described, the potential position of which is assumed to be in an
unclear region with incomplete knowledge. As in the case of three ASVs, a two-phase
localization approach (TPLA) is described to determine the location of the target. In the end,
the optimal trajectories of ASVs for optimally locating a target are generated by a series of
waypoints based on an analytically tractable measurement model in various scenarios.

The main contributions of the paper can be concluded as follows:

(1) The closed-form expression of the function under outliers is obtained using D-optimality
combined with a Monte Carlo approach.

(2) Two methodologies for obtaining the optimal configuration in the absence of a target
location are provided. In the case of a single or two ASVs, the target position is
supposed to be in an unclear zone, and a worst-case-scenario-based min–max method
is provided. For the three ASVs scheme, a novel localization approach, TPLA, for
determining the target position at each time slot is provided.

(3) Optimal ASV trajectories are determined by obtaining a sequence of optimal waypoints
at each time slot.

To organize the paper, the proposed method has been demonstrated in Section 2,
which includes the problem formulation, the optimal configurations and the proof, and
the optimal trajectories with regard to different scenarios. Comprehensive experimental
results are discussed in Section 3. In the last section, Section 4, the conclusion of this paper
is demonstrated.

2. Methods
2.1. Kinematic Model of ASVs

The scenario is considered in 2D, wherein the target and the ith ASV (trackers) po-
sitions are Bt =

[
bt

1, bt
2
]T and At

i =
[
at

i1, at
i2
]T , i = 1, . . . , N at time t in terms of a certain

inertial reference frame {I} with North–East–Down orientation (NED), respectively, as
shown in Figure 1. N and T represent the number of ASVs and the transpose operation.
Suppose the ASVs could sense the heading angle φ(t) at time t with its body frame to the
inertial frame.

With the input variable of velocity v(t) and yaw rate ri(t) at time t, the state of the ith
ASVs is

.
A

t
i =

v(t) cos(φi(t))
v(t) sin(φi(t))

ri(t)

. (1)
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Here, we define two orthogonal unit vectors by

[g(θ), O(θ)] =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
. (2)

And the kinematic model of the ASVs in the absence of ocean current is given by

At
i =

{
At−1

i + v(t)
ri(t)

(O(φi(t− 1))−O(φi(t))), if ri(t) 6= 0

At−1
i + v(t)(g(φi(t))− g(φi(t− 1))), otherwise

, (3)

with φi(t) = φi(t− 1) +
t∫

t−1
ri(t)dt.

It should be emphasized that there are numerous negative influences on the kinematic
model, such as currents, wave loads, and wind loads, resulting in a complex force load
condition for ASVs. In addition, ASVs may experience mechanical fatigue when encounter-
ing the wave loads [50], leading to an unexpected trajectory being made by ASVs in real
situations. However, the objective of this article is to design a path for ASVs rather than
to analyze the effects of force on ASVs’ mobility. In this case, we only consider the ideal
condition that excludes the wave loads or other negative factors.
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Figure 1. Scenario with a 2D coordinate system.

2.2. Observation Model

RSS enables the acquisition of the measurement among ASVs and the target without
extra facilities and synchronization-free compared with TDOA and TOA, which could be
given by [51].

zt
i = P0 − 10ϑ log10

(∥∥Bt −At
i
∥∥

d0

)
+ ηt

i , (4)

where zt
i denotes the signal strength received by the ith ASV from the target at time t. P0

denotes the referenced transmission power when d0 = 1 m at time t. ϑ indicates the path
loss coefficient.

∥∥Bt −At
i
∥∥ denotes the distance between the ith ASV and the target. ηt

i is
the noise, being η for convenience in the rest of the paper, generally being considered to
yield Gaussian distribution with zero mean and variance σ2 in most works.

However, outliers may appear especially for RSS because of the unpredicted factors,
which generally leads to a non-Gaussian distribution noise. Therefore, herein we introduce
a contaminated rate β whose value is [0, 1) to contribute to the noise [4], and the distribution
could be expressed as

p(η) = (1− β)Ω
(

η; 0, σ2
)
+ βΦ(η), (5)
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where Ω
(
η; 0, σ2) denotes the Gaussian distribution. Φ(η) indicates the distribution of

outliers, which can be a Rayleigh distribution or a uniform distribution or exponential
distribution [4]. If β = 0, that means that no outliers are involved in the measurements. An
example of the uniform distribution outliers is shown in Figure 2.
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2.3. Optimal Configuration Analysis Using RSS

CRLB, as an unbiased estimator, is supposed to be the optimal mean squared error (MSE)
which could be the trace of the inverse of the FIM given by CRLB = Trace

(
FIM−1) [52]. The

FIM of the RSS-based technique at each time slot is given in (6) without outliers involved
in the noise.

FIMt =

[(
∂p(Bt|zt

i)
∂Bt

)T
σ−1

(
∂p(Bt|zt

i)
∂Bt

)]

= ξ · ϑ2

σ2


N
∑

i=1

cos2(φi(t))
‖Bt−At

i‖
2

N
∑

i=1

cos(φi(t))·sin(φi(t))
‖Bt−At

i‖
2

N
∑

i=1

cos(φi(t))·sin(φi(t))
‖Bt−At

i‖
2

N
∑

i=1

sin2(φi(t))
‖Bt−At

i‖
2

,
(6)

where ξ =
(

10
ln 10

)2
and p(·) is the posterior distribution.

As presented in (6), we can see that the FIM for the RSS-based technique is relatively
complicated, strongly related to the distance and the angle among the target and ASVs,
dramatically different from TOA [53] or range-only [13] techniques. Then, the D-optimality
is to be demonstrated, i.e., the maximization of the determinant of the FIM.

Theorem 1. ([7]). For the arbitrarily fixed
∥∥Bt −At

i
∥∥, the maximization of the determinant of FIM

is equivalent to the minimization of MSE.

Proof. The inverse of the FIM at each time slot can be written as

(
FIMt)−1

=
1

det
(
FIMt) · ξ · ϑ2

σ2

[
FIM2

2 −FIM2
1

−FIM1
2 FIM1

1

]
, (7)
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where

FIM1
1 =

N
∑

i=1

cos2(φi(t))

‖Bt−At
i‖

2 , FIM2
1 =

N
∑

i=1

cos(φi(t))·sin(φi(t))

‖Bt−At
i‖

2 ,

FIM2
2 =

N
∑

i=1

sin2(φi(t))

‖Bt−At
i‖

2 , FIM1
2 =

N
∑

i=1

cos(φi(t))·sin(φi(t))

‖Bt−At
i‖

2 .

As mentioned above, CRLB as an optimal MSE, is the trace of the inverse of the
FIM, then,

MSEt ≥ CRLBt = Trace
{(

FIMt)−1
}
=

(
FIM2

2 + FIM1
1
)

det
(
FIMt) . (8)

Further,

Trace
{(

FIMt)−1
}
=

(FIM2
2+FIM1

1)
det(FIMt)

= ξ · ϑ2

σ2 ·
(FIM2

2+FIM1
1)

det(FIMt)

= ξ·ϑ2

σ2·det(FIMt)

(
N
∑

i=1

cos2(φi(t))

‖Bt−At
i‖

2 +
N
∑

i=1

sin2(φi(t))

‖Bt−At
i‖

2

)
= ξ·ϑ2

σ2·det(FIMt)

N
∑

i=1

1
‖Bt−At

i‖
2 .

(9)

Consequently, (8) is converted into (10).

MSEt ≥ ξ · ϑ2

σ2 · det
(
FIMt) N

∑
i=1

1∥∥Bt −At
i
∥∥2 . (10)

Therefore, for the arbitrarily fixed
∥∥Bt −At

i
∥∥, the maximization of the determinant of

the FIM is equivalent to the minimization of MSE. �

Corollary 1. For the arbitrarily fixed
∥∥Bt −At

i
∥∥, the determinant of the FIM has an upper

bound of µ2/4
∥∥Bt −At

i
∥∥4 if and only if

N

∑
i=1

cos(2φi(t))∥∥Bt −At
i
∥∥ = 0 and

N

∑
i=1

sin(2φi(t))∥∥Bt −At
i
∥∥ = 0, (11)

where µ = ξ · N ϑ2

σ2 .

Proof. A transformation of (6) is made by (12).

FIMt = ξ · ϑ2

σ2


N
∑

i=1

1+cos(2φi(t))

2‖Bt−At
i‖

2

N
∑

i=1

sin(2φi(t))

2‖Bt−At
i‖

2

N
∑

i=1

sin(2φi(t))

2‖Bt−At
i‖

2

N
∑

i=1

1−cos(2φi(t))

2‖Bt−At
i‖

2

. (12)

Then, the determinant of the FIM can be expressed as

det
(
FIMt) = ξ2 · ϑ4

σ4

4

( N

∑
i=1

1∥∥Bt −At
i

∥∥2

)2

−
(

N

∑
i=1

cos(2φi(t))∥∥Bt −At
i

∥∥2

)2

−
(

N

∑
i=1

sin(2φi(t))∥∥Bt −At
i

∥∥2

)2
. (13)

Obviously, the determinant of the FIM would be maximized if and only if the conditions (11).
Additionally, the upper bound is

((
ϑ4N2ξ2)/σ4)/(4

∥∥Bt−At
i
∥∥4
)
= µ2/4

∥∥Bt−At
i
∥∥4

= FIM∗. �
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2.4. Closed-Form Expression and Objective Function

However, the closed-form expressions for the FIM are not available with a contami-
nated rate in (5). In this case, we convert (6) into

FIMt = ξ · ϑ2 ·
(

Iη

)t ·
[

FIM1
1 FIM2

1
FIM1

2 FIM2
2

]
, (14)

where (
Iη

)t
= Ep(η)


{
∇η [p(η)]

t
}2

[p2(η)]
t

 =
∫ {
∇η [p(η)]

t
}2

[p2(η)]
t [p(η)]tdη, (15)

and ∇η [p(η)]
t is the first gradient operator.

Generally, it is infeasible to obtain
(

Iη

)t except for Gaussian noise, wherein the value
of
(

Iη

)t could be σ−2. Here, we introduce a Montel Carlo strategy [54] to approximate the
integral in (15).

(
Iη

)t ≈ 1
NC

NC

∑
sample=1

{{
∇η [p(η)]

t
}sample

}2

{
p2
[
(η)sample

]}t , (16)

where NC denotes the total number of samples.
Alternatively, the determinant of FIM in (13) could be rewritten as

det
(
FIMt) = Ξ

4

( N

∑
i=1

1∥∥Bt −At
i
∥∥2

)2

−
(

N

∑
i=1

cos(2φi(t))∥∥Bt −At
i
∥∥2

)2

−
(

N

∑
i=1

sin(2φi(t))∥∥Bt −At
i
∥∥2

)2
, (17)

where Ξ = ξ2
[(

Iη

)t
]2

ϑ4.
Further, with the logarithm stripped off at each time slot, the objective could be

expressed as
Jt = ln det

(
FIMt)∣∣∣Bt ,At

i ,φi(t)
. (18)

The optimal trajectory problem of ASVs involves the calculation of ASV waypoints at
discrete time instants, where the measurements for emitter localization are assumed to be
synchronized with waypoint updates. Moreover, the ASVs are assumed to be equipped
with GPS so that the ASVs can query their locations. Suppose the independent characteris-
tics among the ASVs, as the kinematic model of the ASVs in (3), the problem with the yaw
rate constraints is then formulated as r∗1(1) · · · r∗N(1)

...
. . .

...
r∗1(M) · · · r∗N(M)

 = argmax
|r|≤c

M

∑
t=1

Jt, (19)

where r∗i (t = 1 : M) is the optimal yaw rate of the ith ASV, c is the constraint of the yaw rate.
The next waypoint of each ASV at time t + 1 is determined by the point at time t.

The whole process is repeated until the geolocation mission is completed. It should be
noted that the initial yaw rate of the ASV is known, and the problem in (19) is a non-linear
optimization that is solved by directly configuring the non-linear programming method
(DCNLP) or sequential quadratic programming (SQP) [55].

2.5. Optimal Configuration under Outliers

In this section, theoretical analysis of optimal trajectory for ASV to optimally locate a
target is illustrated. Two methodologies for obtaining the optimal configuration without a
target location are provided: (1) in the case of a single or two ASVs, the target position is
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supposed to be in an unclear zone, and (2) for the three ASVs scheme, TPLA is proposed to
acquire the target location at each time slot.

2.5.1. Optimal Trajectory for a Single ASV

It is evident from (19) that the FIM at each time slot requires knowledge of the target
location. However, the true location of the target may not be known in advance especially
for only one ASV involved in the mission. In this case, a min–max strategy is proposed.

Assume that the prior information of the target location is known, which drops in an
uncertainty region Λ containing several potential points, referred to as Figure 3. Suppose
there are k points in Λ, the problem in (19) is converted into r∗1(1)

...
r∗1(M)

 = argmax
|r|≤c, i=1

M

∑
t=1

Jt
j

∣∣∣j=1,...,k (20)
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For the sake of the maximum value of the function in (20), we should guarantee the
worst situation in Λ being maximized, i.e., maximizing the logarithm of the determinant of
the FIM of a point in Λ at time t whose value is minimum. r∗1(1)

...
r∗1(M)

 = argmax
|r|≤c, i=1

M

∑
t=1

[
argmin
j=1,...,k

(
Jt
j

)]
(21)

Let θt =
[

Jt
1, . . . , Jt

k
]T . Assume there exists a point ℘ ∈ k at time t where the logarithm

of the determinant of the FIM is minimum. The yaw rate at t + 1 is determined by the yaw
rate at t such that the function in (22) is maximum.

[r∗1(t)] = argmax
|r|≤c

∑t
t−1 Jt

℘. (22)

The entire process can be simply concluded as

1. Input the initial parameters including v(0), A0
1, ϕ1(0), r1(0), and potential points in

the uncertain area.
2. Figure out

(
Iη

)t according to (16) at each time slot.
3. Find the point ℘ to make the logarithm of the determinant of the FIM minimum.
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4. Calculate r∗1(t) according to (22) with the point ℘.
5. Calculate φ1(t) according to φ1(t− 1) and r∗1(t).
6. Compute At

1 using (3) with At−1
1 .

7. Output At
1.

2.5.2. Optimal Trajectories for Two ASVs

When it comes to two ASVs, apparently, the position of the target at each time slot still
cannot be determined by the multilateration techniques. The min–max strategy proposed
in the previous section would be used in the two ASVs scenario as well. Consequently, the
optimization problem of (19) goes to r∗1(1) r∗2(1)

...
...

r∗1(M) r∗2(M)

 = argmax
|r|≤c

2

∑
i=1

M

∑
t=1

[
argmin
j=1,...,k

(
Jt
j

)]
(23)

Nevertheless, the initial displacement of two ASVs then comes out, which is supposed
to be the initial geometry of the ASVs. Let ϕi(t) denote the angle between the ith ASV and
the target, as shown in Figure 4.
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Proposition 1. Let α12 be the angle between ASV 1 and ASV 2, without loss of generality,
α12 = α21. For the arbitrarily fixed

∥∥Bt −At
i
∥∥, the determinant of FIM is maximized when

α12 = α21 = π/2.

Proof. Let γi = τ/
∥∥Bt −At

i
∥∥2, where τ =

(
Iη

)t · ϑ2, and with no loss of generality let
γ2 = ζγ1 for some constant γ > 0. At each time slot, the objective could be expressed as

Jt = Jt
1 + Jt

2 =
Ξ
4

( 2

∑
i=1

1∥∥Bt −At
i

∥∥2

)2

−
(

2

∑
i=1

cos(2ϕi(t))∥∥Bt −At
i

∥∥2

)2

−
(

2

∑
i=1

sin(2ϕi(t))∥∥Bt −At
i

∥∥2

)2
. (24)

The maximization of the logarithm of the determinant of (24) is equivalent to the
minimization of (25) [33].(

2

∑
i=1

cos(2ϕi(t))∥∥Bt −At
i
∥∥2

)2

+

(
2

∑
i=1

sin(2ϕi(t))∥∥Bt −At
i
∥∥2

)2

. (25)

Then, we have

γ2
1

[
sin(2ϕ1(t)) + ζ sin(2ϕ2(t))

2 +
(

cos(2ϕ1(t)) + ζ cos(2ϕ2(t))
2
)]

= γ2
1[1 + ζ + ζ cos(2ϕ1(t)− 2ϕ2(t))].
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Obviously, the minimum of (24) could be obtained when cos(2ϕ1(t)− 2ϕ2(t)) = −1.
Thus, ϕ2(t) − ϕ1(t) = λ̄π − π/2 for λ̄ ∈ N and the angle at the target by the ASVs is
α12 = α21 = ϕ2(t)− ϕ1(t)mod(π) = π/2. �

However, because the exact location of the target is unknown, the initial geometry
of two ASVs is supposed to closely approximate π/2. The entire process is similar to the
single ASV scenario except the initial geometry of two ASVs should be preset.

2.5.3. Optimal Trajectories for Three ASVs

As for the number of ASVs is equal to or more than three, the multilateration technique
can be used to determine the target location at each time slot [40]. In this part, a novel
localization method, i.e., TPLA, is proposed to locate the target and the initial geometry of
three ASVs is discussed.

Optimal Initial Geometry of Three ASVs

Proposition 2. The determinant of FIM in (13) is equivalent to

det
(
FIMt) = Ξ ·∑

S

sin2(ϕi(t)− ϕl(t))∥∥Bt −At
i
∥∥2∥∥Bt −At

l

∥∥2 , S = {{i, l}}. (26)

Proof. Let G = ∇Bt zt
i such that FIMt = GTG. Using the Cauchy–Binet formula, then

we have
det
(
FIMt) = Ξ · det

(
GTG

)
= Ξ · ∑

q={1,··· ,(
N
2
)}

det
(
Gq
)2, (27)

where Gq is a 2 × 2 minor of G acquired from the set of minors indexed by S = {{i, j}}.
All 2 × 2 minors of G are given as

GS =
√

Ξ
[∥∥Bt −At

i
∥∥ cos(ϕi(t))

∥∥Bt −At
i
∥∥ sin(ϕi(t))∥∥Bt −At

l

∥∥ cos(ϕl(t))
∥∥Bt −At

l

∥∥ sin(ϕl(t))

]
. (28)

where S = {{i, j}} is defined as the set of all combinations of i and l (i, l ∈ {1, · · · , N} and

l > i) with |S| =
(

N
2

)
. �

As for N = 3, let α12, α13, and α23 be the angles among the ith and lth ASV, γil = γi · γl ,
where γi = τ/

∥∥Bt −At
i
∥∥2 with τ =

(
Iη

)t · ϑ2. Without loss of generality, α12 = α21,
α13 = α31, and α23 = α32.

The relationship of angles among the ith and lth ASV could be expressed as

α12 = 1
2 arccos

(
γ2

13γ2
23−γ2

12γ2
23−γ2

12γ2
13

2γ2
12γ13γ23

)
,

α13 = 1
2 arccos

(
γ2

12γ2
23−γ2

12γ2
13−γ2

13γ2
23

2γ12γ2
13γ23

)
,

α23 = π − α12 − α13.

(29)

If γl > ∑1≤i≤3,i 6=l γi, which means one ASV is close to the target, then

ϕr = ±
π

2
+ ϕi, r ∈ {1, 2, 3}\i. (30)
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According to [33], (30) could be further interpreted as{
αil =

π
2 , if γil > γrl , ∀rl ∈ {12, 13, 23}\{il}

αil = 0 or π, otherwise
, (31)

where \ is the set subtraction.
However, when γ1 = γ2 = γ3, there exists a particular solution, i.e., α12 = α12 = α23 = 2π/3

or α12 = α23 = π/3 and α13 = 2π/3.
It should be noted that the initial geometry of multiple ASVs (more than 3) is highly

related to that of two or three ASVs [33,56]. ASVs could be clustered into smaller groups
with two or three ASVs. Then, the optimal geometry would be obtained by optimizing the
angle in each group, which is not considered in this paper.

TPLA

To determine the target location at each time slot, a simple manipulation is conducted
from (4) when d0 = 1 m [57], as given by

∥∥Bt −At
i
∥∥ ≈ 10

P0−zt
i

10ϑ · 10
η

10ϑ . (32)

The right side of (32) can be approximated using the first-order Taylor series expan-
sion as [58]

λt
i
∥∥Bt −At

i
∥∥ ≈ }

(
1 +

ln 10
10ϑ

η

)
, (33)

where λt
i = 10

zt
i

10ϑ and } = 10
P0

10ϑ .
Then, the localization problem can be formulated as

argmin
Bt

N

∑
i=1

(∥∥Bt −At
i
∥∥− }

λt
i

)2

. (34)

After squaring each term and proper manipulation, the considered problem is then
converted into a non-linear least-square form as

argmin
Bt

N

∑
i=1

ωi

((
λt

i
)2∥∥Bt −At

i
∥∥2 − }2

)2
, (35)

where ωi denotes the weight that could be expressed as ωi = 1− d̂t
i /
(

∑N
i=1 d̂t

i

)
, and d̂t

i is
the approximated distance between the ith ASV and the target.

The problem is further converted into a generalized trust region subproblem (GTRS)
through expanding the squared norm in (35), as given by

J(y)= minimize
y

‖ω(=y− κ)‖2,

subject to yTDy + 2lTy = 0,
(36)

where y = [
(
Bt)T ,

∥∥Bt∥∥2
]
T

, ω = diag
([

ω1
2, . . . , ωN

2]), D = diag([1, 1, 0]),
l = [0, 0,−0.5]T , and

= =


2
(
λt

1
)2aT

1
...

2
(
λt

N
)2aT

N

−
(
λt

1
)2

...
−
(
λt

N
)2

, κ =


((

λt
1
)2‖a1‖2 − }2

)
...((

λt
N
)2‖aN‖2 − }2

)
.
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The problem in (36) could be solved using a bisection method [59]. However, we
cannot ensure that the multiplier interval is strictly decreasing during the iteration in the
bisection method, which may degrade the localization accuracy. In this case, a majorization
minimization form is constructed, where the solution from the bisection method initiates
the iteration.

Recall the problem in (34), a surrogate function is acquired by dropping the constant
term as

S
(
Bt) = N

∑
i=1

∥∥Bt −At
i
∥∥2

︸ ︷︷ ︸
f (x)

+

[
−2

N

∑
i=1

(
}
λt

i

∥∥Bt −At
i
∥∥)]

︸ ︷︷ ︸
g(x)

, (37)

where, apparently, f (x) is convex and g(x) is concave.
Theoretically, the concave term would be upper bounded at

(
Bt)Z via first-order

Taylor expansion [60], wherein Z is the iteration, such that

g(Bt) ≤ g
((

Bt)Z
)
+∇g

((
Bt)Z

)T(
Bt −

(
Bt)Z

)
. (38)

After maximizing g(x), then we have

S
(

Bt
∣∣∣(Bt)Z

)
=

N

∑
i=1

(∥∥Bt −At
i
∥∥2 − 2 · }

λt
i

∥∥Bt −At
i
∥∥)− 2

M

∑
i=1

}
λt

i

((
Bt)Z −At

i

)T∥∥∥(Bt)Z −At
i

∥∥∥
(

Bt −
(
Bt)Z

)
. (39)

The update rule for xZ+1 could be expressed as

(
Bt)Z+1

=
1
N

N

∑
i=1

At
i +

}
λt

i

((
Bt)Z −At

i

)T∥∥∥(Bt)Z −At
i

∥∥∥
. (40)

The entire localization process could be concluded in Algorithm 1.

Algorithm 1. TPLA

1. Input: yprev = 0, threshold = 1e− 7, iter = 1, total number of iterations at the first phase
I1, and the second phase I2.

2. Calculate the RSS measurements
3. Reshape the problem to a GTRS problem as (35).
4. While iter < I1 do
5. Determine the multiplier λ at each iteration according to(

=T ωTκ−λ̄l
=T ω=+λ̄D

)T
D
(
=T ωTκ−λ̄l
=T ω=+λ̄D

)
+ 2 f T

(
=T ωTκ−λ̄l
=T ω=+λ̄D

)
= 0

6. λ̄iter∗ = max
[
−diag

(
=Tω=

)
/diag(D), λ̄

]
7. Determine the optimal y at each iteration according to yiter = =T ωTκ−λ̄k∗l

=T ω=+λ̄k∗D

8. If
∥∥∥yiter − yprev

∥∥∥/
∥∥∥yiter

∥∥∥ < threshold
9. Break
10. End if
11. yprev = yiter

12. End while
13. Output Bt (as the input to the second phase)
14.

(
Bt)1 ← Bt , and Z ← 1

15. While (Z < I2) do
16. Update

(
Bt)Z+1 according to (40)

17. End while
18. Output: Bt ←

(
Bt)I
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Convergence Analysis of TPLA

TPLA consists of two steps: (1) the GTRS step solved by a bisection method and
(2) Taylor linearization approximation by an iteration method. The output of GTRS is
considered as the input for the second step, as reference to Algorithm 1. In this case, the
proof of convergence for TPLA is equivalent to that of the second step.

Proposition 3. Given any Bt =
(
Bt)Z, −

∥∥Bt −At
i
∥∥ is upper bounded as

−
∥∥Bt −At

i
∥∥ ≤ −

((
Bt)Z −At

i

)T∥∥∥(Bt)Z −At
i

∥∥∥
(

Bt −
(
Bt)Z

)
. (41)

Proof. By employing the Cauchy–Schwarz inequality, we have((
Bt)Z −At

i

)T(
Bt −

(
Bt)Z

)
≤
∥∥Bt −At

i
∥∥∥∥∥(Bt)Z −At

i

∥∥∥. (42)

By rearranging the term and taking the negative sign in (42), the inequality of (41) can
be proved. �

Proposition 4. Given a sequence of
{(

Bt)Z
}

, the objective of (37) is non-increasing and converges
to a stationary point.

Proof. Subject to (38), we have

S
(

Bt
∣∣∣(Bt)Z

)
− S

(
Bt) = g

((
Bt)Z

)
− g
(
Bt)+∇g

((
Bt)Z

)T(
Bt −

(
Bt)Z

)
. (43)

Integrated with Proposition 3, then the function can be upper bounded as

S
(

Bt
∣∣∣(Bt)Z

)
− S

(
Bt) ≥ S

((
Bt)Z

∣∣∣(Bt)Z
)
− S

((
Bt)Z

)
. (44)

Apparently, S
(

Bt
∣∣∣(Bt)Z

)
− S

(
Bt) is convex since an affine function and a convex

term are included. With the derivative of Bt, then we have

S
((

Bt)Z+1
)
≤ S

((
Bt)Z+1

∣∣∣(Bt)Z
)
− S

((
Bt)Z

∣∣∣(Bt)Z
)
+ S

((
Bt)Z

)
≤

S
((

Bt)Z
∣∣∣(Bt)Z

)
− S

((
Bt)Z

∣∣∣(Bt)Z
)
+ S

((
Bt)Z

)
= S∗.

(45)

Therefore, the objective of (37) is non-increasing and converges to a stationary point. �

According to Propositions 3 and 4, the convergence of TPLA can be proved.

Optimal Trajectories of Three ASVs

Generally, the initial geometry of three ASVs is preset according to the reduction.
Afterwards, the optimal yaw rate of the ASVs would be acquired via solving (19) after
determining the target location using TPLA at each time slot. The optimal waypoint of each
ASV at time t + 1 is determined using the point at time t, directly solved using the Matlab
optimization tool box [55]. The whole process is repeated until the geolocation mission
is completed.

3. Results and Discussion

In this section, we perform simulations in Matlab R2018b under various scenarios to
demonstrate the propositions and the proposed method for obtaining the optimal trajectory
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under outliers. The situation with a single ASV is presented first, followed by scenarios
with two and three ASVs.

3.1. Parameters Setup

To verify the analytical findings of the optimal trajectory of ASVs for localization, we
conduct the simulations, wherein the corresponding parameters are set below: P0 = −55 dBm,
ϑ = 3, σ2 = 2 dB, and I1 = I2 = 100. The outlier type in the simulations is considered
to yield a uniform distribution following

[
−
√

2,
√

2
]

[4,61]. The maximum Monte Carlo

simulation is 1000, where NC = 1000. The yaw rate follows r ∈
[
−20

◦
, 20

◦]
rad/s [13]. In

the simulation, we set t = 1 as the start period time. We use an interior point method in the
toolbox of Matlab R2018b to solve the optimization problem in (19) due to the simplicity
and fast speed for the convergence [62]. The velocity, initial heading, and yaw rate of the
ASVs are different in each scenario, described in the following parts.

3.2. Optimal Trajectory of a Single ASV

First, we conduct a simulation of the optimal trajectory of a single ASV with the
static target, where β varies from 0 to 0.8 to determine how the outliers influence the
trajectory. The radius of the uncertain region is 2 m and the speed of the ASV is 1.5 m/s. In
addition, the rest of parameters for the scenario are set up with A1

1 = [15, 15]T , B = [0, 0]T ,
φ1(1) = π/2, r1(1) = 0 rad/s, M = 200, and k = 96.

The optimal trajectories of a single ASV and their yaw rate under variable β are shown
in Figures 5 and 6, where β = 0 means no outliers are involved in the measurements. It can
be seen from Figure 5 that the optimal trajectories are more like a circle and the radius of the
circle becomes smaller. In addition, interestingly, the trajectories with outliers seem closer
to that without outliers. This is because (1) for N spatially disparate sensors, the optimal
placement for sensors is uniformly distributed along any circle around the target according
to Corollary 1, and (2) for RSS-based localization, the closer to the target, the more valuable
accurate range information would be provided because of log-normal shadowing in (4).
Thus, for the optimal trajectories, it can be argued that the ASV must move circularly
around and closer to the target, referred to as Figure 5.

One more interesting thing that is worth noting is that with the uniform distributed
outliers involved in the measurement model (4), the value of the objective is becoming
larger, referred to as Figure 7, which is equivalent to the increase in the determinant of
FIM. The larger the determinant of FIM, the smaller the CRLB that would be obtained
according to (8). Accordingly, the trajectories with the uniform distributed outliers become
closer to the target, and the radius for the circle seems less than that without outliers. In
addition to the static target, we simulate a scenario with a dynamic target. According to
Remark 5 in [13], the target speed should be much lower than that of the ASV; otherwise,
no feasible solution would be acquired. Therefore, the speed of the target we set in the
simulation is vx = vy = 0.1 m/s and the time step is M= 150 s. Due to the discussion of
the influence of the variable β on the optimal trajectories, we only carry out the simulation
with β = 0, and 0.8 in terms of the optimal trajectory. As expected, from Figure 8, the ASV
moves circularly and becomes closer to the target in the scenario of the static target. The
difference between the dynamic scenario and the static scenario is that the circle would be
movable along with the moving target.

3.3. Optimal Trajectories of Two ASVs

In this part, we first conduct the scenario of the optimal trajectories with a static target
and then expand the scenario with a dynamic target. The radius of the uncertain region
is 2 m and the speed of the ASV1 and ASV2 is 1.5 m/s. The rest of parameters are set as
A1

1 = [30, 30]T , A1
2 = [30,−30]T , B = [0, 0]T , φ1(1) = π/2, φ2(1) = 0, r1(1) = π/30 rad/s,

r2(1) = π/18 rad/s, M = 400, β= 0.4, and k = 96.
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Figure 7. The value of the objective under different β with a static target.

Following Proposition 1, the optimal geometry for two ASVs in the simulation is π/2.
Here, trajectories with β = 0.4 are only discussed in the scenario with two ASVs because
the full discussion of the influence of variable β on optimal trajectories was considered in
the scenario with a single ASV. It can be seen from Figure 9 that two ASVs move circularly
and close to the target until reaching the minimum radius.
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Figure 9. Optimal trajectories of two ASVs with a static target.

The scenario with a dynamic target is depicted in Figure 10, where the target speed is
vx = 0, vy = 0.3 m/s. As shown in Figure 10, two ASVs move circularly and close to the
moving target. The radii of circles are becoming smaller along with the moving target until
a minimum is achieved.
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3.4. Optimal Trajectories of Three ASVs
3.4.1. Localization Method Comparison

To verify the effectiveness of TPLA, a comparison is conducted with several state-of-
the-art methods proposed to tackle the outliers, i.e., iterative re-weighted least squares
(IRLS) [63], robust non-cooperative localization algorithm (RNLA) [4], and squared range
weighted least squares (SRWLS) [57]. Due to the dynamics of the ASVs and the target,
the position of the target and the ASVs are set to be changeable in a 30 × 30 m area at
each Monte Carlo trial. Moreover, the root mean square error (RMSE) is conducted as the
calibration, as given by

RMSE =

√√√√ 1
Γmax

Γmax

∑
Γ=1

(
B̂− B

)2 (46)

where Γmax is the total number of Monte Carlo trials, B̂ is the estimate, and Γ is the current trial.
As shown in Figure 11, the localization accuracy of all methods degrades over the rise

in β. IRLS, RNLA, and SRWLS are the methods used to construct the localization problem
into a GTRS, which is solved using a bisection method. The difference is the determination
of the weight. IRLS and RNLA determine the weight via iteration, which is changeable,
whereas SRWLS defines the weight using range information. However, it should be noted
that the bisection method may have a rough approximation if the interval of the multiplier
for GTRS is inappropriate. It is necessary to determine an interval of the starting point
and ensure that the interval of the multiplier is strictly decreasing during the iteration. In
this case, the second phase of the localization is executed in TPLA. From Figure 11, we can
see intuitively that the performance of TPLA is better than others. The outperformance of
TPLA can be referred to in Figure 12 as well, where the scenario of variable variances is
simulated. The localization error of the methods increases over the rise in variance, among
which the proposed algorithm, i.e., TPLA, enables more satisfactory results compared
with others.

3.4.2. Optimal Trajectories

In this part, a specific scenario of optimal trajectories for three ASVs, i.e., the ini-
tial distance between ASVs and the target, is the same, and the geometry of ASVs is
α12 = α12 = α23 = 2π/3, with a dynamic target under β = 0.4 considered. The corre-

sponding parameters are set as A1
1 =

[
30
√

3, 30
]T

, A1
2 =

[
−30
√

3, 30
]T

, A1
3 = [0,−60]T ,

B1 = [0, 0]T, φ1(1) = π, φ2(1) = 0, φ3(1) = −π/2, r1(1) = π/18 rad/s, r2(1) = π/30 rad/s,
r3(1) = π/10 rad/s, M = 150, v1 = v2 = v3 = 1.5 m/s, vx = 0.1 m/s, vy = 0 m/s, and
β = 0.4.
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To demonstrate further that the trajectories that we addressed are optimal, as shown
in Figure 13, we carry out the simulations with the trimming trajectories mentioned in [64],
referred to as Figure 14. At each time slot, the target location is determined using TPLA
via the contaminated RSS measurements. It can be seen from Figure 15 that the RMSE of
optimal trajectories is better than that of trimming trajectories, where the average RMSEs of
the optimal trajectories and the trimming trajectories are 3.77 m and 22.95 m, respectively.
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4. Conclusions

In this paper, we developed optimal trajectories of ASVs for localization using RSS
under outliers. The D-optimality integrated with a Monte Carlo strategy was presented to
obtain the close-form expression of FIM. To further acquire the optimization configuration
in the absence of target location, two strategies were then studied. In what concerns a
single ASV or two ASVs, a min–max strategy with the imperfect knowledge of the target
was proposed. As for the scenario of three ASVs, a novel localization method, i.e., TPLA,
was presented to obtain the target location at each time slot. The influence of outliers on
the optimal trajectories was investigated and discussed in the simulations. Moreover, a
comparison between the obtained trajectories and the trimming trajectories was executed
to illustrate that the analytical finding that we addressed was optimal. However, the
maximum number of ASVs that the paper considered was three for convenience. Currently,
some works in [65,66] have proved that when there are more than three ASVs, the optimal
geometry seems be obtained by optimizing the angle in each group. Unfortunately, the
scenario of multiple ASVs, generally more than three, is not addressed in the paper, which
would be our future research direction. Further, collision avoidance must be considered
in future research pertaining to ideal trajectories of multiple ASVs for target localization.
Meanwhile, the optimal trajectory presented in the research does not account for the
economic property (jointly shortest and smoothest goals). How to strike a balance between
localization accuracy and economics is a topic for future research. In addition, ocean
currents, particularly time-varying currents, may have a negative effect on the kinematic
model, resulting in an anticipated motion when using the proposed technique. Controlling
ASVs in a manner that maintains localization precision and an optimum trajectory approach
with security concerns [67–69] is another potential direction.
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