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Abstract: Urban environments have a strong influence on the land surface temperature (LST) in
urban areas. Understanding the relationship between LST and urban environmental factors can
help develop effective strategies to reduce high LSTs in urban areas, which is critical for mitigating
the urban heat island effect. Previous studies have focused on the correlation between LST and the
environmental factors that drive its formation, without considering the influences of the neighboring
environment and the vertical expansion of highly urbanized areas. Notably, the correlation between
LST and its neighboring environment in different seasons remains unclear. In this study, we selected
central Beijing in China as our study area and employed the moving window method to characterize
the environmental factors of the neighboring environment of the central LST cell. We explored eight
environmental factors from three layers: normalized difference vegetation index (NDVI), normalized
difference built-up index (NDBI), modified normalized difference water index (MNDWI), building
density (BD), building height (BH), building volume (BV), sky view factor (SVF), and road density
(RD). The Pearson correlation and extreme gradient boosting (XGB) regression methods were applied
to measure the correlation between LST and the different factors in moving windows of different
sizes. The results indicated that the correlation between NDVI, MNDWI, and LST was considerably
different in the winter and other seasons. However, NDBI was positively correlated with LST in all
seasons, although the correlation was strongest/weakest in summer/winter. Among building-related
factors, BD and BH were more strongly correlated with LST, and the positive/negative correlation
between BD/BH and LST was stronger in summer/winter. The correlation between LST and its
neighboring environment varied with increasing window size, and this variation differs significantly
between winter and other seasons. In spring, summer, and autumn, the strength of the correlation
between LST and its neighboring environment showed an “inverted V” pattern with increasing
window size. The optimal spatial scales to explore the influence of neighboring environments on
the LST of 30-m cells were 210 m and 270 m. This study revealed the seasonal correlation between
LST and its neighboring environment while explaining the variation at a spatial scale. Notably, this
study can provide a new perspective for understanding the driving mechanism of the urban thermal
environment, while contributing to its scientific optimization and management.

Keywords: land surface temperature; neighboring environment; seasonal effect; scale effect; optimal
spatial scale; urban heat island; extreme gradient boosting regression
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1. Introduction

With the acceleration of urbanization, the development of urban heat islands (UHIs) in
cities being warmer than surrounding rural areas has been observed frequently on a global
scale [1–3]. High urban temperatures not only facilitate energy consumption for cooling [4],
contributing to air-pollutant emissions and global warming [5], but also increase the risk
of heat-related morbidity and mortality, especially during extreme heat events [6–8]. At
present, over 50% of the global population lives in urban areas, and this proportion is
expected to reach 70% by 2050 [9]. The negative impacts of UHIs pose a great threat to
sustainable urban development [2,3]. Land surface temperature (LST), an effective indicator
of surface UHI, is generally affected by various factors related to urbanization [10,11].
Disclosing the correlation between LST and urban environmental factors is critical in
developing reasonable strategies to optimize the urban thermal environment, prevent the
further intensification of the UHI effect, and achieve sustainable development.

Urbanization is a complex process characterized by the transformation of natural
land cover types (e.g., vegetation, water bodies, forests, and croplands) to impervious
surfaces, such as roads, buildings, pavements, and parking lots [12,13]. Previous studies
have confirmed that impervious surfaces can absorb and retain heat, resulting in higher
surface temperatures in urban areas [2]. In addition, roads in urban areas are associated
with traffic activities that lead to waste heat emissions [10]. Hardened pavement areas and
the number of private vehicles are related to road density (RD) [14]. Therefore, urban road
networks cannot be excluded when analyzing the potential driving factors of urban surface
temperature. Vegetation and water bodies have an important cooling effect that can reduce
the LST in urban areas [15]. Widely studied surface biophysical indexes, including the
normalized difference built-up index (NDBI) [16], normalized difference vegetation index
(NDVI) [17], and modified normalized difference water index (MNDWI) [18], exhibited
different correlations with LST. Reducing impervious surface areas and increasing urban
green vegetation/water areas are ideal strategies to mitigate high temperatures in urban
areas. However, in highly urbanized areas, the amount of space available for greening is
limited and it is impractical to considerably reduce impervious surfaces, such as buildings
and roads. Meanwhile, studies in 3D urban morphology have indicated that optimizing
urban building forms can help mitigate the UHI effect [19–23]. As a result, there is increas-
ing interest regarding the effects of multidimensional factors of urban environments on
LST [9,24–26].

In highly urbanized areas, buildings reflect urban expansion in the vertical dimension.
This has also been the most important urban landscape in 3D urban morphology studies.
The combination of high buildings and narrow streets can trap long-wave radiation and
increase the degree of thermal stress in summer and solar radiation absorption [27,28].
However, the shadows of high-rise buildings can reduce the absorption of solar radiation by
the ground [29]. Thus, a comprehensive investigation of the relationship between LST and
building-related factors is crucial for urban planning and intra-urban thermal environment
management. Although recent studies examine the relationship between LST and building
factors, including building density (BD), building height (BH), building volume (BV),
and sky view factor (SVF) factors [19,20,25,30,31], most of them focus on specific seasons,
with the summer receiving the most attention. More studies are required to understand
the correlations between building factors and LST during different seasons. Moreover,
previous studies on the relationship between LST and building features have yielded
inconsistent results. A study conducted at the residential scale suggested that building
height had a greater impact on LST than building density [19]. However, a seasonal analysis
at a geographical scale of 500 m × 500 m indicated that building density had a stronger
influence on LST than building height [21]. A recent study based on a road-block scale
also indicated that the influence of building cover ratio on LST was stronger than building
height [20]. These inconsistent conclusions suggest that the correlations between building
factors and LST may be affected by the spatial scale. However, at present, only a few studies
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have comprehensively discussed the seasonal and scale characteristics of the correlation
between building factors and LST [9].

The neighboring environment plays an important role in the driving mechanism of
the LST in highly urbanized areas. Previous studies have confirmed that the cooling effects
of urban vegetation and water bodies are largely regulated by neighboring vegetation
and impervious surface landscapes [32,33]. The heat sources in urban areas, such as
industrial parks, contribute to the increase in the surface temperatures within a certain
spatial extent around them [34]. Thus, these findings suggest that the local LST is related
to the neighboring environment. However, the strength of the correlation between LST
and land cover varies with spatial resolution, indicating the spatial range of the effect
of the neighboring environment on LST [25,35]. Determining the effect of neighboring
environments on LST provides a new perspective for understanding the potential driving
factors of the urban thermal environment in a comprehensive manner. Thus, there is an
increasing interest in the thermal effects of the neighboring environment. However, in
investigating the thermal effects of neighboring environments, previous studies mainly
focused on special urban scenarios, such as public and industrial parks and meteorological
station areas, without considering the general situation. Therefore, more case studies are
required to measure the influence of neighboring environments on fine-scale LSTs in highly
urbanized areas.

In this study, we analyzed the central urban area of Beijing; the moving window
method was adopted to measure the neighboring environmental factors of LST at different
spatial scales. Eight environmental factors were selected from the urban greenness, urban
wetness, and urban grayness layers: NDVI, NDBI, MNDWI, BD, BH, BV, SV, and RD. The
Pearson correlation and extreme gradient boosting (XGB) regression methods were used to
measure the influence of these factors on the LST from the perspectives of individual and
combined effects. The aim of this study is to address the following questions: (1) What are
the seasonal differences in the correlations between LST and the neighboring environment,
in terms of multidimensional factors? (2) How does a change in spatial scale affect the
correlation between LST and the neighboring environment? What are the optimal spatial
scales? (3) Finally, is there any inter-seasonal difference in the effects of spatial scale on the
correlation between LST and its neighboring environment?

This study aims to reveal the seasonal and scale effects on the correlations between
LST and multidimensional environmental factors from the perspective of neighboring
environments to improve the understanding of the driving mechanism of the urban
thermal environment.

2. Study Area and Dataset
2.1. Study Area

Beijing is located on the North China Plain and experiences a continental monsoon
climate (hot and rainy in the summer and cold and dry in the winter). As the capital of
China, Beijing has undergone rapid urbanization in the last four decades. Its permanent
population increased gradually from 10.47 million in 1987 to 21.94 million in 2017 (URL:
http://nj.tjj.beijing.gov.cn/nj/main/2021-tjnj/zk/indexch.htm, accessed on 1 June 2022).
The percentage of the urban population was 86.45% in 2017. Rapid urbanization has
dramatically changed urban landscape patterns and caused a variety of environmental
problems, including water and air pollution and the UHI effect. The deterioration of the
thermal environment has become a major challenge for sustainable urban development
in Beijing. Notably, urbanization in Beijing occurs in a ring-shaped pattern, that is, a
concentric expansion from the urban center to the periphery. The region within the Fourth
Ring Road covers most of the central urban areas that have the highest urbanization rates
and population densities and contains various land cover types and complicated landscape
patterns. Therefore, in this study, we investigated the thermal environment of the region
within the Fourth Ring Road of Beijing, which covers an area of 340.26 km2, and covers
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all of the Core Functional Zone and a small part of the Urban Function Extended Zone
(Figure 1).
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Figure 1. Geographic location of the study area: (a) the location of the Fourth Ring Road of Beijing;
(b) the land use map of study area; (c) the land cover map of study area; (d) building height map of
study area; (e) the land surface temperature (summer) distribution map of study area (the land use
data in 2018 and land cover data in 2017 were derived from the website: http://data.ess.tsinghua.
edu.cn/, accessed on 21 August 2022).

2.2. Dataset

The dataset used in this study included Landsat-8 Operational Land Imager/Thermal
Infrared Sensor (OLI/TIRS) images and building and road network data. The Landsat-8
OLI/TIRS images obtained from the Geospatial Data Cloud official website (http://www.
gscloud.cn/, accessed on 28 November 2020) were used to estimate the LST and surface
biophysical factors. After screening all of the available images for 2017, four Landsat-8
OLI/TIRS images collected on May 23 (spring), July 10 (summer), September 28 (autumn),
and December 17 (winter) were employed to characterize the thermal environment for
different seasons [36]. The building data used to acquire building-related factors were
obtained from the Baidu, Inc. (https://map.baidu.com, accessed on 1 October 2017) with
a spatial resolution of 10 m. The building data can describe the geographical location
and height attributes of buildings in 2017 and cover the area within the Fourth Ring
Road of Beijing. The road data in 2017 were obtained from the OpenStreetMap (http:
//www.openstreetmap.org, accessed on 1 June 2020), a substantial global spatial database,
and were used to explore the thermal effects of road density on the LST in this study.

3. Methods
3.1. Land Surface Temperature (LST) Estimation

In this study, the radiative transfer equation (RTE) method was employed to estimate
the LST from the Landsat-8 OLI/TIRS images. The RTE method is more accurate than the

http://data.ess.tsinghua.edu.cn/
http://data.ess.tsinghua.edu.cn/
http://www.gscloud.cn/
http://www.gscloud.cn/
https://map.baidu.com
http://www.openstreetmap.org
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split window method and single channel method and could guarantee an accuracy of 0.6 K
for the retrieved LST [37,38]. First, the RTE method was used to estimate the black-body
radiation brightness by removing the influence of the atmosphere. This can be expressed in
an equation, as follows:

B(TS) = [Lλ − L ↑ −τ(1− ε)L ↓]/Lλε (1)

where B(TS) is the black-body radiation; Lλ (W/m2·sr·µm) is the spectral radiation bright-
ness for band 10; τ is the transmittance of thermal infrared bands in the atmosphere; L ↑
(W/m2·sr·µm) and L ↓ (W/m2·sr·µm) indicate the upwelling and downwelling atmo-
spheric radiance (http://atmcorr.gsfc.nasa.gov, accessed on 28 November 2020), respec-
tively; and ε denotes the land surface emissivity, which is calculated based on vegetation
proportion [38]. Finally, according to the Plank function, the LST was derived from B(TS),
using the following equation:

Ts = K2/ ln(K1/B(TS) + 1)− 273 (2)

where Ts is the LST (◦C), K2 is 1321.08 K, and K1 is 774.89 (W/m2·sr·µm).
The spatial distribution of the LST in spring, summer, autumn, and winter is shown in

Figure 2. The high-temperature area is significant for understanding the spatiotemporal
pattern of LST and optimizing the thermal environment. We observed three seasonal stable
high-temperature areas in the study area, mainly distributed within the Second Ring Road.
Compared with the high-temperature areas inside the Second Ring Road, the distribution
of the high-temperature areas located outside the road was relatively fragmented.
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3.2. Selection and Calculation of Multidimensional Environmental Factors

The LST in urban areas is mainly determined by complex urban landscapes. According
to previous studies, the driving factors of LST can be categorized into three layers: urban
greenness, wetness, and grayness (Table 1). In this study, three surface biophysical factors
(NDVI, NDBI, and MNDWI) were selected to represent the overall spatial distributions
of urban greenness, grayness, and wetness, respectively, from a two-dimensional (2D)
perspective. Buildings and roads are two typical artificial construction types in urban
areas, as well as the main components of urban grayness. In this study, we employed RD,
BD, BH, BV, and SVF to describe the detailed spatial characteristics of the urban grayness
components from 2D and 3D perspectives. The BD was defined as the proportion of the
ground building area per unit of analysis, and RD was defined as the total length of the
roads in an analysis unit divided by the area of the unit. The BH was defined as the average
height of the buildings per unit of analysis, and BV was defined as the total building
volume per unit of analysis. Furthermore, SVFj was defined as the proportion of visible sky
at a certain observation point j and was calculated based on the buildings, according to the
method proposed by [39]. Then, all the SVFj values per analysis unit were averaged. Since
seasonal effects were considered in this study, the three surface biophysical factors chosen
in this study were calculated separately from four Landsat-8 images captured during the
different seasons, whereas the building and road-related factors were considered to be the
same for all seasons. The spatial distributions of the selected environmental factors are
shown in Figure 3.
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Figure 3. Spatial distribution of environmental factors considered in this study using different
indexes: normalized difference built-up index (NDBI), normalized difference vegetation index
(NDVI), modified normalized difference water index (MNDWI), building density (BD), building
height (BH), building volume (BV), sky view factor (SVF), and road density (RD). Images for NDBI,
NDVI, and MNDWI factors were captured in summer.
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Table 1. Description of environmental factors considered in this study.

Type Layers Factors (Abbreviation) Equation Reference Unit

Surface biophysical
factors

Urban greenness
Normalized difference

vegetation index
(NDVI)

NDVI = ρNIR−ρRed
ρNIR+ρRed

[40] -

Urban grayness Normalized difference
built-up index (NDBI) NDBI = ρSWIR1−ρNIR

ρSWIR1+ρNIR
[16] -

Urban wetness
Modified normalized
difference water index

(MNDWI)
MNDWI = ρGreen−ρSWIR1

ρGreen+ρSWIR1
[18] -

Multidimensional
factors of two

typical components
of urban grayness

Urban grayness
(Road network) Road density (RD) RD =

Lenroads
Unitarea

[41] m/m2

Urban grayness
(Buildings)

Building density (BD) BD =
∑n

i=1 Biarea
Unitarea

[30] -

Building height (BH) BH =
∑n

i=1 Biheight
n

[42] m

Building volume (BV) BV =
n
∑

i=1
Bivolume

[42] m3

Sky view factor (SVF) SVF = ∑k
i=1 SVFj/k [9] -

Note: Biarea is the land coverage area of the i-th building in the analysis unit, Biheight is the height of building i,
Bivolume is the volume of building i, n is the total number of buildings in the analysis unit, Lenroads is the total
length of all roads in an analysis unit, Unitarea is the area of the analysis unit, SVFj is the SVF value of cell j in the
analysis unit, and k is the total number of cells in the analysis unit. ρGreen, ρRed, ρNIR, and ρSWIR1 represents the
band 3, band 4, band 5, and band 6 of Landsat-8, respectively.

3.3. Moving Window Samples for Analysis

The moving window method is a common multiscale analysis approach [43]. The
method can be used to capture the continuous spatial variation in specific characteristics of
the urban environment at custom scales [44]. In this study, for each analysis sample, the
dependent variable was the LST value of the central cell of the moving window, and each
independent variable was the average value of the corresponding environmental factor
within the moving window. To investigate the influence of the spatial scale, 20 window sizes
were used to characterize the urban environmental factors and measure their relationship
with the LST of 30-m cells. Since the spatial resolution of the LST data in this study is
30 m, the minimum window size is 90 m × 90 m, which can ensure a clear central pixel
in the window. Moreover, the growth interval of the window size is twice the spatial
resolution of the LST data, which helps to capture the spatially continuous neighboring
environmental characteristics. In addition, a sufficient range of moving window size is
necessary to adequately explore the correlation between LST and multiple environmental
factors, especially to explore how the correlation changes with increasing window size.
Therefore, in this study, the window size was increased from 90 m × 90 m to 1230 m ×
1230 m, with an interval of 60 m. The samples obtained from the moving windows of
different sizes were used in the subsequent analysis to reveal the response of the LST to its
neighboring environment.

3.4. Correlations between Land Surface Temperature (LST) and Environmental Factors

In this study, the Pearson correlation method [45,46], which has been widely used in
previous studies, was used to measure the correlation direction and intensity between LST
and the selected environmental factors. Twenty correlation coefficients were estimated for
each factor in each season, corresponding to twenty sizes of the moving windows. One
of the aims of this study was to investigate the seasonal variations in the effects of the
urban environment on LST. Therefore, the mean values of the correlation coefficients were
calculated for the individual factors with respect to different seasons. In each season, three
environmental factors were identified as the dominant driving factors of LST, according
to the correlation intensity. Then, the spatial characteristics of the effects of the dominant
driving factors on LST were explored by analyzing the trend of correlation intensity with
increasing window size. Notably, we focused on the effects of dominant driving factors, as
they exhibited relatively strong correlations with LST.
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3.5. Application of Regression Model to Analyze Correlation between Land Surface Temperature
(LST) and Environmental Factors

Regression models are an efficient method for measuring the combined effects of
multiple driving factors on LST. The XGB regression model was used in this study according
to its advantages and our research needs. In this study, we aimed to explore the variation
in combined effects of multiple environmental factors on LST with increasing window
size in different seasons. Compared with statistical linear regression models, the XGB
regression model, a tree machine learning regression method, is better adapted to the
complex nonlinear relationships between LST and its driving factors. In addition, the
XGB regression model is not affected by multicollinearity among driving factors, which
means that all environmental factors can be entered into the model [47]. At present, XGB
regression is the most effective stochastic gradient boosting algorithm. The idea of the
XGB regression model is to build a series of shallow regression trees using a gradient
boosting technique, where each tree attempts to correct the residuals in the predictions
made by previous trees [48]. The XGB regression model can calculate the optimal solution
for the whole model and reduce the overfitting phenomenon [49]. Notably, previous
study has confirmed that the XGB regression model outperforms random forest, support
vector, and decision tree regressions with higher accuracy in LST prediction [50]. Moreover,
the XGB regression model has shown good application effects in many fields, including
crime prediction [47], vegetation mapping [51], algal biochar yield prediction [52], flood
susceptibility modeling [53], and urban thermal environment [54]. Therefore, in this
study, we developed XGB regression models to measure the combined effects of multiple
environmental factors on LST. The samples were randomly partitioned into 80% and
20% for training and validation, respectively. The performance of the regression model
was measured using the coefficient of determination (R2) metric, which indicated the
goodness of fit. It also represented the proportion of variance of the LST, explained by the
independent variables in the model. In addition, the root mean square error (RMSE) and
the mean absolute error (MAE) were used to evaluate the accuracy of the regression model.
The measured R2, RMSE, and MAE were calculated using the following equations:

R2(y, ŷ) = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (3)

y=
1
n∑ n

i=1yi (4)

RMSE(y, ŷ) =

√
1
n ∑ n

i=1(yi − ŷi)
2 (5)

MAE(y, ŷ) =
1
n ∑ n

i=1|yi − ŷi| (6)

where ŷi is the predictive value of the i-th sample, and yi is the corresponding true value
for n samples.

4. Results
4.1. Seasonal Correlations between Land Surface Temperature (LST) and Neighboring
Environmental Factors

The average correlation between the LST and environmental factors with respect to
different seasons is shown in Figure 4. The Pearson correlation coefficient indicated the
direction and intensity of the correlation between the LST and environmental factors. The
average correlation results were at the 95% significance level. In terms of the direction of
correlation, all factors, except BV, SVF, and NDVI, exhibited consistent correlations with the
LST in Beijing across all seasons. In addition, the correlation strengths between the urban
environmental factors and LST were strong in summer and weak in winter, in terms of the
strongest correlation factors.
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building volume (BV), sky view factor (SVF), and road density (RD).

We observed positive correlations between the BD, NDBI, and RD and the LST in all of
the seasons. The correlation between BD and LST was strong (0.501, 0.536, 0.476, and 0.299
in four seasons, respectively), whereas that between RD and LST was weak (0.048, 0.050,
0.026, and 0.065 in four seasons, respectively). These results indicated that the positive
association between LST and building density was stronger, whereas the influence of urban
road networks on LST was limited. The NDBI factor represented the overall grayness fea-
tures of the urban area, including both building and road features; therefore, its correlation
with LST was similar to that of the BD factor. Notably, the positive correlations between the
NDBI and BD factors and the LST of the city were consistent in the spring (0.487), summer
(0.614), and autumn (0.524) seasons; their correlation strengths with LST were stronger
in spring, summer, and autumn than in winter. This indicated that the warming effect of
urban grayness factors was more prominent during warm seasons. Furthermore, BH was
negatively correlated with the LST in all seasons, which was completely different from the
BD factor, although the latter also represented building characteristics. This result indicated
that BD increased the LST of the area, and conversely, BH decreased the LST. In addition,
the results also showed that the strength of the correlation between the BH and LST of the
city was highest in winter (−0.399). The correlation of the MNDWI factor with the LST was
weak and almost negligible in spring, summer, and autumn, with its negative correlation
with LST being evident in winter (−0.254).

The direction of the correlation between the urban environmental factors and LST
was also reversed during seasonal changes. The BV factor was positively correlated with
the LST in the spring (0.084) and summer (0.174) seasons, less correlated with the LST in
autumn (−0.045), and negatively correlated with it in winter (−0.243). The changes in the
correlations of the SVF and NDVI factors with the LST were similar. Specifically, they both
showed negative correlations with the LST in spring (−0.160 and −0.490) and summer
(−0.261 and −0.448); the negative correlations weakened in autumn. The factors exhibited
positive correlations with the LST in winter (0.198 and 0.081).

In general, there were no significant differences in the correlation results for spring,
summer, and autumn. In contrast, the direction or strength of the correlation between each
environmental factor and LST changed markedly in winter, compared to that in the other
three seasons. These findings imply that the main environmental factors affecting LST in
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spring, summer, and autumn were consistent to some extent, whereas the factors affecting
LST in winter differed from those in warmer seasons.

4.2. Spatial Characteristics of the Correlations between Land Surface Temperature (LST) and
Dominant Driving Factors

We selected three factors for spring, summer, and autumn (BD, NDBI, and NDVI) and
winter (BD, BH, and MNDWI) for further analysis, according to their strong correlations
with the LST (Figure 4). This exploration was conducted with various window sizes, i.e.,
from 90 m to 1230 m, with an interval of 60 m, to reveal the effect of scale through the change
in the correlation strength. The influence of the BD, NDBI, and NDVI factors on the LST
showed a similar trend, i.e., an inverted V shape with increasing window sizes in relatively
warmer seasons (spring, summer, and autumn) (Figure 5a–c). First, the correlation intensity
increased with the moving window size and then decreased gradually, which indicated the
optimal spatial scales to study the influence of the neighboring environments on the LST.
For the BD factor, the intensity of its positive correlation with LST showed an initial sharp
rise, followed by a gradual decline after reaching the peak; the peak correlation intensity
was obtained when the window size was set at 270 m (summer) and 330 m (spring and
autumn). The intensity curve of the NDVI factor associated with LST showed a trend similar
to the intensity curve of the BD–LST correlation. The spring curve was located between
the summer and autumn curves, and the maximum correlation intensity corresponded to
a window size of 210 m (spring and summer) and 270 m (autumn), although the NDVI
was negatively correlated with the LST. Similar to the results of BD and NDVI, the summer
curve of the NDBI was also at the top, indicating that these environmental factors were
most associated with the LST in summer. The difference between the first two was that the
gap between the spring and autumn curves gradually increased with the size of the moving
window. However, the strongest correlations between the NDBI and LST still occurred
at window sizes of 210 m (spring and summer) and 270 m (autumn). The general and
intuitive correlations between the environmental factors and LST are shown in Figure 4.
The comparative analysis between the scales further revealed that the scales of 210–270 m
were more effective in capturing the spatial characteristics of these correlations, regardless
of whether the factors were positively (NDBI and BD) or negatively (NDVI) correlated with
the LST.

In winter, the BH and MNDWI were negatively correlated with the LST. The curves of
these two factors also portrayed an inverted V shape. For example, the correlation intensity
between BH and LST first increased sharply, followed by a gradual decrease. The size
of the optimal scale at which the strongest correlation strength appeared was 450 m, but
the correlation strength at the optimal scale did not differ markedly from that observed
for the window size of 1230 m. The correlation intensity curve of the MNDWI also had
an inverted V shape, but it differed from that of BH, portraying a sharp decrease with
increasing window size. The apex of the curve (corresponding to the strongest correlation)
was located at a window size of 150 m. The curve of BD, which was positively correlated to
the LST, behaved differently; it continued to rise and then remained flat, without a clear
inflection point. The influence of the building characteristics (BH and BD) on the LST was
more prominent in the winter. In general, the trend of the winter curve was markedly
different from that of the warmer seasons, implying that there was a significant difference
in the formation mechanism of the urban thermal environment between the warm (spring,
summer, and autumn) and winter seasons.
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Figure 5. Correlation intensities of dominant factors: (a) correlation intensities of building density
(BD) in spring, summer, and autumn; (b) correlation intensities of normalized difference built-up
index (NDBI) in spring, summer, and autumn; (c) correlation intensities of normalized difference
vegetation index (NDVI) in spring, summer, and autumn; (d) correlation intensities of BD, building
height (BH); and modified normalized difference water index (MNDWI) in winter.

4.3. Combined Effect of Environmental Factors on Land Surface Temperature (LST)

The LST is the result of the combined effects of multiple factors. Therefore, in this
study, the XGB regression method was adopted to construct the LST regression models for
different spatial scales in order to investigate the combined effects of these factors on the
LST of the city. The explanatory rate indicator, i.e., the percentage of LST variance explained
by the regression model, was used to measure the combined effects of these factors on
the LST [48]. Figure 6 shows that the RMSE and MAE metrics are lower than 1.6 and 1.2,
respectively. Table 2 summarizes the explanatory rates at different scales. For each season,
the same color scheme was used to portray the change in the explanatory rate with scale.
Green indicates a low explanatory rate and yellow indicates a high explanatory rate. For the
spring and summer LST, the XGB regression models established at 210 m had the highest
explanatory rate (74.94% and 77.55%, respectively), followed by the model established at
270 m (74.62% and 77.34%, respectively). For the autumn LST, the model established at
270 m had the highest explanatory rate (68.04%), followed by that established at 210 m
(67.53%). These results indicated that, when studying the LST during the warm season, the
multiple regression model had the strongest interpretation of the LST at a spatial scale of
210–270 m.
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Table 2. Percentage of explained variance of the land surface temperature (LST) for different seasons.

Scales (m)
Percentage of Explained Variance of LST (%)

Spring Summer Autumn Winter
90 64.29 66.94 56.52 46.09

150 72.11 74.64 64.20 54.49
210 74.94 77.55 67.53 57.12
270 74.62 77.34 68.04 57.13
330 72.98 75.59 66.92 55.84
390 70.74 73.34 65.56 54.48
450 68.86 71.23 64.07 53.92
510 67.17 69.47 63.05 53.43
570 65.98 68.18 62.09 53.10
630 65.27 67.59 61.52 53.30
690 65.06 67.22 61.53 54.31
750 65.05 67.09 61.79 55.20
810 64.88 66.93 61.59 55.92
870 64.88 66.62 61.94 56.54
930 65.29 66.36 62.21 57.14
990 65.69 66.75 62.42 57.52

1050 66.05 66.60 62.87 57.92
1110 66.13 66.66 63.33 58.52
1170 66.15 66.94 63.53 59.69
1230 66.44 67.26 63.91 60.23

Average 67.63 69.51 63.23 55.59

Similar to the findings in Section 4.2, the explanatory rate of the XGB regression
model and its variation differed markedly between the winter and the warm seasons
(spring, summer, and autumn). For the winter LST, the explanatory rate of the model
first increased until 57.13% (270 m) and then decreased gradually until 53.10% (570 m);
the rate increased again until 60.23% (1230 m). The XGB regression model, including the
eight environmental factors, explained the LSTs in spring, summer, and autumn more
effectively than that in winter, both in terms of the mean and peak values. These findings
suggested that the influencing factors, formation mechanism, and scale effect of the thermal
environment in winter were more complex than those observed in the spring, summer, and
autumn seasons.
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5. Discussion
5.1. Seasonal Characteristics of the Thermal Effects of Urban Environmental Factors
5.1.1. Cooling Effects of Urban Green Vegetation and Water Bodies

Urban vegetation and water bodies are the two main landscape types that provide
cooling effects in urban areas and have attracted much attention for improving the urban
thermal environment. However, the difference in the cooling effect between the seasons
cannot be ignored. In general, urban vegetation decreases the LST through evapotranspi-
ration and shading. The cooling effect of evaporation and shading greatly varies among
species and depends on the canopy density in the region [55,56]. It has been confirmed
that the cooling effect of tree-cover vegetation is better than that of grass-cover vegeta-
tion [57,58]. The results of this study indicated significant inter-seasonal differences in the
thermal effects of vegetation and water bodies. The NDVI exhibited a significant negative
correlation with the LST in the spring, summer, and autumn seasons, which is consistent
with the findings of [59,60]. However, the NDVI exhibited a weak positive correlation with
the LST in winter (Figure 4). This finding was consistent with that of a study conducted
in North America [61]. Notably, deciduous broad-leaved trees occupy the largest area in
Beijing [30]. Additionally, there is an inevitable reduction in green vegetation in winter,
resulting in the weakening of the evapotranspiration and shading processes [62]. In addi-
tion, the distribution pattern and area of the vegetation may also affect its cooling effect.
Therefore, in winter, it is difficult for highly fragmented vegetation to generate a significant
cooling effect [19].

Previous studies have indicated that urban water bodies are negatively correlated
with LST [63,64]. However, in this study, we observed that the MNDWI factor, an effective
indicator of water bodies in urban areas, was weakly correlated to the LST in the spring,
summer, and autumn seasons (Figure 4). This discrepancy may be because the total water
area in the city is small; therefore, the water body may not be able to provide an effective
cooling effect [10]. The MNDWI exhibited a relatively stronger negative correlation with
the LST in winter, compared to the NDVI (Figure 4). This finding was consistent with
a previous study that reported that the cooling effect of water was stronger than that of
vegetation in November [65].

5.1.2. Thermal Effects of Urban Grayness Factors

Buildings, roads, and other impervious surfaces absorb solar radiation, resulting
in higher temperatures in urban areas [21,66–68]. In this study, the NDBI, BD, and RD
were positively correlated to the LST in all the seasons. The strength of the correlation
between RD and LST indicated the limited impact of RD on LST, which was consistent
with the findings of [41]. A recent study showed that the correlation between the NDBI
and LST was weaker in winter than in other seasons [69]. Similarly, in this study, the
NDBI and BD exhibited stronger correlations with the LST in summer than that in winter
(Figures 4 and 5). Buildings in urban areas are typically closely related to a variety of human
activities. For example, in summer, buildings with air conditioning release large amounts
of heat, contributing to an increase in the LST [70]. Similarly, the cold air emitted from the
air conditioner during winter can reduce the LST. Therefore, the seasonal characteristics
of the effects of the NDBI and BD on the LST may be influenced by the amount of solar
radiation absorbed by the impervious surface areas and the heat/cooling emissions from
buildings. Although the positive correlations of BD and NDBI with the LST have been
widely reported, our study revealed seasonal variations in the strength of their correlations
with the LST in urban areas at fine scales.

In this study, the BV, an indicator of the total volume of buildings, was positively/negatively
correlated to LST in summer/winter. The larger values of BV indicate the higher intensity
of the anthropogenic activity and possible larger amount of anthropogenic heat emissions,
which is expected to increase LST [71]. In addition, in winter, there may be a larger
amount of cooling emissions from buildings in the region with larger BV. A previous study
conducted in Berlin and Cologne also observed the positive correlation between BV and
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LST in summer [42], however, the correlation between BV and LST in winter was positive.
This difference could be explained by the different climate backgrounds of urban areas.
The influence of SVF on LST is complicated and conflicting conclusions on the correlation
between LST and SVF have been reported in previous studies [72–74]. Larger SVF indicated
more effective air circulation and heat dissipation, and it also means that there may be more
incoming solar radiation. Smaller SVF hinders airflow movement and is not conducive to
heat dissipation, and it also means the possibility of a larger area of shadow. In our study,
the correlation between SVF and LST was season-varying. Similarly, a study conducted in
Wuhan city also found a season-varying correlation between SVF and LST [9]. Notably, in
this study, the SVF was negatively correlated to LST in summer, which is consistent with
a recent study conducted in Beijing [72]. In addition, the negative/positive correlation
between SVF and LST in summer/winter may be associated to the anthropic activities, as
the smaller SVF is not conducive to the dissipation of the heat/cooling emissions from
buildings in summer/winter.

In particular, BH was negatively correlated with the LST in all seasons, which was in
line with the results of previous studies [9,19,20]. This may be because the shadows pro-
vided by high-rise buildings prevented the nearby ground from absorbing solar radiation,
thus, reducing the LST [20,29]. Therefore, higher buildings are expected to formulate lower
temperatures owing to their possible larger shadows [20]. Additionally, the negative effect
of BH on LST was stronger in winter and autumn than in other seasons, which can also be
explained by the larger shadow area in the winter and autumn seasons due to the lower
solar elevation [9]. The results related to building features can provide reliable references
for the planning and construction of urban buildings. In addition to urban vegetation and
water body planning, the season-stable negative effect of BH on LST could provide new
insights for the mitigation of the UHI effect for effective urban building planning.

5.2. Spatial Characteristic of the Thermal Effects of Neighboring Environment

Previous studies have confirmed that the cooling effects of urban vegetation and water
bodies are largely regulated by the vegetation and impervious surface landscapes of the
neighboring regions [32,33]. The heat sources in urban areas, such as industrial parks, will
continue to contribute to the increase in the LST within a certain spatial extent around
them [34]. These findings indicate that the neighboring environment plays an important
role in the driving mechanism of LSTs in urban areas. In addition, the correlations between
LST and surface coverage indicators generally vary with the geographical scale [66,75].
This may be related to the diversity of the surface cover features at different geographic
scales [62]. Therefore, an appropriate spatial scale is vital for the quantitative analysis of
the influence of the neighboring environment on the LST, balancing useful surrounding
environment information with the irrelevant information of the distant surrounding envi-
ronment. Notably, LST is the result of a combination of driving factors, which implies that
it is necessary to consider the individual and combined effects of various factors. Therefore,
we used both the correlation analysis and the XGB regression method to measure the
correlation between the urban environmental factors and LST at different spatial scales.

In this study, the correlation between the urban environmental factors and LST por-
trayed an initial increasing trend with increasing spatial scales, followed by a decreasing
trend (Figure 5 and Table 2), which implied the spatial range of the influence of the neigh-
boring environment on the LST of the 30-m cell. The strongest correlation between the
NDVI and LST was obtained within a 210-m moving window size in spring and summer
and a 270-m size in autumn (Figure 5). This finding is in line with that of [25], in which
the vegetation cover exhibited the highest correlation with the LST within a 210-m moving
window in summer. Another study conducted in India also indicated that the median cool-
ing range of urban green spaces was approximately 270 m outside the boundary [76]. The
correlations between the MNDWI and LST in winter varied with the sizes of the moving
windows and peaked at 150 m (Figure 5). This finding was consistent with the findings
of [32], which concluded that the cooling range of water bodies was approximately 74 m. A
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previous study conducted in the Phoenix metropolitan area indicated that the correlation
between impervious surfaces and maximum air temperature in the warm season decreased
after a 210-m spatial scale, and the strongest negative correlation between vegetation cover
and maximum air temperature occurred at 210 m and 270 m spatial scales [35]. In this
study, the optimal spatial scale for exploring the correlation relationship between the 30-m
LST and its neighboring environment was 210–270 m in warm seasons (spring, summer,
and autumn), considering the individual and combined correlations between the LST and
multidimensional factors of the urban environment (Figure 5 and Table 2). These findings
suggest that 210–270 m could be an appropriate spatial scale for characterizing the relation-
ship between the LST and its neighboring environment in Beijing. These findings could
provide a reference for spatial-scale selection in future LST studies in Beijing and other
large cities in northern China.

5.3. Limitations and Scope for Future Work

This study established a viable framework to explore the influence of neighboring
environments on LST, considering the multidimensional features of dominant urban land-
scape types. However, this study has a few limitations. First, although we considered the
seasonal variation in the LST, using only one daytime scene collected in each season to
obtain LST and surface biophysical indices could be insufficient. In addition, the acquisition
time of the images should be considered to ensure that the images can accurately reflect
the characteristics of LST in different seasons. Adopting multiple daytime and nighttime
images from different seasons to address this aspect may prove to be more efficient in future
studies. Second, this study was conducted only in the urban areas of Beijing, and more
cities in different climate zones should be considered in future studies [30]. Third, this study
explored the thermal effects of buildings and roads. However, the spatial resolution of LST
was coarser than that of the building data in the study area. LST data with higher spatial
resolution are expected to reveal more accurate relationships between LST and urban 3D
landscapes. Moreover, the positional accuracy of roads data from the OpenStreetMap is
mainly determined by the positioning technologies and references used by volunteers while
digitizing these data [77]. The roads data with high positioning accuracy and accurate infor-
mation on the width attributes should be considered in future works, although the accuracy
of OSM road network data (+/− 20 m) is better than that of other publicly available global
datasets such as Global Roads Open Access Data Set (+/− 500 m) [78]. In addition, more
factors such as building types/patterns, tree species/patterns, and anthropogenic heat [79],
are worthy of future study. Fourth, this study focused on the combined effect of multiple
factors on LST in the regression analysis, and the contribution of each environmental factor
is worth exploring in future studies. Finally, the thermal effects of urban environmental
factors and their spatial scale characteristics differed markedly between seasons, mainly be-
tween winter and the warmer seasons. Further studies are required to explain the different
driving mechanisms of the thermal environment in winter and other seasons.

6. Conclusions

In recent years, rapid urbanization has caused a series of significant changes in green
vegetation, impervious surfaces, human activities, energy consumption, and thermal
emissions, and the UHI effect has become increasingly severe. This study was conducted
in the central urban areas of Beijing and investigated how the LST of 30-m cells correlated
with their neighboring environment in different seasons. Moving windows were applied
to characterize the environmental factors of neighboring environments, with a total of
20 spatial scales ranging from 90–1230 m. Eight environmental factors were explored from
three layers of urban greenness, wetness, and grayness: NDVI, MNDWI, NDBI, BD, BH, BV,
SVF, and RD. The Pearson correlation and XGB regression methods were used to measure
the correlation between these factors and the LST, while considering the individual and
combined effect.
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This study confirmed the significant seasonal differences in the correlation between
the LST of 30-m cells and their neighboring environments. The correlation between the
NDVI and MNDWI and the LST was considerably different between the winter and the
other seasons, indicating that the cooling effects of urban vegetation and water bodies were
associated with the season. The NDBI, as a comprehensive indicator of urban grayness,
was positively correlated to the LST in all four seasons, indicating that the increasing
impervious surfaces can promote an increase in the LST. Reasonable control of the growth
of impervious surfaces can help prevent further deterioration of the UHI effect. Road
density had a limited impact on LST, whereas buildings had a significant impact on LST.
Notably, BD and BH were more strongly correlated to LST than other building factors.
BD was positively correlated with LST in all four seasons, indicating that the increasing
building density promoted higher LST. BD and NDBI were more strongly correlated with
LST in summer than in winter, implying that anthropogenic heat production due to seasonal
changes may also affect the correlation between urban grayness and LST. Owing to the
shadow effect, high BH values contributed to low LSTs in urban areas. Notably, there was a
negative correlation between LST and BH in all four seasons, and this negative correlation
was stronger in winter than in summer. In addition to increasing urban green space, the
building density and height characteristics can be optimized to help mitigate the UHI effect.

The correlation between LST and its neighboring environment varied with spatial
scale, with inter-seasonal differences in the scale effect, mainly between winter and other
seasons. In spring, summer, and autumn, the strength of correlation between LST and its
neighboring environment portrayed an “inverted V” pattern with increasing spatial scale in
terms of the Pearson correlation and XGB regression results, indicating the spatial range of
the strongest influence of the neighboring environment on LST of 30-m cells, i.e., the optimal
spatial scale to explore the relationship between LST and its neighboring environment.
Considering the correlation of individual factors with LST and the explanatory rate of the
XGB regression model for LST, 210 m and 270 m were considered as the optimal scales
to explore the relationship between LST and its neighboring environment in this study,
which can provide a reference for the selection of spatial scales in quantitative LST driving
force studies.

These findings contribute to the understanding of the correlation between LST and
multidimensional environmental factors in urban areas from the perspective of the neigh-
boring environment. Additionally, the framework developed in this study can be applied
to other urban areas. The results of these studies can help urban planners develop rational
strategies for optimizing urban thermal environments.
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