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University in Poznań, Wieniawskiego 1, 61-712 Poznań, Poland
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Abstract: Measurement of water content in forest habitats is considered essential in ecological research
on forests, climate change, or forest management. In the traditional forest habitat classification, two
systems of habitat conditions analysis are found: single factor and multifactor methods. Both
are laborious and therefore costly. Remote sensing methods provide a low-cost alternative. The
aim of the presented study was to find the relationship between the spectral indices obtained
from satellite images and the forest habitats moisture indices used traditionally in the Polish forest
habitats classification. The scientific hypothesis of the research is as follows: it is possible to assess
the variation in the humidity of forest habitats on the basis of spectral indices. Using advanced
geographic information system (GIS) technology, 923 research plots were tested, where habitat studies
performed with the traditional methods were compared with the analysis of 191 spectral indices
calculated for Sentinel-2 image data. The normalized difference vegetation index (NDVI) has proved
to be the most useful to the assessing of moisture of forest habitats. The ranking of the most correlated
indices was calculated as Eintg—the product of the absolute value of the slope and the mean square
error complement, and for the top five indices was as follows: NDVI = 0.248619, EXG = 0.242112,
OSAVI = 0.239412, DSWI-4 = 0.238784, and RDVI = 0.236995. The results also highlight the impact of
water reservoirs on the humidity and trophicity of forest habitats, showing a decrease in the fertility
of habitats with an increase in distance from the water reservoir. The results of the study can be used
to preparing maps of the diversity of forest types, especially in hard-to-reach places, as well as to
assess changes in the moisture status of habitats, which may be useful, for example, in the assessment
of the fire risk of forest habitats. We have proved that NDVI can be used in applications for which it
was not originally designed.

Keywords: NDVI; forest typology; forest humidity; forest trophicity; Sentinel-2

1. Introduction

Forests play a key role in the Earth’s water cycle [1,2] and therefore the measurement of
water content in forest habitats is considered essential in most ecological research on forests,
climate change or forest management, as well as against floods, fires, and soil erosion. In
traditional forest habitat classification, two systems for the analysis of habitat conditions
are found: single factor or multifactor methods [3]. Single factor methods rely on one factor
to describe a forest site, such as soil or climate, whereas multifactor methods are based on
interrelationships between climate, physiography, soil, and vegetation [4]. An example
of the use of the multifactor factor method is the digital site classification maps used in
Germany, containing information on the soil properties, as well as on climatological and
topographic factors [5]. The similar multifactor method is used in Poland [6,7]. It is based
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on the recognition of the features of tree stands, plant communities, and soil, combining
these elements into one abstract unit—the forest habitat type (FHT). In total, there are
38 FHT units in Poland, divided on the basis of their geographic location into lowland (15),
highland (8), and mountain (15) units. The basic element of the assessment of forest soils is
their trophic and moisture differentiation. Due to the trophic diversity of forest habitats,
the following ones can be distinguished in Poland: coniferous forests, conifer-dominated
mixed forests, deciduous-dominated mixed forests, and deciduous forests. With regard
to humidity diversity, the FHTs are divided into dry, mesic, moist, and swampy. The
combination of trophic and moisture features results in the name FHT. For example, if a
forest trophically belongs to the group of conifer-dominated mixed forests and in terms of
humidity to mesic types, then the forest habitat type is called a mesic conifer-dominated
mixed forest.

The criteria for the differentiation of FHTs into moisture groups are based on the
assessment of two basic types of water: habitats depending on precipitation and habi-
tats depending on groundwater. The forest habitats moisture index (FHMI), based on
groundwater level, is assessed depending on the depth of water in the soil. Habitats with
water on the ground surface or at the depth of 0–20 cm are described as “g1”, habitats
with groundwater in the range of 20–50 cm as “g2”, in the range of 50–80 cm as “g3”, in
the range of 80–180 cm as “g4” and in the range of 180–250 cm as “g5”. When the water
is below 250 cm, the habitat is classified as “g6”, and when the habitats are additionally
covered with the poorest forms of pine forests in Poland, the so called “Dry Forest”, they
are classified as “g7” [6,7].

Studies that analyze the FHMI in this way are carried out in Poland on all lands
managed by the State Forests National Forest Holding, covering approx. A total of 23%
of the country’s land area and approx. 77% of the Polish total forest area [8], with an
accuracy of one research plot per 4–12 ha, depending on the diversity of geology and
geomorphology of the terrain. They are repeated every 30 years. This method of assessing
the suitability of forest soils in terms of forest management is quite precise, but laborious
and costly. Therefore, faster and cheaper methods are sought, including those based on
remote sensing [9–12].

In numerous papers on the use of remote sensing methods, soil moisture is analyzed
mainly in its surface layers, e.g., [13–16], while the general water supply is important for
the development of the forest, including soil moisture, precipitations, and air humidity.
Therefore, the main assumption of the study was to look for indirect methods in assessing
the FHMI, based on plant indicators (NDVI and others), assuming that remote sensing
methods can indicate such a condition of forest vegetation that reflects the diverse moisture
sources of forest habitats.

Remote sensing methods based on the registration of spectral reflectance have been
used for several decades and, similarly to terrestrial techniques, are developed mainly for
the needs of agriculture [17–22]. Remote sensing methods are also used in forestry, but
mainly for assessing the health condition of the forest, as well as abiotic threats, such as
fires [23] or droughts (e.g., [24]), and biotic ones, such as insect outbreaks [25].

Remote sensing vegetation studies are based on near and far infrared radiation as well
as on other ranges of radiation reflected and absorbed by plants (e.g., [26–29]). Remote
sensing uses aerial, ground, and satellite imagery. Despite the dynamic development
of measurement techniques (e.g., [30–36]) in attempts to study the FHMI on the basis of
remote sensing, the obstacle is the forest’s key element—the plant cover [37]. So far, a
barrier to the use of available remote measurement methods is also the low resolution of
the image products of such studies [16,38].

Studies on the possibility of using remote sensing in estimating the moisture content of
forest soils are carried out in many places around the world. Nijland et al. [39] investigated
the relationship between soil moisture and site productivity of four types of Canadian
forests (CD: conifer-dominated; MX: mixed conifer–deciduous; DU: deciduous-dominated
with conifer understory; DD: deciduous-dominated) and NDVI maximum pre-harvest
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values from Landsat images. The authors showed that the relationship between NDVI and
the humidity of the habitat was negative and the relationship with the depth of groundwater
was positive. Stronger correlation between productivity and moisture content was observed
in coniferous and mixed stands, compared to two types of forests with a predominance of
deciduous-dominated forest types. Moreover, the habitats of mixed and coniferous forests
were characterized by greater diversity in both humidity and productivity than habitats
with a predominance of deciduous trees.

In forests of the German Rhineland-Palatinate state, Dotzler et al. [40] conducted
research on detecting tree water stress responses in deciduous forests using hyperspectral
aerial images. The spectral index PRI (photochemical reflectance index) calculated on
their basis showed differences between habitats caused by drought and depending on soil
moisture conditions.

Coniferous species (mainly Pinus sylvestris) dominate in Polish forests {68.2% of the
forest area, including pine, which covers 58% of all forest areas, 60.1% of the area of the State
Forests, and 54.5% of private forests [8]}. The dominant type of forest soils in Poland are
rusty soils [41]. With regard to forests in Poland, the main sources of water are atmospheric
precipitation and air humidity [42].

The aim of this study was to find the relationship between the spectral indices obtained
from satellite images and the moisture of forest habitats, allowing for their practical use in
forest management.

The scientific hypothesis is as follows: it is possible to assess the variation in the
humidity of forest habitats on the basis of spectral indices.

2. Materials and Methods
2.1. Research Area

The research area is the Bory Tucholskie National Park (BTNP), considered as a
representative area for Polish forest conditions, located in northern part of Poland (Figure 1),
in formerly glaciated areas with a varied topography, cut by the gutters of glacial lakes. The
altitude above sea level ranges from 120 to 140 m (Figure 1C). Over 90% of BTNP is covered
by sub-oceanic pine forests (Leucobryo-Pinetum plant association) [43]. The dominant type
of soil are rusty soils, formed mainly of outwash sands. The extreme points of research
area border are marked by geographical coordinates: west 17◦30′08” E, 53◦48′54” N; north
17◦32′30” E, 53◦51′23” N; east 17◦37′06” E, 53◦47′58” N; south 17◦34′51” E, 53◦46′15” N.
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Figure 1. Location of the research area in northern Poland (yellow square, (A)-a; (A)-b: satellite image
on the background of the map of Poland used in the research; (B)—the area of BTNP, (C)—elevation
map of research area.

The soil cover of the Bory Tucholskie National Park shows relatively little typologi-
cal variation, which results from the relatively homogeneous geological structure of the
substrate. The parent materials of the soils are mainly sandy glacial sediments of the
Vistula glaciation and the Holocene, most often loose sands, in total, covering 98.6% of the
park’s area. Under the dominance of sandy parent materials, characterized of low water
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retention, forests are natural vegetation. In such conditions, mainly podzolic-rusty soils
have developed, less often typical podzolic soils or brunic rusty soils. These three soil
subtypes cover a total of 3706 ha and constitute 80% of the Park’s area.

2.2. Satellite Data

The search and download of Sentinel-2 (A,B) images of the European Space Agency
(ESA) was accomplished using the Polish data repository of the Copernicus program (https:
//www.copernicus.eu/en, accessed on 27 July 2022), Sat4Envi (https://sat4envi.imgw.pl/,
accessed on 27 July 2022) managed by the Polish Institute of Meteorology and Water
Management (IMGW-PIB). The characteristics of the Multispectral Instrument (MSI) sensor
on S2A and S2B platforms are available on the ESA website (https://sentinels.copernicus.
eu/web/sentinel/user-guides/sentinel-2-msi, accessed on 27 July 2022). Data from the
level of the product Level L2A were used for the analysis. L2A means that each image pixel
for spectral band contains calibrated reflectance at earth surface. It is a product that was
created as a result of geometric correction, taking into account the influence of topography
on the image and radiometric correction of radiation changes in the atmosphere [44,45].

As shown in Table 1, the differences between Sentinel 2A and 2B are insignificant and
were considered as insignificant from the point of view of the conducted studies.

Table 1. Most frequent Sentinel 2 channels used in the calculations [44].

Sentinel 2 bands B2 B3 B4 B8

Spatial
resolution (m) 10 10 10 10

Sentinel 2A
central

wavelength (nm)
496.6 560.0 664.5 835.1

Sentinel 2B
central

wavelength (nm)
492.1 559.0 665.0 833.0

Sentinel 2A
bandwidth (nm) 98 45.0 38.0 145.0

Sentinel 2B
bandwidth (nm) 98 46.0 39.0 133.0

pigment
chlorophyll

absorptions in
blue [46]

pigment
chlorophyll
minimum

absorption in
green band [46]

pigment
chlorophyll

absorptions in
red band [47]

responsive to
canopy

structural
variations,

canopy type and
architecture [47]

The BTNP is located in the area of one section (Tile) (Figure 1A-b) designated T33UXV
(UTM). The period of image search was limited to three years, from 1 January 2018 to 31 December
2020 and the criterion of cloud cover covering the section was less than or equal to 70%. Such
a large value of the cloudiness parameter was assumed, since the park covers only 0.38% of
the section area (whole park area 46.13 km2/Tile area 100× 100 km = 10,000 km2). Then, the
acquired images were cropped to a regular fragment including the BTNP using a geometric
object in SHP format. Cropped images were done in the TNTmips version 2022 software from
Landscan (US, San Luis Obispo, CA, local license for Adam Mickiewicz University). In the
next step, images with no cloud cover in the research area were selected. The initial image
classification layer SCL (Scene Classification Layer) was used for this purpose. It was checked as
to whether there are values on this layer corresponding to clouds and their shadows, as well as
snow cover. In the SCL classification raster, such surface categories are marked with the following
values: shadows—3, clouds with low probability—7, medium—8, high—9, cirrus clouds—10,
snow—11. Finally, the criterion eliminating the display term defined as follows was applied: if

https://www.copernicus.eu/en
https://www.copernicus.eu/en
https://sat4envi.imgw.pl/
https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-2-msi
https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-2-msi
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there were clouds of medium (8) and high probability (9) in the polygon area and if the number
of such pixels was greater than 50 in the image, such an image was excluded from the analysis; if
the number was lower than 50 pixels, the spatial distribution of clouds and over which polygons
they are located were visually checked. In the case of high scattering of individual pixels, the
term of imaging was included in the set of analyzed images.

Geometric data on the ranges of forest habitat units (Figure 2), available in the
SHP format, together with the database in the following formats: .prj, .sbn, .sbx, and
.shx, were obtained from the website of the Bory Tucholskie National Park Geoportal
(http://gis.pnbt.com.pl/, accessed on 27 July 2022). All data were recorded in the form
of Attribute Tables saved in ArcGIS as “.dbf file”. ArcGIS is software that enables to
store, manage, and retrieve data and is used by authors according to Licence Agreement
(E203 04/24/2012) between the Poznań University of Life Sciences and Environmental
System Research Institute, Inc. (“ESRI”). Due to the spatial resolution of satellite images
(10–60 m), units with an area smaller than 1 ha were excluded from the analysis, which
also corresponds to the methodology of identifying forest habitat conditions using the
traditional terrestrial method [7].
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Figure 2. Map of humidity variation in Bory Tucholskie National Park, expressed in FHMIs (g1–g7)
used in Poland. The explanation of g1–g7 indexes is given in the Introduction.

In the next step, for each Sentinel-2 data recording date, the average values from pixels
DNs corresponding to a reflectance multiplication by 10,000, were calculated for forest
habitat units (polygons)—for all spectral bands (except for band number 9, which is not
present in the L2A product). Calculations were made in the TNTmips version 2022 software
from Landscan (US, San Luis Obispo, CA, local license for Adam Mickiewicz University).
The principle of calculating the mean of pixels values entirely located within the area of the
forest unit was resorted to. Therefore, border pixels lying under the boundaries of forest
habitat units were rejected from calculation.

In the next stage, for each image recording date, on the basis of the average DN values
of the pixels of images from different spectral channels of the MSI Sentinel-2A sensor within
the polygons of individual FHMIs, 249 vegetation indices were calculated, the formulas
of which are stored and described in the “Index Database” (https://www.indexdatabase.
de/, accessed on 27 July 2022) [48]. Ultimately, after the selection and analysis of the
formulas, 191 indices were selected for the calculation. A list of all selected indices and their
formulas (via a link to the appropriate page in the “Index Database”) is included in the
Supplementary Materials.

http://gis.pnbt.com.pl/
https://www.indexdatabase.de/
https://www.indexdatabase.de/
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All further calculations were performed with the R Studio and visualized in Excel
spreadsheet software from Microsoft. For all polygons belonging to the same humidity
category, for a given image recording date, the mean value of the index (MinTgi) were
calculated. Then all index values (MinTgi) were standardized according to the formula:

SMinTgi = =

(
MinTgi −MinTgi

)
δinTgi

where SMinTgi—standardized mean value, MinTgi—non-standardized mean value, and
δinTgi—standard deviation. The SMinTgi were grouped and averaged for all g1–g7 moisture
indices. A linear regression was calculated from the grouped indices and the regression
slope aSMinTgi was determined. In the next step, the total mean square error was calculated
for each index—MSE_MinTgi. The ranking of the most correlated indices was calculated on
the basis of EinTg, meaning the product of the absolute value of the slope aSMinTg and the
mean square error complement (1 −MSE_MinTgi).

The cross-validation method was applied to evaluate regression model for NDVI
(0.017). This was done by repeating the k-fold cross validation procedure multiple times
for different k and reporting the mean result across all folds from all runs.

3. Results

In the vector layer of the map of the park’s habitats, 923 research plots were distin-
guished (Table 2), covering the area of forest habitats with seven degrees of FHMIs. In
order to prevent the model from overfitting, the number of samples with different groups
has been equalized, primarily by “g6” group’s reduction. Within the “g1” FHMI, there
were only peat soils, mostly fertile peats. In the “g2” and “g3” FHMIs, raised bogs and fen
peat soils predominated. To the “g4” FHMI, groundwater gleyed soils have the greatest
share, to the “g5”, FHMI typical podzolic soils, to the g6, FHMI rusty podzolic soils, and to
the g7, FHMI arenosols.

Table 2. Groundwater levels in the FHTs area of the Bory Tucholskie National Park.

FHMI Moisture Group
of Habitats

Groundwater
Table [m]

Number of
Plots

Area
[ha]

g1 Swampy 0.0–0.2 13 37.89

g2 Swampy 0.2–0.5 70 121.44

g3 Swamy/Moist 0.5–0.8 73 190.43

g4 Moist 0.8–1.8 74 118.71

g5 Mesic Below 1.8 58 170.64

g6 Mesic Below 2.5 625 3653.34

g7 Dry Below 2.5 10 17.14

Total 923 4309.59

Figure 3 shows the spectral characteristics of habitats with different indices of soil
moisture obtained from the Sentinel-2 image recorded on 28 June 2021. Based on the level
of the spectra (reflectance) in the near infrared range (channel 8A), three groups of habitats
with different FHMI can be distinguished: (i) wet—“g1”, with mainly deciduous trees,
(ii) strongly moist—“g2”, very moist—“g3”, and moist—“g4”, covered with mixed forest
and (iii) moist-mesic—“g5”, mesic—“g6”, and dry—“g7”, covered with pine forests. The
driest habitats were distinguished by higher reflection in the visible range, especially in the
red channel and in the range of short-wave infrared SWIR in channel 12.



Remote Sens. 2022, 14, 4267 7 of 17

Remote Sens. 2022, 14, x FOR PEER REVIEW 7 of 17 
 

 

trees, (ii) strongly moist—“g2”, very moist—“g3”, and moist—“g4”, covered with mixed 
forest and (iii) moist-mesic—“g5”, mesic—“g6”, and dry—“g7”, covered with pine for-
ests. The driest habitats were distinguished by higher reflection in the visible range, es-
pecially in the red channel and in the range of short-wave infrared SWIR in channel 12. 

 
Figure 3. Spectra of seven FHMI in Bory Tucholskie National Park based on the Sentinel-2 image 
recorded on 28 June 2018. 

Among the analyzed vegetation indices, NDVI turned out to be the most strongly 
correlated with FHMI, during the full growing season, which in Poland falls on the pe-
riod from June to August. 

Table 3 shows the top five indices along with aSMinTg, MSE_MinTgi, and their ratio 
EinTg 

Table 3. Ranking of the top five indices. 

Index aSMinTgi MSE_MinTgi EinTg Formula Citation 

NDVI 0.286434 0.132020 0.248619 NDVI = B8 − B4B8 + B4 [49] 

EXG 0.282297 0.142348 0.242112 EXG = 2 ∗ B3 − B2 − B4 [50] 

OSAVI 0.278790 0.141247 0.239412 OSAVI = (1 + 0.16) B8 − B4B8 + B4 + 0.16 [51] 

DSWI-4 0.274647 0.130578 0.238784 DSWI − 4 = B3B4 [52] 

RDVI 0.274793 0.137549 0.236995 𝑅𝐷𝑉𝐼 = 𝐵8 − 𝐵4(𝐵8 + 𝐵4) .  [53] 

Figures 4–6 show the variation of the values of the vegetation indices, calculated for 
the relationship between the FHMIs and the average values of the NDVI obtained from 
satellite images recorded in 2018, 2019, and 2020. Analyzing the data on the graphs, it 
should be noted that the degrees of moisture content correlated with the NDVI do not 
represent a specific depth of groundwater, but the ranges in which the groundwater level 
fluctuates during the growing season. It should also be mentioned that the boundaries of 
the groundwater level depth ranges are tangent for the adjacent FHMIs. The NDVI val-
ues are also in such a sequence, showing similar values for the neighboring moisture in-
dices and clearly differentiating between the groups of moisture in forest habitats: 
swampy (g1–g3), moist (g3–g4), mesic (g5–g6), and dry (g7), as shown in Figure 4a, also 

Figure 3. Spectra of seven FHMI in Bory Tucholskie National Park based on the Sentinel-2 image
recorded on 28 June 2018.

Among the analyzed vegetation indices, NDVI turned out to be the most strongly
correlated with FHMI, during the full growing season, which in Poland falls on the period
from June to August.

Table 3 shows the top five indices along with aSMinTg, MSE_MinTgi, and their ratio EinTg.

Table 3. Ranking of the top five indices.

Index aSMinTgi MSE_MinTgi EinTg Formula Citation

NDVI 0.286434 0.132020 0.248619 NDVI = B8 − B4
B8 + B4 [49]

EXG 0.282297 0.142348 0.242112 EXG = 2∗B3− B2− B4 [50]

OSAVI 0.278790 0.141247 0.239412 OSAVI = (1 + 0.16) B8 − B4
B8 + B4 + 0.16 [51]

DSWI-4 0.274647 0.130578 0.238784 DSWI− 4 = B3
B4 [52]

RDVI 0.274793 0.137549 0.236995 RDVI = B8 − B4
(B8 + B4)0.5 [53]

Figures 4–6 show the variation of the values of the vegetation indices, calculated for
the relationship between the FHMIs and the average values of the NDVI obtained from
satellite images recorded in 2018, 2019, and 2020. Analyzing the data on the graphs, it
should be noted that the degrees of moisture content correlated with the NDVI do not
represent a specific depth of groundwater, but the ranges in which the groundwater level
fluctuates during the growing season. It should also be mentioned that the boundaries of
the groundwater level depth ranges are tangent for the adjacent FHMIs. The NDVI values
are also in such a sequence, showing similar values for the neighboring moisture indices
and clearly differentiating between the groups of moisture in forest habitats: swampy
(g1–g3), moist (g3–g4), mesic (g5–g6), and dry (g7), as shown in Figure 4a, also distinguish-
ing indexes g6 and g7, assuming the lowest NDVI values and representing soils with no
groundwater at a depth of up to 250 cm.
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6 August 2020, taking into account all FHMIs (g1–g7).

When selecting the dates for the data analysis in the years 2018–2020, with the aim
of preparing the charts presented in Figures 4–6, an attempt was made to select the most
similar dates in the individual years. In 2018 and 2019, for the presented examples, it was
July 20. In 2020, due to weather conditions, good-quality satellite images were not obtained
until August 8. Hence the discrepancy in the dates.
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(j) RDVI on 5 July 2018; (k) RDVI on 20 July 2018; (l) RDVI on 4 August 2018.
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Figure 5 shows example dates with the highest indices positions in the ranking
(Table 3). A ranking of all indices, listed from the best to the worst correlated with the
FHMIs, can be found in the Supplementary Materials.

Figure 6 shows changes in the relationship between NDVI and FHMI at different dates
in the same year (2020). This analysis illustratively shows the relationship between NDVI,
the FHMIs, and the seasons of the year. Lack of data for g1–g3 FHMIs and low NDVI
value for g4 FHMI results from the trophic nature of wet habitats, which, as generally more
fertile, have a greater share of deciduous species. In winter and early spring there are no
leaves on these trees in Poland, while habitats g5 and g6 are mostly and the g7 habitats
fully associated with pine, which maintains the assimilation apparatus throughout the year.
Based on the graphs shown in Figure 6, it can be assumed that in spring and autumn the
trend line is ascending (no leaves on deciduous trees, presence of pine needles), in summer
the trend line is descending (deciduous trees have more chlorophyll, with full foliage). In
winter, when the plants are dormant, the NDVI values are relatively low (below 0.6) for
obvious reasons.

As has been shown and as mentioned earlier, the NDVI correlates with the FHMIs
in the summer and this period should be taken into account in Central Europe when
determining the degree of moisture in forest habitats on the basis of NDVI.

In order to illustrate the relationship between NDVI and FHMIs, the images of site
maps made with the traditional method of soil pits were also compared with the image of
the same area differentiated according to the NDVI values (Figure 7), grouping swampy
(g1–g3 FHMIs), moist (g4), moist-mesic (g5), and mesic habitats (g6).
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Figure 7. Comparison of the image of a fragment of the habitat map made with the traditional method
of soil pits on the background of NDVI map (left) with the image of the same area differentiated due
to the NDVI values (right). Only g2–g5 FHMIs are included in the image legend on the left. The main
background of the picture shows the g6 FHMI. The g1 and g7 FHMIs do not exist in the presented
part of area.

It should be noted, however, that apart from NDVI, also EVI, SAVI, SR520/670 and
OSAVI indexes had relatively high compliance with the humidity of forest habitats, but
these indicators also reflect on areas with little vegetation cover, such as forest roads or
stands up to 15 years old (Figure 8).
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with the image obtained on the basis of the NDVI. Figure 9B clearly shows the zone of 
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tility of the habitats to the east from the largest lake visible in the figure. It should be 
added that westerly winds prevail in Poland, which means that humid air masses from 
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Figure 8. Comparisons of EVI map (A1), SAVI map (A2), SR520/670 map (A3), OSAVI map
(A4) with the moisture content map of BTNP (B). The letter “a” on the B map indicates a meadow, the
letter “b” the private land taken over by the park, for which no habitat development has been carried
out, hence there is no data on the degree of moisture content. FHMIs g1 and g2 were combined into
one green color.

Finally, the trophic system of forest habitats of the BTNP fragment was compared
with the image obtained on the basis of the NDVI. Figure 9B clearly shows the zone of
more fertile habitats (red), concentrated on the edges of the lakes and the declining fertility
of the habitats to the east from the largest lake visible in the figure. It should be added
that westerly winds prevail in Poland, which means that humid air masses from the lake
move mainly to the east, and this is also the habitat fertility gradient shown in Figure 9A,B.
Although there is also a wide zone of more fertile habitats to the west of the lake, it is
associated with the rivers that flow into the lake in these places. In contrast, to the east of
the lake, the habitat fertility gradient can be attributed to air humidity, which decreases
with distance from the lake. It should also be added that, as indicated in Figure 9A,B, the
habitat fertility gradient change zone is associated with the same type of soil (rusty soils),
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which, depending on the vegetation cover, can be differentiated into podzolic rusty (RDb),
typical rusty (RDw) and brunic rusty (RDbr) soils—Figure 10.
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Figure 9. Variation of the trophic nature of forest habitats according to the map of forest habitats prepared
using the traditional method (A) and on the basis of the NDVI (B). Red color in (B) correlates to zone of
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Figure 10. Classification of the soils of the selected area of the BTNP (according to http://gis.pnbt.
com.pl/, accessed on 27 July 2022) on the basis of traditional soil pits. In the legend, rusty soils are
marked with a red rectangle, differentiating into three subtypes: rusty podzolic (RDb), typical rusty
(RDw), and brunic rusty (RDbr). Podzolic soils (BL and Bw) also have a significant share on the map.

http://gis.pnbt.com.pl/
http://gis.pnbt.com.pl/
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4. Discussion

The presented data indicate a relationship between NDVI and the Forest Habitat
Moisture Indexes, which is broader than the relationship between NDVI and soil moisture
presented by Huete [54] in the results of his work as early as 1988. However, the author
considered this relationship between NDVI and soil condition as a kind of obstacle in the
NDVI analysis and paid attention to dynamic changes in the condition of soils related to
their moisture content. The conducted research indicates that it is rather an advantage in
understanding the spectral properties of soils and their interaction with vegetation and
hydrological conditions.

Based on the conducted research, it is considered that the correct way to use NDVI to
assess FHMIs should be to combine the degree of moisture into the following humidity
groups: swampy, moist, mesic, and dry (Figure 4a). Such a connection may eliminate
some discrepancies between the data obtained from the traditional identification of habitat
conditions and the data obtained from satellite images. In the traditional method used in
Poland [7], FHMIs are determined according to the current water level in the ground on
the date of the research. The remote sensing method allows for the capture of differences
in the moisture status of habitats in a long-term perspective. It should also be noted that
the traditional method is based on the results of measuring groundwater at the test point,
which is a soil pit representing an area of one to more hectares. Within the distinguished
habitat contour, however, there may be differences in the moisture conditions, which is
illustrated by satellite images with a resolution of 10 × 10 m. The obtained results from the
analysis of remote sensing data may also reflect not only the influence of groundwater, but
also the effect of other water sources, to which plants react, e.g., related to differences in air
humidity. For the area where the research was conducted, which was abundant in lakes,
this may be of significance, as pointed out by Rutkowski [42] when analyzing the diversity
of humidity conditions in forest habitats for the area of Wielkopolska Region (the central-
western part of Poland). On this basis, it can be concluded that climatic conditions are the
key factor in the habitat of terrestrial ecosystems, which is also confirmed by the results of
Rutkowski’s [55] research. In this context, satellite images, reflecting the comprehensive
impact of waters of various origins on forest ecosystems, may be a much more sensitive
tool for assessing the moisture diversity of forest habitats than traditional methods based
mainly on the description and assessment of soil diversity.

It should be noted that the concept of the “forest habitat moisture index” used in
Poland does not only mean the presence of groundwater at a specific depth. Furthermore,
in some regions of the world this information is unavailable. So, looking for the possibility
of mapping groundwater-depended ecosystems other methods are used as a surrogate
hydrological indicator [56–58]. One of them is FHMI. The concept of FHMIs reflects the total
impact of water available from various sources of the forest ecosystem, with traditional,
terrestrial measurement methods, which are often difficult to measure. With the dominance
of sandy deposits in forest soils in Poland, where groundwater is generally below the root
zone of trees, precipitation and water contained in moist air masses can be considered the
main source of water. The impact of atmospheric precipitation on the forest is reflected in
many papers (e.g., [59–61]), while the impact of air humidity related to water reservoirs on
the development of forest ecosystems is poorly described, although the data collected in
this study suggest that it is important. This is reflected, inter alia, in Figure 9.

5. Conclusions

The normalized difference vegetation index (NDVI) is the index widely used in remote
sensing observations of live plants but it can be used in applications for which it was not
originally designed. After analyzing 190 other indicators used in remote sensing, it was
found that NDVI is very useful to assess the degree of forest habitats moisture, but the
data must be obtained during the full growing season, which in the conditions of Central
Europe (and the tested area) falls from June to August. The use of NDVI made it possible to
distinguish and visualize on the map of the studied area four humidity groups of habitats
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(swampy, moist, mesic and dry), coinciding with the results obtained using traditional,
ground-based measurements.

The obtained results also indicate the possibility of using NDVI to assess the fertility
gradient of forest habitats. Within the studied area it has been shown that the fertility of
habitats decreases with increase in distance from the water reservoir.

The presented results of the study could be implemented in forestry practice, which
should significantly reduce the costs of identifying the diversity of forest habitats. The
usefulness of the obtained results may, for example, refer to the determination of the
boundaries of habitat units, which, based on the NDVI, are clearly visible, and their
accuracy, related to the resolution of satellite images on which the study was conducted
(10 × 10 m), is entirely sufficient for the needs of forestry practice.

The results of the research can also be used to monitor the forest with regard to possible
changes in the trophicity of habitats, which should help to protect forest ecosystems
in the conditions of changing water resources, as a result of the impact of natural and
anthropogenic factors.

6. Patents

The article was created on the basis of the patent application PL P.439801 entitled “The
method of determining the degree of forest moisture on the basis of remote sensing”, the
authors of which are: AM, MK, SK, PR, JP.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/rs14174267/s1, Full: Ranking of indices, Index database used
from https://www.indexdatabase.de/) [48].
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XXV, 281–291.

23. Gibson, R.; Danaher, T.; Hehir, W.; Collins, L. A remote sensing approach to mapping fire severity in south-eastern Australia
using sentinel 2 and random forest. Remote Sens. Environ. 2020, 240, 111702. [CrossRef]

24. Asner, G.P.; Alencar, A. Drought impacts on the Amazon Forest: The remote sensing perspective. New Phytol. 2010, 187, 569–578.
[CrossRef]

25. Fraser, R.H.; Latifovic, R. Mapping insect-induced tree defoliation and mortality using coarse spatial resolution satellite imagery.
Int. J. Remote Sens. 2005, 26, 193–200. [CrossRef]

26. Jones, H.G.; Vaughan, R.A. Remote Sensing of Vegetation: Principles, Techniques, and Applications; Oxford University Press: Oxford,
UK, 2010.

27. Campbell, J.B.; Wynne, R.H. Introduction to Remote Sensing, 5th ed.; Guilford Press: New York, NY, USA, 2011.
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Materiały Centrum Edukacji Przyrodniczo-Leśnej; 2008; R. 10. Zeszyt 2 (18)/2008. (In Polish)
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