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Abstract: Hyperspectral image classification technology is important for the application of hyper-
spectral technology. Support vector machines (SVMs) work well in supervised classifications of
hyperspectral images; however, they still have some shortcomings, and their use of a parallel decision
plane makes it difficult to conform to real hyperspectral data distribution. The improved nonparallel
support vector machine based on SVMs, i.e., the bias constraint additional empirical risk minimiza-
tion nonparallel support vector machine (BC-AERM-NSVM), has improved classification accuracy
compared its predecessor. However, BC-AERM-NSVMs have a more complicated solution problem
than SVMs, and if the dataset is too large, the training speed is significantly reduced. To solve this
problem, this paper proposes a least squares algorithm, i.e., the least square bias constraint additional
empirical risk minimization nonparallel support vector machine (LS-BC-AERM-NSVM). The dual
problem of the LS-BC-AERM-NSVM is an unconstrained convex quadratic programming problem,
so its solution speed is greatly improved. Experiments on hyperspectral image data demonstrate that
the LS-BC-AERM-NSVM displays a vast improvement in terms of solution speed compared with the
BC-AERM-NSVM and achieves good classification accuracy.

Keywords: hyperspectral remote sensing image; supervised classification; least square support vector
machine; nonparallel support vector machine

1. Introduction

The emergence of hyperspectral remote sensing was a milestone in the development
of modern remote sensing technology. Hyperspectral remote sensing images have ex-
tremely high spectral resolution, which greatly improves the ability to distinguish objects.
Therefore, hyperspectral remote sensing technology is widely used in many fields [1]. An
important basic content of hyperspectral data analysis and processing is classification,
that is, the creation of a unique category for each pixel. Classification is an important
means for researchers to use hyperspectral image information, as it can clearly reveal the
distribution of ground object information. Therefore, the accuracy of the classification
directly affects the accuracy of subsequent information processing. However, hyperspectral
image classification [2] still faces a series of challenges, e.g., redundant information, high
spectral dimensions and limited training samples. As such, research on hyperspectral
image classification technology is still necessary.

Many algorithms can be applied to hyperspectral image classification. According
to whether there is prior knowledge of the category attributes of the image samples,
the classification approach can be either supervised or unsupervised. The unsupervised
method does not require prior knowledge of the sample, but rather, completes the task by
performing cluster analyses, yielding statistics on the spectral or spatial characteristics of the
image itself. Commonly used unsupervised classification algorithms include K-means [3]
and ISODATA [4] clustering. In contrast, supervised classification requires training samples.
Through learning via training samples, a specific classification criterion is constructed which
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is then used to complete the classification task. Among supervised algorithms, KNN [5],
decision trees [6,7], random forests [8], and support vector machines [9–11] are frequently
used for hyperspectral data classification.

At present, supervised classification methods are still the mainstream of research,
among which the support vector machine (SVM) has been widely studied and used be-
cause of its good performance. The SVM is a machine learning algorithm based on the
statistical learning theory developed by Vapnik et al. [12]. An SVM can minimize the
empirical error and maximize the classification interval. The central idea is to find the
optimal plane by maximizing the interval between two parallel support planes in order
to achieve supervised learning [13]. An SVM has strong nonlinear and high-dimensional
data processing ability and solves the dimension disaster problem. Because of its solid
theoretical foundation [14] and good generalization, the SVM has achieved good results
in remote sensing image classification settings [15]. Melgani et al. analyzed the classi-
fication output from an SVM of hyperspectral data and proved that this approach is an
effective alternative to traditional pattern recognition methods, regardless of the adopted
multiclass strategy. In recent years, most research on SVM classifications of hyperspectral
data has been based on the use of spectral features to further combine spatial features
in order to improve the classification accuracy [16]. Chan et al. [17] discussed the classi-
fication situation combined with spatial information in an SVM classifier, giving rise to
further improvements in the classification accuracy. Jin et al. [18] reported the fast, accurate
and nondestructive identification of wheat seeds using SVM classification combined with
spatial spectral feature extraction. Suykens et al. [19] changed the inequality constraints
of an SVM to equality constraints and proposed a least squares support vector machine
(LSSVM). The experimental results showed that the LSSVM required less computation
time. Therefore, the LSSVM, as an alternative to the SVM, is widely used in research.
At present, many scholars are using the LSSVM algorithm combined with other feature
processing algorithms as a basic classifier to study the classification of hyperspectral images.
Gao and Heng-Zhen et al. [20] used a LSSVM as a basic classifier and combined the band
extraction algorithm to classify hyperspectral images, which improved the classification
accuracy and reduced the computational requirements. Shao and Yuanyuan et al. [21]
applied hyperspectral imaging to classify wheat grains and extracted spectral information
about damaged and healthy grain samples. The features were processed by the principal
component analysis (PCA) and continuous projection algorithm (SPA) methods; then, the
LSSVM model was used for classification, and good classification accuracy was obtained.
However, the parallel plane SVM classification model still has some problems regarding
practical remote sensing data, and the distribution of hyperspectral data poses problems in
terms of meeting the assumption that parallel planes are separable. The idea of a nonparal-
lel support vector machine was proposed by Jayadeva et al. and implemented as a twin
support vector machine (TWSVM) [22–24]. By solving two smaller quadratic programming
problems, two nonparallel hyperplanes were determined so that each hyperplane was
closer to one class and farther away from the other. As a classical nonparallel support vector,
the TWSVM is widely used because of its faster solution speed and the characteristics of
the nonparallel decision plane. However, TWSVMs do not perform satisfactorily with
hyperspectral images. The original problem only minimizes the empirical risk and does
not minimize the structural risk, which affects their generalization performance. Kaya et al.
compared the classification of a TWSVM of hyperspectral data with that of a SVM. The
TWSVM achieved classification results similar to those of the SVM, but with a shorter
training time [25]. Liu et al. combined multifeature optimization and a TWSVM to classify
remote sensing images, processed the features of hyperspectral images, and finally, used
the TWSVM as a classifier, which improved the classification accuracy of hyperspectral
images [26]. The same authors then proposed a new, nonparallel SVM algorithm, the
BC-AERM-NSVM, based on the nonparallel plane SVM [27], which now referred to as the
BAENSVM. This algorithm considers both empirical and structural risk minimization. The
nonparallel characteristics allow it to obtain better classification accuracy than an SVM, and
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structural risk minimization leads to better generalization performance than the TWSVM.
It achieved better classification accuracy in four classification experiments on commonly
used hyperspectral data. However, the BAENSVM solution matrix is larger than that of the
SVM, so the solution speed is reduced.

This paper proposes a new support vector machine model based on BAENSVM, i.e.,
the least square bias constraint additional empirical risk minimization nonparallel support
vector machine (LS-BC-AERM-NSVM). It solves the problem of the long computation time
of the BAENSVM algorithm when a large number of hyperspectral training datasets are
used. LS-BC-AERM-NSVM (hereafter referred to as LSBAENSVM) modifies the original
problem of the BAENSVM model, changes the constraint condition to an equality constraint
and changes the L1 regularization term of the error variable to the L2 regularization term;
as such, the dual problem it solves becomes a convex quadratic programming problem
with a pair of unconstrained conditions. Without constraints, the speed of the parameter
solution is greatly improved. With an increase in the scale of the hyperspectral training
data, the training time of the algorithm remains low.

The remainder of this paper is organized as follows:
Section 2 includes detailed information about the algorithm model itself and the

preliminary preparations for the experiment, i.e.:

(1) The selection of experimental software tools and the hardware conditions of the
experiment.

(2) A brief introduction of the BC-AERM-NSVM algorithm and a detailed description of
the LS-BC-AERM-NSVM algorithm model.

(3) An evaluation index of the experimental results.

Section 3 presents images and analyses of the experimental results, and Section 4
provides a summary of the full text.

2. Materials and Methods
2.1. Software Description

In this research, a computer with an AMD R7 4800 H CPU and 16 GB RAM pro-
duced by AMD Corporation in the United States was used. The algorithm model was
implemented in the Python 3.8 programming language produced by Python Software
Foundation in the United States via in the PyCharm software. The normalization func-
tion in the sklearn package was used in the project to preprocess the hyperspectral data.
All solutions to systems of linear equations in model calculations were solved using the
scipy.linalg.solve() function. All convex quadratic programming problems were solved
using the CVXOPT toolkit.

2.2. Data

This paper applied two public hyperspectral remote sensing datasets for experiments.
Basic information about the two datasets is presented below.

2.2.1. Indian Pines Dataset

The Indian Pines dataset includes hyperspectral data about images of Indian pine trees
in northwest Indiana, USA, made using an airborne visible infrared imaging spectrometer
(AVIRIS) in 1992. It has a total of 220 bands, generally excluding 20 bands that cannot be
reflected by water; as such, the remaining 200 bands are the research objects. The size of
the piece of data is 145 × 145, i.e., a total of 21,025 pixels. There are a total of 10,249 pixels
containing a total of 16 types of ground objects. Figure 1 shows a sample band from the
Indian Pines dataset.
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Figure 1. Sample band from the Indian Pines dataset.

2.2.2. Kennedy Space Center Dataset

The Kennedy Space Center dataset includes hyperspectral data of images of the
Kennedy Space Center, Florida, made using an imaging spectrometer (AVIRIS) sensor
in 1996, with a total of 224 bands. Generally, 48 bands which are affected by noise are
excluded, leaving 176 bands as the research object in this study. The size of each piece of
data is 512× 614, making a total of 314,368 pixels. There are 4811 pixels containing 13 types
of ground objects. Figure 2 shows a sample band from the Kennedy Space Center dataset.

Figure 2. Sample band from the Kennedy Space Center dataset.

2.2.3. Pavia University Dataset

The Pavia University dataset includes hyperspectral data of images of Pavia City,
Italy, made using an imaging spectrometer (ROSI) sensor in 2003, with a total of 115 bands,
generally excluding 12 bands affected by noise. The remaining 103 bands are the research
object of this study. The size of these pieces of data is 610 × 340, making a total of
2,207,400 pixels. There are a total of 42,776 pixels containing nine types of ground objects.
Figure 3 shows a sample band from the Pavia University dataset.
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Figure 3. Sample band of the Pavia University dataset.

2.2.4. Salinas Dataset

The Salinas dataset includes hyperspectral data of images of Salinas Valley, California,
made using an imaging spectrometer (AVIRIS) sensor, with a total of 224 bands, generally
excluding 20 bands affected by noise. The remaining 204 bands are the research object of
this study. The size of these data is 512 × 217, comprising a total of 105,984 pixels. There
are a total of 54,129 pixels containing 16 types of ground objects. Figure 4 shows a sample
band from the Salinas dataset.

Figure 4. Sample band of the Salinas dataset.

2.3. Bias Constraint Additional Empirical Risk Minimization Nonparallel Support Vector Machine

For the binary classification problem of m datasets in the n-dimensional feature space
Rn, matrix C of size m× n represents all the sample points, and the i-th sample point is
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Ci(i = 1, 2, . . . , m), Ci = (i = Ci1, Ci2, . . . , Cin)
T . Assuming that the number of positive

samples in all samples is m+ and the number of negative samples is m−, all positive
samples form a matrix of size m+ × n, which is represented by A, and all negative samples
form a matrix of size m− × n, represented by B. yi ∈ {1,−1} represents the category of
the sample of the i-th sample point, Y is a diagonal matrix of m×m size, and yi forms its
diagonal; then, Yii represents the category information of the Ci sample.

First, consider the linear case of BAENSVM, whose two decision hyperplanes are
shown in (1) and (2):

f (x) = ω+x + b+ = 1 (1)

f (x) = ω−x + b− = −1 (2)

Here, ω± ∈ Rn and b ∈ Rn.
The original problem of the BAENSVM is obtained by adding the least square and

offset constraint terms of the positive and negative samples, respectively, on the basis of the
SVM. We added an additional empirical risk minimization term to obtain two nonparallel
decision planes that better fit the distribution trend of positive and negative samples to
obtain (3) and (4), i.e., the two original problems that need to be optimized.

min
ω,b,ξ+

1
2

(
‖ω+‖2 + b2

+

)
+ c1

2 η+
Tη+ + c3eTξ+

s.t. Aω+ + e+b+ = η+
Y(Cω+ + eb+) + ξ+ ≥ e
ξ+ ≥ 0.

(3)

min
ω,b,ξ−

1
2

(
‖ω−‖2 + b2

−

)
+ c2

2 η−Tη− + c4eTξ−

s.t. Bω− + e−b− = η−
Y(Cω− + eb−) + ξ− ≥ e
ξ− ≥ 0.

(4)

where η+ and η− are vectors of dimension m, ξ+ and ξ− are slack variables, ci, i = 1, 2, 3, 4
is a penalty parameter, e+ is a vector with all values of 1 and dimension m+, e− is a
vector with all values of 1 and dimension m−, and e is a vector with all values of 1 and
dimension m.

Using the Lagrange multiplier method to solve the original problems, i.e., (3) and (4),
the following dual problems can be obtained:

max
λ,α

eTα− 1
2
[
λT αT][ AAT + 1

c1
I+ + E1 −

(
ACT + E2

)
YT

−Y
(
CAT + E3

)
Y
(
CCT + E4

)
YT

][
λT αT]T

s.t. 0 ≤ α ≤ c3eT
(5)

max
θ,γ

eTγ− 1
2
[
θT γT][ BBT + 1

c2
I− + F1 −

(
BCT + F2

)
YT

−Y
(
CBT + F3

)
Y
(
CCT + F4

)
YT

][
θT γT]T

s.t. 0 ≤ γ ≤ c4eT
(6)

where Ei, i = 1, 2, 3, 4 represents a matrix of size m+ ×m+, m+ ×m, m×m+, m×m, and all
the values in the matrix are 1; Fi, i = 1, 2, 3, 4 represents a matrix of size m− × m−, m− × m,
m × m−, m × m, and the values in the matrices are all 1; I+ represents the identity matrix
of size m+ ×m+; and I− represents the identity matrix of size m− ×m−.

The parameters corresponding to the positive and negative hyperplanes are obtained
using Equations (7)–(10).

ω+ = −ATλ∗ + CTYTα∗ (7)

ω− = BTθ∗ + CTYTγ∗ (8)

b+ = −eT
+λ∗ + eTYTα∗ (9)



Remote Sens. 2022, 14, 4263 7 of 24

b− = −eT
−θ∗ + eTYTγ∗ (10)

where λ∗, α∗, θ∗, γ∗ are the optimal solutions of the Lagrange multipliers, obtained by
solving the Equations (5) and (6).

Next, we determine the category to which the new sample point belonged by calculat-
ing the distance from the new sample point to the two decision planes. Setting b+ = b+ − 1
and b− = b− + 1, the specific calculation formula is shown in (11).

Class = arg min
i=+,−

∣∣∣(xT ·ω
i

)
+ bi

∣∣∣
‖ωi‖

(11)

Nonlinear classification problems can be transformed into a linear classification prob-
lem in a certain dimensional feature space through nonlinear transformation, and a linear
model can be learned in a high-dimensional feature space. φ(x) represents the mapping
of x to a high-dimensional space. In the dual problems (5) and (6) of linear BAENSVM
learning, the nonlinear BAENSVM is obtained using the kernel function instead of the
inner product. The dual problem of the nonlinear BAENSVM is as follows:

max
α

eTα− 1
2
[
λT αT][ K

(
AAT)+ 1

c1
I+ + E1 −

(
K
(

ACT)+ E2
)
YT

−Y
(
K
(
CAT)+ E3

)
Y
(
K
(
CCT)+ E4

)
YT

][
λT αT]T

s.t. 0 ≤ α ≤ c3eT
(12)

max
α

eTγ− 1
2
[
θT γT][ K

(
BBT)+ 1

c2
I− + F1 −

(
K
(

BCT)+ F2
)
YT

−Y
(
K
(
CBT)+ F3

)
Y
(
K
(
CCT)+ F4

)
YT

][
θT γT]T

s.t. 0 ≤ γ ≤ c4eT
(13)

Similar to the linear case, i.e., b+ = b+ − 1 and b− = b− + 1, the corresponding
decision function in the nonlinear case is:

Class = arg min
i=+,−

∣∣∣K(xT ·ω
i

)
+ bi

∣∣∣√
K
(

ωT
i

ω
i

) (14)

2.4. Least Square Bias Constraint Additional Empirical Risk Minimization Nonparallel Support
Vector Machine

On the basis of the original problem of the BAENSVM algorithm, the LSBAENSVM
replaces inequality constraints with equality constraints, modifies the L1 regularization
term of the error variable to the L2 regularization term, and obtains two new original
problems. The dual problem corresponding to the new original problem is an unconstrained
convex quadratic programming problem, and the absence of constraints greatly improves
the efficiency of the solution and reduces the computational cost.

2.4.1. Linear Case

LSBAENSVM also uses two nonparallel classification decision planes as follows:

f (x) = ω+x + b+ = 1 (15)

f (x) = ω−x + b− = −1 (16)

The new original problem is obtained as (17) and (18):

min
ω,b,ξ+

1
2

(
‖ω+‖2 + b2

+

)
+ c1

2 η+
Tη+ + c3

2 ξT
+ξ+

s.t. Aω+ + e+b+ = η+
Y(Cω+ + eb+) + ξ+ = e

(17)
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min
ω,b,ξ−

1
2

(
‖ω−‖2 + b2

−

)
+ c2

2 η−Tη− + c4
2 ξT
−ξ−

s.t. Bω− + e−b− = η−
Y(Cω− + eb−) + ξ− = e

(18)

Using the Lagrangian multiplier method to solve the dual problem to Formula (17),
the Lagrangian function is obtained as follows:

L(ω+, b+, ξ+, α, β) = 1
2

(
‖ω+‖2 + b2

+

)
+ c1

2 ηT
+η+ + c3ξT

+ξ+

+λT(Aω+ + e+b+ − η+)
+αT(e− ξ+ −Y(Cω+ + eb+))

(19)

where α = (α1, . . . , αm), β = (β1, . . . , βm) and λ = (λ1, . . . , λm+) are Lagrange multiplier
vectors. Taking the partial derivative of the Lagrangian function (19), the KKT conditions
are obtained as follows:

∇ω+ L = ω+ + ATλ− CTYTα = 0 (20a)

∇b+ L = b+ + eT
+λ− eTYTα = 0 (20b)

∇η+ L = c1η+ − λ = 0 (20c)

∇ξ+ L = c3eT − αT = 0 (20d)

Formulas (20a) and (20b) yield:[
ωT

+ bT
+

]T
=

[
−AT CTYT

−eT
+ eTYT

][
λT αT

]T
(21)

Putting (20a)–(20d) into the Lagrangian function (19), the following dual formula can
be obtained:

max
λ,α

eTα− 1
2

[
λT αT

][AAT + 1
c1

I+ + E1 −
(

ACT + E2
)
YT

−Y
(
CAT + E3

)
Y
(
CCT + E4

)
YT + 1

c3
J

][
λT αT

]T
(22)

where J represents an identity matrix of size m×m. The dual problem obtained at this time
is an unconstrained convex quadratic programming problem. Since there are no constraints,
the solution speed of the problem will be greatly increased.

Accordingly, ω− and b− corresponding to the negative class can be obtained:[
ωT
− bT

−

]T
=

[
−BT CTYT

−eT
− eTYT

][
θT γT

]T
(23)

Using the same method, the dual equation corresponding to the negative sample
solution can be obtained as follows:

max
θ,γ

eTγ− 1
2

[
θT γT

][BBT + 1
c2

I− + F1 −
(

BCT + F2
)
YT

−Y
(
CBT + F3

)
Y
(
CCT + F4

)
YT + 1

c4
J

][
θT γT

]T
(24)

Next, we determine the class of a new sample by comparing its distance to the positive
and negative hyperplanes. Setting b+ = b+ − 1 and b− = b− + 1, the corresponding
decision function in the nonlinear case is:

Class = arg min
i=+,−

∣∣(xT ·ωi
)
+ bi

∣∣
‖ωi‖

(25)
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2.4.2. Nonlinear Case

A linear case can be extended to a nonlinear case, such as a support vector machine, by
introducing a kernel function into the linear model. The kernel function K(x, x′) = φ(x) ·
φ(x′) and the corresponding transformation X = φ(x) are introduced, where X ∈ H, H is
the Hilbert space. On the basis of linear problems (22) and (24), two original problems in
the nonlinear case can be obtained.

min
ω,b,ξ+

1
2

(
‖ω+‖2 + b2

+

)
+ c1

2 η+
Tη+ + c3

2 ξ+
Tξ+

s.t.φ(A)ω+ + e+b+ = η+
Y( φ(C)ω+ + eb+) + ξ+ = e

(26)

min
ω,b,ξ−

1
2

(
‖ω−‖2 + b2

−

)
+ c2

2 η−Tη− + c4
2 ξ−Tξ−

s.t.φ(B) ω− + e−b− = η−
Y(φ(C)ω− + eb−) + ξ− = e

(27)

Then, we use the Lagrange multiplier method to solve (26) and (27) and obtain the
dual problem as follows:

max
λ,α

eTα− 1
2

[
λT αT

][K
(

AAT)+ 1
c1

I+ + E1 −
(
K
(

ACT)+ E2
)
YT

−Y
(
K
(
CAT)+ E3

)
Y
(
K
(
CCT)+ E4

)
YT + 1

c3
J

][
λT αT

]T
(28)

max
θ,γ

eTγ− 1
2

[
θT γT

][K
(

BBT)+ 1
c2

I− + F1 −
(
K
(

BCT)+ F2
)
YT

−Y
(
K
(
CBT)+ F3

)
Y
(
K
(
CCT)+ F4

)
YT + 1

c4
J

][
θT γT

]T
(29)

By solving the dual problems of (28) and (29), two decision hyperplanes can be
obtained as follows:

− K
(

xT AT
)

λ∗ +
(

xTCT
)

YTα∗ + b+ = 1 (30)

− K
(

xT BT
)

θ∗ +
(

xTCT
)

YTγ∗ + b− = −1 (31)

b+ = −eT
+λ∗ + eTYTα∗ (32)

b− = −eT
−θ∗ + eTYTγ∗ (33)

Setting b+ = b+ − 1 and b− = b− + 1, the corresponding decision function in the
nonlinear case is:

Class = arg min
i=+,−

∣∣∣K(xT ·ω
i

)
+ bi

∣∣∣√
K
(

ωT
i

ω
i

) (34)

where:
K
(

xTω+

)
= −K

(
xT AT

)
λ∗ + K

(
xTCT

)
YTα∗ (35)

K
(

xTω−
)
= −K

(
xT BT

)
θ∗ + K

(
xTCT

)
YTγ∗ (36)

K
(
ωT

+
ω

+

)
= λ∗TK

(
AAT)λ∗ − λ∗TK(AC)TYTα∗

−α∗TYK
(
CAT)λ∗ + α∗TYK

(
CCT)YTα∗

(37)

K
(
ωT
−ω−

)
= θ∗TK

(
BBT)θ∗ − θ∗TK(BC)TYTγ∗

−γ∗TYK
(
CBT)θ∗ + γ∗TYK

(
CCT)YTγ∗

(38)

2.5. Application of Algorithms in Hyperspectral Image Classification

A binary classification algorithm is proposed in this paper; however, the applied hy-
perspectral dataset contains multiclassification data, and the classification algorithm needs
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to be extended to a multiclassification situation. Taking the linear case of the LSBAENSVM
algorithm as an example, the specific implementation steps are shown in Algorithm 1.

Algorithm 1: The Classification Process of the LSBAENSVM Algorithm Model for a
Hyperspectral Dataset

Step 1: Each category of the hyperspectral dataset can be combined into pairs to obtain
1
2 (n× (n− 1)) binary classification tasks.
Step 2: Hyperparameters c1, c2, c3, c4 of the LSBAENSVM model are set.
Step 3: Each binary classification task is trained using LSBAENSVM.

1. First, we used the parameter set in Step 2 to solve parameters α∗, λ∗, θ∗, γ∗ according to
Formulas (22) and (24). Here, c1 and c3 are the two parameters of Formula (22), and c2 and c4 are
the two parameters of Formula (24).

2. The normal vectors and offsets of the two decision hyperplanes are obtained with (21)
and (23).

Finally, 1
2 (n× (n− 1)) classifier models are obtained.

Step 4: For the 1
2 (n× (n− 1)) classifier models trained in Step 3, the category of the new sample

is predicted by Formula (25), all predicted categories are recorded, and the sample is classified
into the category with the most votes.

2.6. Accuracy Assessment

As a comparison array used to represent accuracy evaluations, the confusion matrix is
generally used to evaluate the classification accuracy of hyperspectral data. The columns
in the array represent the reference data and the rows represent the category data obtained
by classifying the image data. The form is:

H =


h11 h12 · · · h1N
h21 h22 · · · h2N

...
...

...
hN1 hN2 · · · hNN

 (39)

Among them, the overall classification accuracy (OA) and Kappa coefficient are im-
portant statistics derived from the confusion matrix that are generally used as evaluation
criteria for the classification results. OA represents the ratio of the sum of all correctly
classified pixels (i.e., the sum of all values on the diagonal axis in the confusion matrix)
to the sum of all pixels. However, OA only considers the number of correctly classified
pixels on the diagonal axis in the confusion matrix. The Kappa coefficient comprehensively
considers various factors in the confusion matrix and can determine the accuracy of the
overall classification; the larger the value of the kappa coefficient, the higher the accuracy
of the corresponding classification algorithm. Therefore, the OA and Kappa coefficients are
usually used to jointly evaluate the classification accuracy of hyperspectral images.

3. Results

This section shows a comparison of the classification accuracies and solution times
of the SVM, TWSVM, BAENSVM, LSSVM, LSTWSVM and LSBAENSVM methods when
applied the four hyperspectral datasets, i.e., the Indian Pines, Kennedy Space Center, Pavia
University, and Salinas sets. All classification algorithms are applied in a nonlinear fashion
with a Gaussian kernel function.

3.1. Indian Pines Dataset

The Indian Pines dataset has a large difference in the number of samples of each
category, and the number of some pixels is small. For this dataset, 10%, 20%, 30%, and 40%
of each category are selected as training data. The rest of the data are used as the test set. In
this way, we can test the computational times of each algorithm using datasets of different
sizes and compare the classification accuracies.
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The division of the training set of Indian Pines is shown in Table 1.

Table 1. The number of samples in each category of the Indian Pines dataset and the division of
training samples.

Class Samples 10% 20% 30% 40%

Alfalfa 54 5 11 16 22
Corn-notill 1434 143 287 430 574

Corn-mintill 834 83 167 250 334
Corn 234 23 47 70 94

Grass-pasture 497 50 99 149 199
Grass-trees 747 75 149 224 299

Grass-pasture-mowed 26 3 5 8 11
Hay-windrowed 489 49 98 147 196

Oats 20 2 4 6 8
Soybean-notill 968 97 194 290 388

Soybean-mintill 2468 247 494 740 988
Soybean-clean 614 61 123 184 246

Wheat 212 21 42 64 85
Woods 1294 129 259 388 518

Buildings-Grass-Trees-Drives 300 30 60 90 120
Stone-Steel-Towers 95 10 19 29 38

Total 10,286 1029 2057 3086 4120

Figure 5 shows our solution time comparison of the SVM, TWSVM, BAENSVM,
LSSVM, LSTWSVM and LSBAENSVM algorithms under the conditions of the usage of
10%, 20%, 30% and 40% of the Indian Pines training dataset. The indicated times are the
average values of ten runs.

Figure 5. Time-consumption comparison of SVM, TWSVM, BAENSVM, LSSVM, LSTWSVM and
LSBAENSVM at different scales using the Indian Pines training dataset.
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Figure 5 shows that when 10% of the data are selected as the training dataset and the
data size is 1029, the training time of the BAENSVM is approximately three times that of
the SVM. This is because the BAENSVM needs to solve two larger-scale matrices than the
SVM solving matrix, significantly increasing the computational requirements. At this time,
the solution time of the LSBAENSVM proposed in this paper is only 0.61 s, indicating a vast
reduction in computational load thanks to the fact that the convex quadratic programming
problem it solves has no constraints. In general, the least square forms of SVM, TWSVM
and BAENSVM can greatly reduce the complexities of the calculations. The training times
of LSSVM, LSTWSVM and LSBAENSVM are only 0.06, 0.06, and 0.61 s, respectively, which
shows that introducing the least square form into the algorithm is an effective way to
improve the calculation speed. Because LSBAENSVM has a larger calculation data matrix,
the calculation complexity is still larger than those of LSSVM and LSTWSVM, but the
training time remains modest compared with that of the BAENSVM, and its calculation
speed is 27 times faster than BAENSVM using data on this scale. With a continuous increase
in the number of training datasets, the solution time of each algorithm increases to varying
degrees. Observe the broken line graph of the solution times of the six algorithms under
10%, 20%, 30%, and 40% of the training dataset. With an increase in the scale of the training
data, the calculation consumption of the six algorithms increases by different degrees.
Because the matrix of the two solving problems of the TWSVM is smaller, the increase in its
computational complexity is smaller than that of the SVM. At the same time, the matrix of
the two solving problems of the BAENSVM is larger than that of the SVM, so the increase
in computational complexity is larger than that of the SVM. At this time, the computational
complexities of the LSSVM, LSTWSVM, and LSBAENSVM methods increase very slightly.
At 20%, 30%, and 40% of the training dataset, the speed of LSBAENSVM is 27 times, 36
times and 47 times faster than that of BAENSVM, respectively, indicating that the speed
advantage of the former is more obvious with an increase in the scale of training data.

Table 2 shows the experimental accuracies of the SVM, TWSVM, BAENSVM, LSSVM,
LSTWSVM, and LSBAENSVM methods under training datasets of 10%, 20%, 30%, and 40%
scales of the Indian Pines dataset. The best experimental results are shown in bold.

Table 2. Classification results of Indian Pines hyperspectral images.

Train Rate Accuracy SVM TWSVM BAENSVM LSSVM LSTWSVM LSBAENSVM

10%
OA 82.42 82.79 82.84 84.08 83.49 84.18

Kappa 81.16 81.50 81.70 82.88 82.69 82.95

20%
OA 87.10 87.02 87.61 88.63 88.21 88.78

Kappa 86.06 86.07 86.70 87.44 87.38 87.78

30%
OA 89.41 89.43 89.79 90.24 90.09 90.41

Kappa 88.48 88.68 88.96 89.43 89.41 89.50

40%
OA 90.15 90.02 90.57 91.15 90.65 91.26

Kappa 89.28 89.39 89.76 90.49 89.89 90.57

Bold in the table indicates the optimal accuracy.

Figure 6 sequentially shows the restoration graphs under the classification of SVM,
TWSVM, BAENSVM, LSSVM, LSTWSVM, and LSBAENSVM, corresponding to the classifi-
cation results presented in Table 2.

Table 2 shows the experimental accuracies of the six classification models. Figure 6
is a restoration diagram of the specific classification results of the experimental results
in Table 2. Figure 6 shows that LSBAENSVM has fewer classification errors than the
other algorithms in the four sets of experiments. From Table 2, to specifically analyze
the experimental results, it can be seen that LSBAENSVM achieved the best classification
results on the Indian Pines dataset. Compared with the BAENSVM model, when each class
uses 10%, 20%, 30%, and 40% of the training data, the OA of LSBAENSVM is 0.63%, 0.45%,
0.39%, and 0.29% higher than that of BAENSVM, respectively, while the Kappa coefficients
are 1.34%, 1.17%, 0.62%, and 0.69% higher than those of BAENSVM, respectively. The
classification accuracy of the BAENSVM model is better than those of SVM and TWSVM.
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For example, using 10%, 20%, 30%, and 40% of the training data of, the OA of BAENSVM
is 0.42%, 0.51%, 0.38%, and 0.42% higher than that of SVM, respectively, and the Kappa
coefficients are 0.54%, 0.64%, 0.48%, and 0.48% higher than those of the SVM. This is
because the BAENSVM algorithm is a nonparallel support vector machine constructed on
the basis of an SVM. Under certain conditions, it can degenerate into an SVM, although the
classification result must be better than that of an SVM. However, TWSVM only minimizes
the empirical risk, which affects the classification accuracy, so the classification result is
poor. While the LSSVM also achieves good classification results, LSBAENSVM has better
classification accuracy. The OA is 0.1%, 0.15%, 0.17%, and 0.11% higher than that of SVM.
Compared with the relationship between the BAENSVM and SVM, the LSBAENSVM is
theoretically a nonparallel support vector machine based on an LSSVM but with better
classification accuracy.

Figure 6. Indian Pines hyperspectral image classification result image. (a) 10% Indian Pines
dataset, (b) 20% Indian Pines dataset, (c) 30% Indian Pines dataset, (d) 40% Indian Pines dataset,
(e) ground truth.
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3.2. Kennedy Space Center Dataset

The Kennedy Space Center dataset has a small number of samples. For this dataset,
10%, 20%, 30%, and 40% of each category is selected as training data. The rest of the data
are used as the test set. In this way, we can test the time requirement of each algorithm
using datasets of different sizes and compare the classification accuracy.

The division of the Kennedy Space Center training set is shown in Table 3.

Table 3. The number of samples in each category of the Kennedy Space Center dataset and the
division of training samples.

Class Samples 10% 20% 30% 40%

Scrub 761 77 153 229 305
Willow swamp 243 25 49 73 98
CP hammock 256 26 52 77 103

Slash pine 252 26 51 76 102
Oak/Broadleaf 161 17 33 49 65

Hardwood 229 23 46 69 92
Swamp 105 11 21 32 42

Graminoid marsh 431 44 87 130 173
Spartina marsh 520 52 104 156 208
Cattail marsh 404 41 81 122 162

Salt marsh 419 42 84 126 168
Mud flats 503 51 101 151 202

Water 527 53 106 159 211
Total 4811 488 968 1449 1931

Figure 7 shows a solution time comparison of the SVM, TWSVM, BAENSVM, LSSVM,
LSTWSVM and LSBAENSVM algorithms when using 10%, 20%, 30%, and 40% of the
Kennedy Space Center training dataset. The indicated times are the average values of
ten runs.

Figure 7. Time-consumption comparison of SVM, TWSVM, BAENSVM, LSSVM, LSTWSVM, and
LSBAENSVM using different scales of the Kennedy Space Center training dataset.
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The six broken lines in Figure 7 show the solving speeds of the six models. It is obvious
that the broken lines corresponding to the SVM, TWSVM, and BAENSVM models are above
those corresponding to the LSSVM, LSTWSVM, and LSBAENSVM models. This is because
the least square form applied in the former models greatly reduces the solving speed. Due
to the increase in the data size, the training time of baensvm is increased by 2.8, 3.3, 4.0,
and 4.45 times, respectively, compared to that of SVM. Additionally, it can be seen that the
growth rate of the BAENSVM training times is more pronounced with an increase of data
size. Compared with LSBAENSVM, the solution speed of LSBAENSVM is 29, 31, 33 and
35 times faster than that of BAENSVM; this is because the introduction of least squares
converts the dual problem into an unconstrained convex quadratic programming problem,
which greatly improves the solution speed.

Table 4 shows the experimental accuracies of the SVM, TWSVM, BAENSVM, LSSVM,
LSTWSVM, and LSBAENSVM methods under training dataset scales of 10%, 20%, 30%,
and 40% of the Kennedy Space Center datasets. The best experimental results are shown
in bold.

Table 4. Classification results of Kennedy Space Center hyperspectral images.

Train Number Accuracy SVM TWSVM BAENSVM LSSVM LSTWSVM LSBAENSVM

10%
OA 91.84 91.19 92.15 92.63 91.54 92.86

Kappa 90.93 90.73 91.36 92.23 91.03 92.40

20%
OA 93.28 92.59 93.45 93.82 92.64 94.03

Kappa 92.75 92.23 92.95 93.31 92.29 93.46

30%
OA 94.08 93.70 94.30 94.58 93.97 94.76

Kappa 93.50 93.51 93.90 94.02 93.45 94.24

40%
OA 94.59 94.31 94.82 94.91 94.28 95.17

Kappa 94.02 94.03 94.49 94.42 93.96 94.74

Bold in the table indicates the optimal accuracy.

Figure 8 sequentially shows the restoration graphs under the classification of SVM,
TWSVM, BAENSVM, LSSVM, LSTWSVM, and LSBAENSVM, corresponding to the detailed
classification results in Table 4.

Table 4 shows the experimental accuracies of six classification models. Figure 8 is
a restoration diagram of the specific classification results of the experimental results in
Table 4. Figure 8 shows that the LSBAENSVM has fewer classification errors than the other
algorithms in the four sets of experiments. From Table 4, it can be seen that LSBAENSVM
achieves the best classification results using the Kennedy Space Cente dataset. Compared
with the BAENSVM model, when each class takes 10%, 20%, 30%, and 40% of the training
data, the OA of LSBAENSVM is 0.71%, 0.58%, 0.46%, and 0.35% higher than that of
BAENSVM, respectively, while the Kappa coefficients are 1.04%, 0.51%, 0.34%, and 0.25%
higher than those of BAENSVM. The classification accuracy of the BAENSVM model is
better than that of the SVM. For example, in the training data of 10%, 20%, 30% and 40%, the
OA of BAENSVM is 0.31%, 0.17%, 0.22% and 0.23% higher than those of SVM, respectively,
and the Kappa coefficients are 0.43%, 0.20%, 0.40% and 0.47% higher than those of the SVM.
This is because the BAENSVM algorithm is a nonparallel support vector machine based
on an SVM. As such, the classification accuracy of TWSVM is 0.96%, 0.86%, 0.60%, and
0.51% lower than that of BAENSVM. This is because baensvm minimizes the structural risk
compared with TWSVM, and thus, has stronger generalization ability. While the LSSVM
also achieves good classification results, LSBAENSVM has better classification accuracy
than LSSVM. The OA is 0.23%, 0.21%, 0.18% and 0.26% higher than those of the SVM.
Compared with the relationship between the BAENSVM and SVM, the LSBAENSVM is
theoretically a nonparallel support vector machine based on an LSSVM but with better
classification accuracy. As long as control penalty parameters c1 and c3 are small enough,
the classification accuracy of lsbaensvm is similar to that of LSSVM.
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Figure 8. Kennedy Space Center hyperspectral image classification result image. (a) 10% KSC dataset,
(b) 20% KSC dataset, (c) 30% KSC dataset, (d) 40% KSC dataset, (e) ground truth.

3.3. Pavia University Dataset

The Pavia University dataset contains a large amount of data, and each category selects
the same number of samples for training. For each category, 200, 300, 400, and 500 data
points were selected as training samples to conduct four sets of experiments in order to test
the classification results under different scales of training data. The specific classifications
are shown in Table 5.

Table 5. Ground truth classes for the Pavia University data and their respective numbers of samples.

Class Samples Train Dataset 1 Train Dataset 2 Train Dataset 3 Train Dataset 4

Asphalt 6631 200 300 400 500
Meadows 18,649 200 300 400 500

Gravel 2099 200 300 400 500
Trees 3064 200 300 400 500

Painted metal sheets 1345 200 300 400 500
Bare Soil 5029 200 300 400 500
Bitumen 1330 200 300 400 500

Self-Blocking Bricks 3682 200 300 400 500
Shadows 947 200 300 400 500

Total 42,776 1800 2700 3600 4500
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Figure 9 shows a solution time comparison of the SVM, TWSVM, BAENSVM, LSSVM,
LSTWSVM, and LSBAENSVM algorithms under the four Pavia University experiments.
The indicated times are the averages of ten runs.

Figure 9. Time-consumption comparison of SVM, TWSVM, BAENSVM, LSSVM, LSTWSVM, and
LSBAENSVM using different scales of Pavia University training datasets.

As seen in Figure 9, when the number of training samples in each category is equal,
the line graph of the TWSVM time-consumption calculation is completely under that of
the support vector machine. This shows that TWSVM is less computationally expensive
because it solves two matrix problems which are of smaller scales than those of the SVM.
The BAENSVM time-consumption calculation line chart is far above other those of the
classification algorithms. This is because this method needs to solve two convex quadratic
programming problems, and the solution matrix size of each optimization problem is
larger than that of an SVM. Therefore, the computational complexity of the BAENSVM
algorithm is much greater than those of the other algorithms. In this experiment, when the
training datasets of each category are 200, 300, 400 and 500 data points, the solution times
of BAENSVM are 3.8, 4.8, 5.0 and 6.0 times those of the SVM, respectively. Therefore, with
an increase in data size, the solution time of the BAENSVM increases gradually compared
to the SVM. Observing the line graph, the calculation timelines corresponding to the three
algorithms, i.e., LSSVM, LSTWSVM and LSBAENSVM, are far lower than those of SVM,
TWSVM, and BAENSVM, indicating that the least squares form can significantly reduce the
complexity of the calculations. It can be seen from the figure that when the training datasets
of each category are 200, 300, 400, and 500 data points, the solution times of BAENSVM
are 31.5, 40.3, 47.9, and 55.2 times those of the LSBAENSVM, respectively. As the size
of the training set increases, the computational speed advantage of LSBAENSVM over
BAENSVM increases.

Table 6 shows the experimental accuracies of the SVM, TWSVM, BAENSVM, LSSVM,
LSTWSVM, and LSBAENSVM methods when using the Pavia University dataset. The best
experimental results are shown in bold.
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Table 6. Classification results of Pavia University hyperspectral images.

Train Number Accuracy SVM TWSVM BAENSVM LSSVM LSTWSVM LSBAENSVM

200
OA 91.35 91.68 91.87 91.82 91.46 92.50

Kappa 88.50 89.35 89.34 89.40 88.88 90.20

300
OA 91.75 91.95 92.36 92.20 92.14 92.81

Kappa 88.94 88.58 89.87 89.88 89.64 90.55

400
OA 92.57 91.89 92.73 92.60 92.71 93.12

Kappa 89.93 89.29 90.27 90.20 90.41 90.78

500
OA 92.83 92.32 93.13 92.89 93.07 93.42

Kappa 90.18 89.74 90.72 90.49 90.74 91.07

Bold in the table indicates the optimal accuracy.

Figure 10 sequentially shows the restoration graphs under the classification of SVM,
TWSVM, BAENSVM, LSSVM, LSTWSVM, and LSBAENSVM, corresponding to the classifi-
cation results presented in Table 6.

Figure 10. Cont.
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Figure 10. Pavia University hyperspectral image classification result image. (a) Training Dataset 1,
(b) training Dataset 2, (c) training Dataset 3, (d) training Dataset 4, (e) ground truth.

Table 6 shows the experimental accuracies of the six classification models. Figure 10
shows that LSBAENSVM has fewer classification errors than the other algorithms in the
four sets of experiments. From Table 6, it can be seen that LSBAENSVM achieves the best
classification results on the Pavia University dataset. Compared with the BAENSVM model,
the Oas of LSBAENSVM are 0.63%, 0.45%, 0.39%, and 0.29% higher than those of BAENSVM
when 200, 300, 400, and 500 training data are taken for each class, respectively, and the
Kappa coefficients are 0.86%, 0.68%, 0.51%, and 0.35% higher than those of BAENSVM.
Compared with LSSVM, the Oas of LSBAENSVM are 0.68%, 0.61%, 0.52%, and 0.56%
higher than those of LSSVM, respectively, while the Kappa coefficients are 0.80%, 0.67%,
0.58%, and 0.65% higher than those of BAENSVM. Similar to the relationship between the
LSBAENSVM and BAENSVM, the LSBAENSVM is essentially equivalent to the nonparallel
support vector machine algorithm obtained by adding the least squares of positive and
negative samples to the LSSVM algorithm model. Therefore, theoretically, LSBAENSVM
can obtain better accuracy than LSSVM.

3.4. Salinas Dataset

The Salinas dataset contains a large amount of data, and each category selects the
same number of samples for training. For each category, 200, 300, 400, and 500 data points
are selected as training samples to conduct four sets of experiments in order to test the
classification results under different scales of training data. The specific classifications are
shown in Table 7.

Table 7. Ground truth classes for the Salinas scene and their respective numbers of samples.

Class Samples Train Dataset 1 Train Dataset 2 Train Dataset 3 Train Dataset 4

ineyard_green_weeds_1 2009 200 300 400 500
ineyard_green_weeds_2 3726 200 300 400 500

Fallow 1976 200 300 400 500
Fallow_rough_plow 1394 200 300 400 500

Fallow_smooth 2678 200 300 400 500
Stubble 3959 200 300 400 500
Celery 3579 200 300 400 500

Grapes_untrained 11,271 200 300 400 500
Soil_vinyard_develop 6203 200 300 400 500

Corn_senesced_green_weeds 3278 200 300 400 500
Lettuce_romaine_4wk 1068 200 300 400 500
Lettuce_romaine_5wk 1927 200 300 400 500
Lettuce_romaine_6wk 916 200 300 400 500
Lettuce_romaine_7wk 1070 200 300 400 500

Vinyard_untrained 7268 200 300 400 500
Vinyard_vertical_trellis 1807 200 300 400 500

Total 54,129 1800 2700 3600 4500
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Figure 11 shows a solution time comparison of the SVM, TWSVM, BAENSVM, LSSVM,
LSTWSVM, and LSBAENSVM algorithms under the four groups of Salinas experiments.
The selected times are the average of ten runs.

Figure 11. Time-consumption comparison of SVM, TWSVM, BAENSVM, LSSVM, LSTWSVM, and
LSBAENSVM in different scales of the Salinas training dataset.

Figure 11 shows a solution time consumption of SVM, TWSVM, BAENSVM, LSSVM,
LSTWSVM, and LSBAENSVM based on the four groups of experiments. When the value
of each category is the same as that of Pavia dataset, the classification category is increased
to 16 categories, which makes finding the solution more difficult. When the training
datasets of each category comprise 200, 300, 400 and 500 data points, the solution time of
BAENSVM is 70, 184, 301, and 494, respectively. Under these circumstances, model training
becomes more difficult. SVM and TWSVM have faster solution speeds than BAENSVM
because of their small data size, but they also require more time. The introduction of
the least square idea greatly improves the speed of the algorithm. It is obvious that the
time requirements of LSSVM, LSTWSVM, and LSBAENSVM are far from those of SVM,
TWSVM, and BAENSVM. The solution time of LSBAENSVM is 37, 44, 46, and 48 times
faster than that of BAENSVM, which further verifies the efficacy of the algorithm with the
least square approach.

Table 8 shows the experimental accuracy of the SVM, TWSVM, BAENSVM, LSSVM,
LSTWSVM, and LSBAENSVM methods when using the Salinas dataset. The best experi-
mental results are shown in bold.
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Table 8. Classification results of Salinas hyperspectral images.

Train Number Accuracy SVM TWSVM BAENSVM LSSVM LSTWSVM LSBAENSVM

200
OA 91.13 91.08 91.37 91.34 91.01 91.69

Kappa 90.19 90.12 90.39 90.35 89.97 90.75

300
OA 92.01 91.98 92.40 92.22 92.13 92.57

Kappa 91.14 91.06 91.51 91.30 91.29 91.69

400
OA 92.43 92.30 92.55 92.58 92.25 92.87

Kappa 91.52 91.37 91.63 91.71 91.32 92.01

500
OA 92.50 92.44 92.64 92.72 92.21 92.92

Kappa 91.57 91.52 91.67 91.77 91.25 92.03

Bold in the table indicates the optimal accuracy.

Figure 12 sequentially shows the restoration graphs under the classification of SVM,
TWSVM, BAENSVM, LSSVM, LSTWSVM, and LSBAENSVM, corresponding to the classifi-
cation results presented in Table 8.

Figure 12. Cont.
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Figure 12. Salinas hyperspectral image classification result images. (a) Training Dataset 1, (b) training
Dataset 2, (c) training Dataset 3, (d) training Dataset 4, (e) ground truth.

Table 8 shows the experimental accuracies of the six classification models. Figure 12
is a restoration diagram of the specific classification results of the experimental results
in Table 8. Figure 12 shows that the LSBAENSVM has fewer classification errors than
the other algorithms in the four sets of experiments. From Table 8, it can be seen that
LSBAENSVM achieves the best classification results on the Salinas dataset. Compared with
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the BAENSVM model, the OAs of LSBAENSVM are 0.56%, 0.56%, 0.44%, and 0.42% higher
than those of BAENSVM when 200, 300, 400, and 500 training data are taken for each class,
respectively, and the Kappa coefficients are 0.56%, 0.55%, 0.49%, and 0.46% higher than
those of BAENSVM. Compared with LSSVM, the OAs of LSBAENSVM are 0.35%, 0.35%,
0.29%, and 0.20% higher than those of LSSVM, and the Kappa coefficients are 0.40%, 0.39%,
0.30%, and 0.26% higher than those of BAENSVM. Because LSBAENSVM is equivalent to
the improvement of a nonparallel support vector machine based on LSSVM, it invariably
obtains classification accuracies which are superior to those of LSSVM.

4. Conclusions

As a classic classification algorithm, the support vector machine achieves good results
in the classification of hyperspectral images. Aiming to overcome the problem whereby
the parallel discriminant plane of an SVM cannot meet the real distribution trend of hyper-
spectral data, the BAENSVM features two nonparallel decision planes based on a support
vector machine. This modification provides better results in terms of classification accuracy.
However, the BAENSVM also has certain problems: larger-scale solving matrices require
increased training times, and large-scale data may be difficult to solve. The algorithm model
proposed in this paper introduces the idea of least squares on the basis of the BAENSVM,
giving rise to the LSBAENSVM model. Compared with the BAENSVM, it has offers huge
improvements in terms of training speed, giving rise to the possibility for larger-scale data
training. Additionally, it exhibits improved experimental accuracy.

The algorithm in this paper has many parameters that need to be manually adjusted,
which can be difficult during training. Here are some tips to reduce the complexity of
parameter adjustment. First, set c1 = c2 and c3 = c4, and use the grid search method to
optimize the two parameters at a certain interval. After finding the parameters which yield
a high degree of accuracy, keep c1 = c2 unchanged and readjust c3 and c4 to obtain better
values. Finally, find the optimal values for c1 and c2 in the same way. Parameters c3 and c4
have the same function as C in LSSVM. As such, if c3 = c4 is fixed and they take a small
value, and c3 = c4 is adjusted at the same time, a pair of parallel classification decision
planes, just like with the LSSVM, will be obtained. c1 and c2 represent the degree of offset
on the parallel decision hyperplane. Adjusting their size yields a decision hyperplane that
is more consistent with the data distribution. Such a parameter selection method ensures
that the classification accuracy of lsbaensvm is not inferior to that of LSSVM, even if the
optimal lsbaensvm parameter is not applied.

The algorithm model proposed in this paper only improves upon the BAENSVM
model. Similar to the latter model, there is a gap in accuracy compared to current popular
deep learning classification methods. The main reason for this is that the classification of
the model only uses spectral information and does not make in-depth use of hyperspectral
data features. The main purpose of this paper is to improve the training time problem of
the BAENSVM model. In future, based on the LSBAENSVM classification model, we will
deep-mine the hyperspectral data information, combining spatial and spectral information
to further improve the classification accuracy. At present, many classification methods exist
which combine spatial and spectral information. For example, by extracting spatial texture
information to combine spatial spectral features, a Gabor filter can be applied to process
spatial information, to extract texture information features at multiple scales and directions,
and finally, to combine spectral feature vectors to form fusion features which can then be
classified using the lsbaensvm model. Alternatively, image LBP features can be used to
characterize spatial texture information and fuse it with spectral features. In such a setting,
fusion features and the lsbaensvm algorithm can be used for classifications.
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