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Abstract: Cuscuta spp. is a weed that infests many crops, causing significant losses. Traditional
assessment methods and onsite manual measurements are time consuming and labor intensive. The
precise identification of Cuscuta spp. offers a promising solution for implementing sustainable farming
systems in order to apply appropriate control tactics. This document comprehensively evaluates a
Cuscuta spp. segmentation model based on unmanned aerial vehicle (UAV) images and the U-Net
architecture to generate orthomaps with infected areas for better decision making. The experiments
were carried out on an arbol pepper (Capsicum annuum Linnaeus) crop with four separate missions
for three weeks to identify the evolution of weeds. The study involved the performance of different
tests with the input image size, which exceeded 70% of the mean intersection-over-union (MIoU).
In addition, the proposal outperformed DeepLabV3+ in terms of prediction time and segmentation
rate. On the other hand, the high segmentation rates allowed approximate quantifications of the
infestation area ranging from 0.5 to 83 m2. The findings of this study show that the U-Net architecture
is robust enough to segment pests and have an overview of the crop.

Keywords: aerial images; weed segmentation; invasive species; digital image processing; deep learning

1. Introduction

Invasive weeds in agricultural fields cause problems that result in decreased yields,
affected product quality, and increased production costs. Weed management in crops aims
to control invasive species to a level where their economic impact is reduced. Cuscuta spp.
is included in the list of noxious and invasive weeds in many countries [1]. It is a parasitic
plant that affects various crops of agricultural and forestry importance. The Centre for
Agricultural Bioscience International (CABI) reports that the species affected are forage
legumes, herbaceous plants, shrubs, trees, alfalfa, clover, beans, soybean, blueberry, carrot,
citrus, tomato, and grasses [2]. Cuscuta spp. is an obligate holoparasitic species that,
to complete its life cycle, obtains nutrients, water, and carbohydrates through vascular
connections with other plants [3–5]. It is a cosmopolitan species that grows in a wide
variety of climates and ecosystems on almost all continents [6]. The weed is native to Asia,
Africa, and Europe in the Mediterranean region [7]. Cuscuta spp. has more than 170 species
distributed worldwide [8], most of which are found in North America in regions with warm
and humid climates [9]. In Mexico, more than 60 species have been reported [10] in the
states of Baja California Sur, Colima, Mexico City, Guerrero, Hidalgo, Jalisco, Michoacan,
Morelos, Oaxaca, Puebla, Querétaro, San Luis Potosi, Sonora, Tamaulipas, and Veracruz [11].
It spreads through the dispersal its seeds and it overgrows, causing massive damage to
crop fields. It can cause losses of 50–75% of host crop yields [12]. Losses of 87% have been
reported in Cicer aurantium crops [13], 60–65% in Capsicum frutescens, 31–34% in Vigna mungo,
60–65% in Guizotia abyssinica, and 87% in Lens culinaris [14]. Control of infested crops is
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difficult because Cuscuta spp. grows by approximately 7 centimeters daily, forming a dense
and thick layer on the host crop. The invaded crop is affected until it dies due to nutrient
absorption. In addition, it blocks sunlight and reduces the amount of photosynthesis [8].

The classification of Cuscuta spp. is a difficult task, since it is necessary to recognize
and identify the weed early, which is mainly to prevent its spread. Farmers generally
do this through direct observation at stages where the expansion is visible to the human
eye. Traditional manual weed identification is often labor intensive and time consuming.
The impact of an infestation is reflected in the development and production of the crop, so
it is necessary to design innovative alternatives for early identification and to strengthen
crop management by farmers.

Currently, computer vision technology solves problems in various fields of engi-
neering related to agriculture, such as remote-sensing-based analysis for monitoring [15],
high-accuracy multi-camera reconstruction for point cloud correction [16], multi-target
recognition and positioning [17], and automated fruit-picking [18]. On invasive species,
a series of studies based on convolutional neural networks (CNNs) were carried out to
segment crop weeds from color images [19,20].

On the other hand, UAVs that monitor crops offer great possibilities for acquiring field
data in an easy, fast, and cost-effective way compared to other methods [21]. Among the
most popular applications of UAVs in agriculture are weed mapping [22,23], automatic
identification and monitoring of plant diseases [24], and early-stage detection [25]. How-
ever, as of 2019, there has been an interest in segmenting images with U-Net by using
images acquired by UAVs. The applications are mainly focused on segmenting forest
areas [26,27], urban areas [28,29], coastal areas [30], and mining areas [31]. Unfortunately,
the images from UAVs alone do not give an overview of an area for the location of points
of interest. Few works have explored the possibility of generating orthomosaics due to the
resolution of the images required for their generation and the computational difficulty of
segmenting large images using U-Net.

In this work, we explore the generation of orthomosaics from segmented images
with Cuscuta spp. for the identification of affected areas by using the U-Net Xception-
style architecture on reduced images to speed up training. The proposal is compared
with the DeepLabV3+ semantic segmentation model [32,33], which performs well with
the latest-generation models [34]. The experiments were carried out on an arbol pepper
(Capsicum annuum Linnaeus) crop with four separate missions for three weeks to identify
the evolution of the Cuscuta spp. The proposed methodology helps farmers access emerging
technologies to promote intelligent aerial monitoring systems and have a general overview
of the infected crop.

The document is organized as follows. Section 2 briefly describes the location of the
case studies, data acquisition, dataset generation, orthomosaics, and image segmentation
with U-Net. Section 3 describes the proposed methodology for segmenting images with the
U-Net architecture and the infestation area of the four case studies. Section 4 discusses the
advantages of the proposed method. Finally, we offer the conclusions of the investigation.

2. Materials and Methods
2.1. Study Area

The experimental site of the study was located in Tezontepec de Aldama, which
belongs to the Valle del Mezquital in the state of Hidalgo, Mexico, as shown in Figure 1.
The analysis was carried out in a field with arbol pepper plants during the spring production
cycle. The experimental field had a rectangular area of 1.4 hectares of seedlings that had
a similar density throughout the plot and were distributed in equidistant double rows.
In addition, the flood irrigation system was used periodically to provide water for the
development of plants according to traditional farming practices. The experiment was
carried out from July to August 2021, beginning in week 17 and concluding in week 32 of
the growth and flowering of the arbol pepper (Capsicum annuum L.).
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Figure 1. Schematic diagram of the study area.

2.2. Data Acquisition

In this study, the low-cost DJI Mavic Pro platform (DJI Innovations, Shenzhen, China)
was used, which is a UAV with applications in various fields, including the agricultural sec-
tor. The UAV had a CMOS-type camera capable of taking 12 megapixel (4000 × 3000 pixels)
photographs with a 78.8-degree field-of-view (FOV) lens, 28 mm focal length, f/2.2 aper-
ture, less than 1.5% distortion, and 1.6’ focal range. The drone had a 3830 mAh intelligent
LiPo 3S battery for 20 min. In addition, it had a global positioning system (GPS) that
provided precise positioning data with corrections in real-time that were stored in the
images’ metadata. On the other hand, the ground station used a 2.4 GHz remote control
with a range of 7 km. The flight was carried out through automatic route planning with
the Pix4D Capture software from a ground control station (GCS) connected to the remote
control to create and follow the flight pattern. Flight plans were made at an altitude of 30 m
with the same parameter settings for the camera with winds below ten m/s. The trajectory
was flown over the crop field around 1:00 p.m. to maintain similar lighting conditions.
Four field datasets of Capsicum annuum L. with about 244 images were collected between
weeks 17 and 32 of crop development (14 July 2021, 8 August 2021, 29 August 2021, and
11 September 2021). Figure 2 presents some images captured by the UAV.

2.3. Generation of Datasets

Training requires a coarse set of images. We took the images collected on 29 August
and 11 September as a training set. From the locations, the samples were labeled to create
segmentation masks. We obtained 200 masks of Cuscuta spp. with 4000× 3000 pixels, which
were generated and manually annotated using the “Labelme” package [35]. The software
masked specific pixels of each image belonging to the weed for each image of the flight
mission. The reduced number of samples with Cuscuta spp. required more data in order to
improve the training set’s diversity, which was done by applying transformations, such
as image rotation and flipping. The data augmentation was intended to generate new
areas with Cuscuta spp. at different points so that the model would learn to identify the
undergrowth at various points in the image. In addition, it helped address overfitting
and insufficient data, making the model robust and allowing it to perform better. Table 1
shows the transformations generated to augment the images of the training set. The data
augmentation generated 1000 images, each with a hand-drawn binary mask denoting the
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area infested with Cuscuta spp. The collection contained training and validation data,
with 900 locations represented in the training set and 100 locations represented in the
validation set.

Figure 2. Images of the study area captured with the UAV.

Table 1. Image operations for data augmentation.

Original Image Flip Rotate Flip

2.4. Orthomosaic

An orthomosaic corresponds to a set of images that have areas of overlap between them
and that are joined and combined into a single image to expand the range of vision of the
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scene [36]. They are used to obtain geographic information and give a general perspective
of a study area. Currently, it is easy to generate orthomosaics from specialized software.
WebODM is an open-source software developed by OpenDroneMap that is designed
to generate maps, point clouds, georeferenced digital elevation models, and 3D models
from aerial imagery models. WebODM extracts the geolocation and camera information
contained in each orthophoto in the Exif format in order to compare the images while taking
into account the effects of the radial distortion of the sensor. As a result of information
processing for the extraction and comparison of features from neighboring images, a digital
elevation model (DEM) and a georeferenced orthomosaic are generated from the dense
point cloud and the textured mesh, respectively [37]. Figure 3 shows the results of the
orthomosaics of the case study.

Figure 3. Orthomosaics from test missions: (a) 14 July 2021, (b) 8 August 2021, (c) 29 August 2021,
and (d) 11 September 2021.

2.5. Image Segmentation with U-Net Xception-Style

U-Net is an efficient and easy-to-use architecture that is widely used for semantic
segmentation tasks. It was first proposed by Olaf Ronneberger et al. [38] for medical
image segmentation. The main idea of U-Net is to combine different network layers in
the downsampling process because feature maps can be decoupled for segmentation. Cur-
rently, there are other strategies through which convolutional neural networks can be fully
coupled. The Xception architecture is a linear stack of depthwise-separable convolution
layers with residual connections [39], i.e., a spatial convolution is performed independently
over each channel of an input, followed by a pointwise convolution; this makes the archi-
tecture very easy to define and modify. Therefore, the U-Net Xception-style architecture is
divided into an encoder and a decoder [40]. The encoder continuously samples through
multiple depthwise-separable convolution layers to obtain different levels of image entities.
The decoder performs multilayer deconvolution on the top-level feature map to restore
the feature map to the original input image size and completes the task of the end-to-end
semantic segmentation of the image, as shown in Figure 4.

2.6. Methods

This proposal seeks to give farmers an overview of pests in order to implement
sustainable farming systems, apply appropriate control tactics, and facilitate decision
making in reasonable computation times. The model is divided into six stages:

1. Image acquisition by the UAV.
2. Image size reduction.
3. Obtaining a mask with the U-Net Xception-style model.
4. Increasing the size of the mask.
5. Segmenting the infected areas in blue.
6. Generation of an orthomosaic with the set of images.

Figure 5 shows a diagram of the main steps of the proposed method. In this study,
the network was adapted to be suitable for image segmentation of Cuscuta spp. in tree
chili crops based on the U-Net Xception-style architecture. The proposal aims to reduce
computation by reducing the input images for the model. The minimum input size for
the model is 64 × 64 due to the architecture’s design, and it must increase in multiples
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of 32. In the following subsections, we briefly describe the implementation and results of
the proposal.

Usually, the performance of a segmentation model is expressed in terms of the
intersection-over-union (IoU). This metric helps to determine the degree of overlap between
the ground truth and the prediction. The IoU ranges from 0 to 1, and is defined as

IoU =
Area of Intersection

Ground Truth Area + Predicted Box Area − Area of Intersection

On the other hand, the MIoU quantifies a set of segmented images and is defined as
the mean value of the IoU over all label classes.

Figure 4. U-Net Xception-style model.
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Figure 5. Proposed method for Cuscuta spp. identification.

3. Results

This section shows the main characteristics that were used to evaluate the models and
the training results. In addition, the performance with DeepLabV3+ is considered in terms
of prediction time and segmentation. Finally, we show the orthomosaics of the case study,
the infected area, and the infestation rate.

3.1. U-Net Xception-Style Training

The proposal trained the neural network model in Python 3.8 in the PyCharm software.
In addition, the TensorFlow 2.5 library was used to build the U-Net Xception-style network.
The code ran on a 64-bit system on Windows 10, with an Intel Core i7-9700 CPU, 32 GB
of memory, and an NVidia GeForce GTX 1660 SUPER (6G) GPU. In training, the root
mean square propagation optimization algorithm was used. The loss function involved
cross-entropy, which is commonly used in the field of segmentation. In addition, it had
a learning rate of 0.001, which could improve the results. The mini-batch size was set
to 16, and a total of 100 epochs were used. The model with the highest accuracy on the
validation dataset was selected as the final model and applied to the test dataset. However,
the training results do not reflect the error of increasing the mask to segment the images
taken by the UAV. Table 2 shows the training results on the test dataset.

Table 2. Training results with different input sizes.

Size Training Time Loss Accuracy

64 × 64 2 s 43 ms/step 0.0375 98.87%
94 × 94 3 s 58 ms/step 0.0298 98.99%

128 × 128 4 s 83 ms/step 0.026 99.02%
160 × 160 5 s 122 ms/step 0.024 99.10%
192 × 192 7 s 158 ms/step 0.0242 99.10%
224 × 224 9 s 204 ms/step 0.0249 99.10%
256 × 256 11 s 260 ms/step 0.026 99.13%
288 × 288 15 s 340 ms/step 0.0225 99.18%
320 × 320 19 s 433 ms /step 0.0264 99.17%
352 × 352 23 s 533 ms /step 0.0257 99.13%



Remote Sens. 2022, 14, 4315 8 of 12

3.2. Model Evaluation

Accuracy was the first control point for evaluating the model; however, it did not
determine the degree of overlap of the prediction with the segmented image. The MIoU
is the most widely used metric for evaluate datasets for semantic segmentation [34]. It is
also essential to consider the prediction times of each image when developing applications.
Table 3 shows the results of the comparison with DeepLabV3+ in terms of the time and
segmentation rate.

Table 3. Comparison with different input sizes.

Size Time for U-Net
Xception-Style

Time for
DeepLabV3+

MIoU for U-Net
Xception-Style

MIoU for
DeepLabV3+

64 × 64 0.03861 s 0.04080 s 47.67% 42.92%
94 × 94 0.03910 s 0.04145 s 61.27% 35.43%

128 × 128 0.03959 s 0.04249 s 56.11% 47.84%
160 × 160 0.04038 s 0.04453 s 63.59% 39.65%
192 × 192 0.04000 s 0.04505 s 60.22% 43.83%
224 × 224 0.04075 s 0.04667 s 57.48% 35.71%
256 × 256 0.04114 s 0.04667 s 52.34% 42.01%
288 × 288 0.04261 s 0.04961 s 59.56% 56.23%
320 × 320 0.04371 s 0.05149 s 71.20% 52.07%
352 × 352 0.04505 s 0.05343 s 60.28% 44.77%

3.3. Cuscuta spp. Segmentation in the Cultivation of Arbol Peppers

The high segmentation rate allowed the accurate identification of the areas of Cuscuta spp.
from the images acquired by the UAV. In addition, it facilitated the generation of orthopho-
tos due to the superimposition of the infected areas. The model with the lowest segmen-
tation error with an augmented mask in the validation dataset was selected as the final
model and applied to the test dataset. Figure 6 shows the results of the generation of
orthomosaics; the best results were compared to the manually segmented image with
4000 × 3000 px. masks.

The best reductions from the input images were able to identify the same areas with
Cuscuta spp. as those in the manually segmented areas. The proposal aimed to identify
the infestation in the early stages to facilitate its removal. Therefore, we sought to find the
invasive weeds in the samples collected. Intuitively, the model obtained by comparing
segmentation errors was able to identify the parts where weeds were hosted. We used
the model input size of 320 × 320, which had the highest MIoU rate, as shown in Table 3.
Figure 7 shows the results of the four case studies; the infected areas are shown in blue.

Figure 6. Generation of segmented orthomosaics with (a) manual segmentation, (b) the U-Net
Xception-style model, and (c) DeepLabV3+.
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Figure 7. Segmentation results of Cuscuta spp. in the crop with input images of 320 × 320: (a) 14 July
2021, (b) 8 August 2021, (c) 29 August 2021, and (d) 11 September 2021.

In our study case, the crop area given by 243 m × 77 m corresponded to 0.0025 m2 per
pixel in the orthophoto. The results made it easy to determine the percentage of affectation
of the entire crop according to the infested area, as shown in Table 4.

Table 4. Infested areas in the study cases.

Date Pixels Cuscuta spp. (m2) Cuscuta spp. (%)

14 July 2021 182 0.46 m2 0.003%
8 August 2021 17,741 44.35 m2 0.303%

29 August 2021 28,376 70.94 m2 0.485%
11 September 2021 33,218 83.05 m2 0.568%

4. Discussion

The end-to-end features of the U-Net Xception-style architecture allowed us to focus
on the input and output of the task without having to extract complex features from the
input data. Table 2 shows the average performance of the model for the segmentation
of Cuscuta spp. and the generation of the orthomosaics on the test dataset. Intuitively,
the model obtained by using the datasets was able to segment the infected crop (blue zone)
in the orthomosaic. The segmentation rate in Table 3 was above 70%, which confirmed
this point. The correct segmentation allowed the determination of the area of infestation
by Cuscuta spp. and the monitoring of the evolution of the weeds, as shown in Table 4.
The proposal outperformed DeepLabV3+ in terms of time and segmentation at all test
sizes. In addition, DeepLabV3+ was not as capable of generating orthomosaics with in-
fested areas compared to manual segmentation, unlike the proposal, as shown in Figure 6.
DeepLabV3+ is a model designed for multiclass segmentation and not for binary classes,
so it requires changes in its design and fine-tuning of parameters to improve its perfor-
mance. On the other hand, the present study only needed to pay attention to the input of
the image data and output of the evaluation results, even if there were differences in the
image data, such as input size changes. The contribution of this work is the exploration
of the ability to segment Cuscuta spp. with reduced input images to improve computa-
tion times. The results show that, with images with sizes of 320 × 320, 160 × 160, and
96 × 96, the same regions of the validation data could be identified. In addition, it is
interesting that, even when the input image is reduced to 96 × 96, it contains enough
information on Cuscuta spp. to be able to identify it in the culture in the same way as
with manual segmentation. Moreover, the method proposed in this study is suitable for
the natural environment, is highly robust to different external factors, and has reasonable
computation times. The identification and location of invasive weeds help farmers make
decisions to mitigate and minimize impacts on crop productivity. Therefore, there is a great
need to compare the results of the described proposal and clarify the differences between
expectations and reality for the early detection of weeds. Unfortunately, the survival and
expansion mechanism of Cuscuta spp. is based on a fissure induced by the same weed
in the stem of the host plant—in this case, the tree chili plant. Farmers generally use a
traditional method based on cutting and removing infected plants, which are then burned,
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and infested areas are quarantined [41]. Therefore, this prevents the exact and on-site
quantification of the presented results. However, we believe that the U-Net Xception-style
architecture’s high accuracy rate allows us to give results that are close to reality.

5. Conclusions

Smallholder farming operations are exploring the benefits of employing UAVs and
emerging technologies to improve crop sustainability. Using a DJI Mavic UAV platform
equipped with a high-resolution digital camera, they can acquire aerial photos of crops
and use them to locate invasive weeds, such as Cuscuta spp. This proposal demonstrates
that U-Net Xception-style effectively detects the presence of Cuscuta spp. The results show
that there is no linear relationship between the size of the mask and the performance of
the segmentation, which is interesting for research in future works. In our case study, we
presented how a low-cost tool was developed to detect invasive weeds in their early stages.
In addition, this allowed the generation of an orthomosaic in order to gain a general view
of the entire crop and the invasion’s progress, which helped label the specific coordinates
of where the highest concentration of weeds was found. This finding is promising given
the challenging conditions of smallholder farming systems. However, the proposal has the
following limitations:

• The analysis considered a single arbol pepper crop, which caused the overfitting of
the trained model.

• There is still no exact quantification of Cuscuta spp. that allows an objective
comparison.

• There was no substantial change in the prediction times by decreasing the size of the
input images; this only significantly reduced the training times.

• Due to its characteristic yellow color, the proposed model was exclusively adapted for
Cuscuta spp.

We know that there is a long way to go to with this research in order to improve our
results; however, this study provides an essential methodological reference for monitoring
research on Cuscuta spp. in arbol pepper crops, thus supporting decision making for
facilitating its elimination.
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UAV Unmanned Aerial Vehicle
MIoU Mean Intersection-over-Union
CNN Convolutional Neural Networks
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GPS Global Positioning System
GCS Ground Control System
DEM Digital Elevation Model
IoU Intersection-over-Union
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