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Abstract

:

Hyperspectral image classification technology is important for the application of hyperspectral technology. Support vector machines (SVMs) work well in supervised classifications of hyperspectral images; however, they still have some shortcomings, and their use of a parallel decision plane makes it difficult to conform to real hyperspectral data distribution. The improved nonparallel support vector machine based on SVMs, i.e., the bias constraint additional empirical risk minimization nonparallel support vector machine (BC-AERM-NSVM), has improved classification accuracy compared its predecessor. However, BC-AERM-NSVMs have a more complicated solution problem than SVMs, and if the dataset is too large, the training speed is significantly reduced. To solve this problem, this paper proposes a least squares algorithm, i.e., the least square bias constraint additional empirical risk minimization nonparallel support vector machine (LS-BC-AERM-NSVM). The dual problem of the LS-BC-AERM-NSVM is an unconstrained convex quadratic programming problem, so its solution speed is greatly improved. Experiments on hyperspectral image data demonstrate that the LS-BC-AERM-NSVM displays a vast improvement in terms of solution speed compared with the BC-AERM-NSVM and achieves good classification accuracy.
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1. Introduction


The emergence of hyperspectral remote sensing was a milestone in the development of modern remote sensing technology. Hyperspectral remote sensing images have extremely high spectral resolution, which greatly improves the ability to distinguish objects. Therefore, hyperspectral remote sensing technology is widely used in many fields [1]. An important basic content of hyperspectral data analysis and processing is classification, that is, the creation of a unique category for each pixel. Classification is an important means for researchers to use hyperspectral image information, as it can clearly reveal the distribution of ground object information. Therefore, the accuracy of the classification directly affects the accuracy of subsequent information processing. However, hyperspectral image classification [2] still faces a series of challenges, e.g., redundant information, high spectral dimensions and limited training samples. As such, research on hyperspectral image classification technology is still necessary.



Many algorithms can be applied to hyperspectral image classification. According to whether there is prior knowledge of the category attributes of the image samples, the classification approach can be either supervised or unsupervised. The unsupervised method does not require prior knowledge of the sample, but rather, completes the task by performing cluster analyses, yielding statistics on the spectral or spatial characteristics of the image itself. Commonly used unsupervised classification algorithms include K-means [3] and ISODATA [4] clustering. In contrast, supervised classification requires training samples. Through learning via training samples, a specific classification criterion is constructed which is then used to complete the classification task. Among supervised algorithms, KNN [5], decision trees [6,7], random forests [8], and support vector machines [9,10,11] are frequently used for hyperspectral data classification.



At present, supervised classification methods are still the mainstream of research, among which the support vector machine (SVM) has been widely studied and used because of its good performance. The SVM is a machine learning algorithm based on the statistical learning theory developed by Vapnik et al. [12]. An SVM can minimize the empirical error and maximize the classification interval. The central idea is to find the optimal plane by maximizing the interval between two parallel support planes in order to achieve supervised learning [13]. An SVM has strong nonlinear and high-dimensional data processing ability and solves the dimension disaster problem. Because of its solid theoretical foundation [14] and good generalization, the SVM has achieved good results in remote sensing image classification settings [15]. Melgani et al. analyzed the classification output from an SVM of hyperspectral data and proved that this approach is an effective alternative to traditional pattern recognition methods, regardless of the adopted multiclass strategy. In recent years, most research on SVM classifications of hyperspectral data has been based on the use of spectral features to further combine spatial features in order to improve the classification accuracy [16]. Chan et al. [17] discussed the classification situation combined with spatial information in an SVM classifier, giving rise to further improvements in the classification accuracy. Jin et al. [18] reported the fast, accurate and nondestructive identification of wheat seeds using SVM classification combined with spatial spectral feature extraction. Suykens et al. [19] changed the inequality constraints of an SVM to equality constraints and proposed a least squares support vector machine (LSSVM). The experimental results showed that the LSSVM required less computation time. Therefore, the LSSVM, as an alternative to the SVM, is widely used in research. At present, many scholars are using the LSSVM algorithm combined with other feature processing algorithms as a basic classifier to study the classification of hyperspectral images. Gao and Heng-Zhen et al. [20] used a LSSVM as a basic classifier and combined the band extraction algorithm to classify hyperspectral images, which improved the classification accuracy and reduced the computational requirements. Shao and Yuanyuan et al. [21] applied hyperspectral imaging to classify wheat grains and extracted spectral information about damaged and healthy grain samples. The features were processed by the principal component analysis (PCA) and continuous projection algorithm (SPA) methods; then, the LSSVM model was used for classification, and good classification accuracy was obtained. However, the parallel plane SVM classification model still has some problems regarding practical remote sensing data, and the distribution of hyperspectral data poses problems in terms of meeting the assumption that parallel planes are separable. The idea of a nonparallel support vector machine was proposed by Jayadeva et al. and implemented as a twin support vector machine (TWSVM) [22,23,24]. By solving two smaller quadratic programming problems, two nonparallel hyperplanes were determined so that each hyperplane was closer to one class and farther away from the other. As a classical nonparallel support vector, the TWSVM is widely used because of its faster solution speed and the characteristics of the nonparallel decision plane. However, TWSVMs do not perform satisfactorily with hyperspectral images. The original problem only minimizes the empirical risk and does not minimize the structural risk, which affects their generalization performance. Kaya et al. compared the classification of a TWSVM of hyperspectral data with that of a SVM. The TWSVM achieved classification results similar to those of the SVM, but with a shorter training time [25]. Liu et al. combined multifeature optimization and a TWSVM to classify remote sensing images, processed the features of hyperspectral images, and finally, used the TWSVM as a classifier, which improved the classification accuracy of hyperspectral images [26]. The same authors then proposed a new, nonparallel SVM algorithm, the BC-AERM-NSVM, based on the nonparallel plane SVM [27], which now referred to as the BAENSVM. This algorithm considers both empirical and structural risk minimization. The nonparallel characteristics allow it to obtain better classification accuracy than an SVM, and structural risk minimization leads to better generalization performance than the TWSVM. It achieved better classification accuracy in four classification experiments on commonly used hyperspectral data. However, the BAENSVM solution matrix is larger than that of the SVM, so the solution speed is reduced.



This paper proposes a new support vector machine model based on BAENSVM, i.e., the least square bias constraint additional empirical risk minimization nonparallel support vector machine (LS-BC-AERM-NSVM). It solves the problem of the long computation time of the BAENSVM algorithm when a large number of hyperspectral training datasets are used. LS-BC-AERM-NSVM (hereafter referred to as LSBAENSVM) modifies the original problem of the BAENSVM model, changes the constraint condition to an equality constraint and changes the L1 regularization term of the error variable to the L2 regularization term; as such, the dual problem it solves becomes a convex quadratic programming problem with a pair of unconstrained conditions. Without constraints, the speed of the parameter solution is greatly improved. With an increase in the scale of the hyperspectral training data, the training time of the algorithm remains low.



The remainder of this paper is organized as follows:



Section 2 includes detailed information about the algorithm model itself and the preliminary preparations for the experiment, i.e.:




	(1)

	
The selection of experimental software tools and the hardware conditions of the experiment.




	(2)

	
A brief introduction of the BC-AERM-NSVM algorithm and a detailed description of the LS-BC-AERM-NSVM algorithm model.




	(3)

	
An evaluation index of the experimental results.









Section 3 presents images and analyses of the experimental results, and Section 4 provides a summary of the full text.




2. Materials and Methods


2.1. Software Description


In this research, a computer with an AMD R7 4800 H CPU and 16 GB RAM produced by AMD Corporation in the United States was used. The algorithm model was implemented in the Python 3.8 programming language produced by Python Software Foundation in the United States via in the PyCharm software. The normalization function in the sklearn package was used in the project to preprocess the hyperspectral data. All solutions to systems of linear equations in model calculations were solved using the scipy.linalg.solve() function. All convex quadratic programming problems were solved using the CVXOPT toolkit.




2.2. Data


This paper applied two public hyperspectral remote sensing datasets for experiments. Basic information about the two datasets is presented below.



2.2.1. Indian Pines Dataset


The Indian Pines dataset includes hyperspectral data about images of Indian pine trees in northwest Indiana, USA, made using an airborne visible infrared imaging spectrometer (AVIRIS) in 1992. It has a total of 220 bands, generally excluding 20 bands that cannot be reflected by water; as such, the remaining 200 bands are the research objects. The size of the piece of data is 145 × 145, i.e., a total of 21,025 pixels. There are a total of 10,249 pixels containing a total of 16 types of ground objects. Figure 1 shows a sample band from the Indian Pines dataset.




2.2.2. Kennedy Space Center Dataset


The Kennedy Space Center dataset includes hyperspectral data of images of the Kennedy Space Center, Florida, made using an imaging spectrometer (AVIRIS) sensor in 1996, with a total of 224 bands. Generally, 48 bands which are affected by noise are excluded, leaving 176 bands as the research object in this study. The size of each piece of data is 512 × 614, making a total of 314,368 pixels. There are 4811 pixels containing 13 types of ground objects. Figure 2 shows a sample band from the Kennedy Space Center dataset.




2.2.3. Pavia University Dataset


The Pavia University dataset includes hyperspectral data of images of Pavia City, Italy, made using an imaging spectrometer (ROSI) sensor in 2003, with a total of 115 bands, generally excluding 12 bands affected by noise. The remaining 103 bands are the research object of this study. The size of these pieces of data is 610 × 340, making a total of 2,207,400 pixels. There are a total of 42,776 pixels containing nine types of ground objects. Figure 3 shows a sample band from the Pavia University dataset.




2.2.4. Salinas Dataset


The Salinas dataset includes hyperspectral data of images of Salinas Valley, California, made using an imaging spectrometer (AVIRIS) sensor, with a total of 224 bands, generally excluding 20 bands affected by noise. The remaining 204 bands are the research object of this study. The size of these data is 512 × 217, comprising a total of 105,984 pixels. There are a total of 54,129 pixels containing 16 types of ground objects. Figure 4 shows a sample band from the Salinas dataset.





2.3. Bias Constraint Additional Empirical Risk Minimization Nonparallel Support Vector Machine


For the binary classification problem of m datasets in the n-dimensional feature space Rn, matrix C of size   m × n   represents all the sample points, and the i-th sample point is    C i  ( i = 1 , 2 , … , m )  ,    C i  =   ( i =  C  i 1   ,  C  i 2   , … ,  C  i n   )  T   . Assuming that the number of positive samples in all samples is    m +    and the number of negative samples is    m −   , all positive samples form a matrix of size    m +  × n  , which is represented by A, and all negative samples form a matrix of size    m −  × n  , represented by B.    y i  ∈ { 1 , − 1 }   represents the category of the sample of the i-th sample point,  Y  is a diagonal matrix of   m × m   size, and    y i    forms its diagonal; then,    Y  i i     represents the category information of the    C i    sample.



First, consider the linear case of BAENSVM, whose two decision hyperplanes are shown in (1) and (2):


  f  x  =  ω +  x +  b +  = 1  



(1)






  f  x  =  ω −  x +  b −  = − 1  



(2)







Here,    ω ±  ∈  R n    and   b ∈  R n   .



The original problem of the BAENSVM is obtained by adding the least square and offset constraint terms of the positive and negative samples, respectively, on the basis of the SVM. We added an additional empirical risk minimization term to obtain two nonparallel decision planes that better fit the distribution trend of positive and negative samples to obtain (3) and (4), i.e., the two original problems that need to be optimized.


      min   ω  , b ,   ξ +     1 2         ω +     2  +  b    +   2    +    c 1   2   η +    T   η +  +     c  3   e T   ξ +      s . t .    A   ω +  +  e +   b +  =  η +         Y    C  ω +  +    e   b +    +  ξ +  ≥    e       ξ +    ≥    0  .    



(3)






      min   ω  , b ,   ξ −     1 2         ω −     2  +  b − 2    +    c 2   2   η −    T   η −  +     c  4   e T   ξ −      s . t .    B   ω −  +  e −   b −  =  η −         Y    C  ω −  +    e   b −    +  ξ −    ≥    e       ξ −    ≥    0  .    



(4)




where    η +    and    η −    are vectors of dimension m,    ξ +    and    ξ −    are slack variables,    c i  , i = 1 , 2 , 3 , 4   is a penalty parameter,    e +    is a vector with all values of 1 and dimension    m +   ,    e −    is a vector with all values of 1 and dimension    m −   , and  e  is a vector with all values of 1 and dimension m.



Using the Lagrange multiplier method to solve the original problems, i.e., (3) and (4), the following dual problems can be obtained:


      max   λ , α       e   T  α −  1 2     λ  T     α  T          A  A T  +  1   c 1      I  +  +  E 1      −   A  C T  +  E 2     Y T        − Y   C  A T  +  E 3        Y   C  C T  +  E 4     Y T            λ T     α T    T      s . t .    0  ≤ α ≤  c 3   e T     



(5)






      max   θ , γ       e   T  γ −  1 2     θ       T     γ  T          B  B T  +  1   c 2     I −  +  F 1      −   B  C T  +  F 2     Y T        − Y   C  B T  +  F 3        Y   C  C T  +  F 4     Y T            θ T     γ  T    T      s . t .    0  ≤ γ ≤  c 4   e T     



(6)




where    E i  , i = 1 , 2 , 3 , 4   represents a matrix of size    m +  ×  m +  ,  m +  × m , m ×  m +  , m × m  , and all the values in the matrix are 1;    F i  , i = 1 , 2 , 3 , 4   represents a matrix of size    m −  ×  m −  ,  m −  × m , m ×  m −  , m × m  , and the values in the matrices are all 1;    I +    represents the identity matrix of size    m +  ×  m +   ; and    I −    represents the identity matrix of size    m −  ×  m −   .



The parameters corresponding to the positive and negative hyperplanes are obtained using Equations (7)–(10).


   ω +  = −  A T   λ  *  +  C T   Y T   α  *   



(7)






   ω −  =  B T   θ  *  +  C T   Y T   γ  *   



(8)






   b +  = −  e + T   λ  *  +  e T   Y T   α *   



(9)






   b −   = −  e − T   θ  *  +  e T   Y T   γ  *   



(10)




where    λ *  ,  α *  ,  θ *  ,  γ *    are the optimal solutions of the Lagrange multipliers, obtained by solving the Equations (5) and (6).



Next, we determine the category to which the new sample point belonged by calculating the distance from the new sample point to the two decision planes. Setting    b +  =  b +  − 1   and    b −  =  b −  + 1  , the specific calculation formula is shown in (11).


  C  lass    =    arg      min   i = +  , −             x T  ⋅  ω    i       +      b   i           ω i          



(11)







Nonlinear classification problems can be transformed into a linear classification problem in a certain dimensional feature space through nonlinear transformation, and a linear model can be learned in a high-dimensional feature space.   ϕ ( x )   represents the mapping of  x  to a high-dimensional space. In the dual problems (5) and (6) of linear BAENSVM learning, the nonlinear BAENSVM is obtained using the kernel function instead of the inner product. The dual problem of the nonlinear BAENSVM is as follows:


      max  α      e   T  α −  1 2     λ       T     α       T          K   A  A T    +  1   c 1     I +  +  E 1      −   K   A  C T    +  E 2     Y T        − Y   K   C  A T    +  E 3        Y   K   C  C T    +  E 4     Y T            λ T     α  T    T      s . t .    0  ≤ α ≤  c 3   e T     



(12)






      max  α      e   T  γ −  1 2     θ  T     γ  T          K   B  B T    +  1   c 2     I −  +  F 1      −   K   B  C T    +  F 2     Y T        − Y   K   C  B T    +  F 3        Y   K   C  C T    +  F 4     Y T            θ  T     γ  T    T      s . t .    0  ≤ γ ≤  c 4   e T     



(13)







Similar to the linear case, i.e.,    b +  =  b +  − 1   and    b −  =  b −  + 1  , the corresponding decision function in the nonlinear case is:


  C  lass    =    arg      min   i = +  , −          K    x T  ⋅  ω    i       +      b   i        K    ω    i   T   ω    i            



(14)








2.4. Least Square Bias Constraint Additional Empirical Risk Minimization Nonparallel Support Vector Machine


On the basis of the original problem of the BAENSVM algorithm, the LSBAENSVM replaces inequality constraints with equality constraints, modifies the L1 regularization term of the error variable to the L2 regularization term, and obtains two new original problems. The dual problem corresponding to the new original problem is an unconstrained convex quadratic programming problem, and the absence of constraints greatly improves the efficiency of the solution and reduces the computational cost.



2.4.1. Linear Case


LSBAENSVM also uses two nonparallel classification decision planes as follows:


  f  x  =  ω +  x +  b +  = 1  



(15)






  f  x  =  ω −  x +  b −  = − 1  



(16)







The new original problem is obtained as (17) and (18):


      min   ω  , b ,   ξ +     1 2         ω +     2  +  b + 2    +    c 1   2   η +    T   η +  +    c 3   2   ξ + T   ξ +      s . t .    A   ω +  +  e +   b +  =  η +         Y    C  ω +  +    e   b +    +  ξ +  =    e     



(17)






      min   ω  , b ,   ξ −     1 2         ω −     2  +  b − 2    +    c 2   2   η −    T   η −  +    c 4   2   ξ − T   ξ −      s . t .    B   ω −  +  e −   b −  =  η −         Y    C  ω −  +    e   b −    +  ξ −  =    e     



(18)







Using the Lagrangian multiplier method to solve the dual problem to Formula (17), the Lagrangian function is obtained as follows:


    L    ω +  ,  b +  ,  ξ +  , α , β   =  1 2         ω +     2  +  b + 2    +    c 1   2   η + T   η +   +  c 3   ξ + T   ξ +      +  λ T    A  ω +  +  e +   b +  −  η +         +  α T    e −  ξ +  − Y   C  ω +  + e  b +         



(19)




where   α = (  α 1  , … ,  α m  ) , β = (  β 1  , … ,  β m  )   and   λ = (  λ 1  , … ,  λ   m +    )   are Lagrange multiplier vectors. Taking the partial derivative of the Lagrangian function (19), the KKT conditions are obtained as follows:


   ∇   ω +    L =  ω +  +  A T  λ −  C T   Y T  α = 0  



(20a)






   ∇   b +    L =  b +  +  e + T  λ −  e T   Y T  α = 0  



(20b)






   ∇   η +    L =  c 1   η +  − λ = 0  



(20c)






   ∇   ξ +    L =  c 3   e T  −  α T  = 0  



(20d)







Formulas (20a) and (20b) yield:


       ω    +   T     b    +   T     T  =       −  A T       C T   Y T        −  e + T       e T   Y T             λ T     α T     T   



(21)







Putting (20a)–(20d) into the Lagrangian function (19), the following dual formula can be obtained:


    max   λ , α        e    T  α −  1 2     λ  T     α  T          A  A T  +  1   c 1     I +  +  E 1      −   A  C T  +  E 2     Y T        − Y   C  A T  +  E 3        Y   C  C T  +  E 4     Y T  +  1   c 3    J            λ T     α T     T   



(22)




where  J  represents an identity matrix of size   m × m  . The dual problem obtained at this time is an unconstrained convex quadratic programming problem. Since there are no constraints, the solution speed of the problem will be greatly increased.



Accordingly, ω− and b− corresponding to the negative class can be obtained:


       ω    −   T     b    −   T     T  =       −  B T       C T   Y T        −  e − T       e T   Y T             θ T     γ T     T   



(23)







Using the same method, the dual equation corresponding to the negative sample solution can be obtained as follows:


    max   θ , γ        e    T  γ −  1 2     θ       T     γ  T          B  B T  +  1   c 2     I −  +  F 1      −   B  C T  +  F 2     Y T        − Y   C  B T  +  F 3        Y   C  C T  +  F 4     Y T  +  1   c 4    J            θ T     γ  T     T   



(24)







Next, we determine the class of a new sample by comparing its distance to the positive and negative hyperplanes. Setting    b +  =  b +  − 1   and    b −  =  b −  + 1  , the corresponding decision function in the nonlinear case is:


  C  lass    =    arg      min   i = +  , −             x  T  ⋅  ω i    +      b   i         ω i       



(25)








2.4.2. Nonlinear Case


A linear case can be extended to a nonlinear case, such as a support vector machine, by introducing a kernel function into the linear model. The kernel function   K ( x ,  x ′  ) = ϕ ( x ) ⋅ ϕ (  x ′  )   and the corresponding transformation   X = ϕ ( x )   are introduced, where   X ∈ H , H   is the Hilbert space. On the basis of linear problems (22) and (24), two original problems in the nonlinear case can be obtained.


      min   ω  , b ,   ξ +     1 2         ω +     2  +      b      +   2    +    c 1   2   η +    T   η +  +    c 3   2   ξ +    T   ξ +      s . t . ϕ  A   ω +  +  e +   b +  =  η +         Y      ϕ  C   ω +  +    e   b +    +  ξ +  =    e     



(26)






      min   ω  , b ,   ξ −     1 2           ω −     2  +  b − 2    +    c 2   2   η −    T   η −  +    c 4   2   ξ −    T   ξ −      s . t . ϕ  B     ω −  +  e −   b −  =  η −         Y    ϕ  C   ω −  +    e   b −    +  ξ −  =    e     



(27)







Then, we use the Lagrange multiplier method to solve (26) and (27) and obtain the dual problem as follows:


    max   λ , α        e    T  α −  1 2     λ  T     α  T          K   A  A T    +  1   c 1     I +  +  E 1      −   K   A  C T    +  E 2     Y T        − Y   K   C  A T    +  E 3        Y   K   C  C T    +  E 4     Y T  +  1   c 3    J            λ T     α T     T   



(28)






    max   θ , γ        e    T  γ −  1 2     θ T     γ  T          K   B  B T    +  1   c 2     I −  +  F 1      −   K   B  C T    +  F 2     Y T        − Y   K   C  B T    +  F 3        Y   K   C  C T    +  F 4     Y T  +  1   c 4    J            θ T     γ  T     T   



(29)







By solving the dual problems of (28) and (29), two decision hyperplanes can be obtained as follows:


  − K    x T   A T     λ *  +    x T   C T     Y T   α *  +  b +  = 1  



(30)






  − K    x T   B T     θ *  +    x T   C T     Y T   γ *  +  b −  = − 1  



(31)






   b +  = −  e + T   λ *  +  e T   Y T   α *   



(32)






   b −   = −  e − T   θ *  +  e T   Y T   γ *   



(33)







Setting    b +  =  b +  − 1   and    b −  =  b −  + 1  , the corresponding decision function in the nonlinear case is:


  C  lass    =    arg      min   i = +  , −          K    x T  ⋅  ω    i       +      b   i        K    ω    i   T   ω    i            



(34)




where:


  K    x T   ω +    = − K    x T   A T     λ  *  + K    x T   C T     Y T   α  *   



(35)






  K    x T   ω −    = − K    x T   B T     θ  *  + K    x T   C T     Y T   γ  *   



(36)






    K    ω    +   T   ω    +       =  λ  *    T  K   A  A T     λ  *  −  λ  *    T  K    A C   T   Y T   α  *      −  α  *    T  Y K   C  A T     λ  *  +  α  *    T  Y K   C  C T     Y T   α  *     



(37)






    K    ω − T   ω −     =  θ  *    T  K   B  B T     θ  *  −  θ  *    T  K    B C   T   Y T   γ  *      −  γ  *    T  Y K   C  B T     θ  *  +  γ  *    T  Y K   C  C T     Y T   γ  *     



(38)









2.5. Application of Algorithms in Hyperspectral Image Classification


A binary classification algorithm is proposed in this paper; however, the applied hyperspectral dataset contains multiclassification data, and the classification algorithm needs to be extended to a multiclassification situation. Taking the linear case of the LSBAENSVM algorithm as an example, the specific implementation steps are shown in Algorithm 1.



	Algorithm 1: The Classification Process of the LSBAENSVM Algorithm Model for a Hyperspectral Dataset



	Step 1: Each category of the hyperspectral dataset can be combined into pairs to obtain    1 2    n ×   n − 1       binary classification tasks.

Step 2: Hyperparameters c1, c2, c3, c4 of the LSBAENSVM model are set.

Step 3: Each binary classification task is trained using LSBAENSVM.

  1. First, we used the parameter set in Step 2 to solve parameters    α *  ,  λ *  ,  θ *  ,  γ *    according to Formulas (22) and (24). Here, c1 and c3 are the two parameters of Formula (22), and c2 and c4 are the two parameters of Formula (24).

  2. The normal vectors and offsets of the two decision hyperplanes are obtained with (21) and (23).

  Finally,    1 2    n ×   n − 1       classifier models are obtained.

Step 4: For the    1 2    n ×   n − 1       classifier models trained in Step 3, the category of the new sample is predicted by Formula (25), all predicted categories are recorded, and the sample is classified into the category with the most votes.









2.6. Accuracy Assessment


As a comparison array used to represent accuracy evaluations, the confusion matrix is generally used to evaluate the classification accuracy of hyperspectral data. The columns in the array represent the reference data and the rows represent the category data obtained by classifying the image data. The form is:


  H =        h  11        h  12      ⋯     h  1 N          h  21        h  22      ⋯     h  2 N        ⋮   ⋮      ⋮       h  N 1        h  N 2      ⋯     h  N N          



(39)







Among them, the overall classification accuracy (OA) and Kappa coefficient are important statistics derived from the confusion matrix that are generally used as evaluation criteria for the classification results. OA represents the ratio of the sum of all correctly classified pixels (i.e., the sum of all values on the diagonal axis in the confusion matrix) to the sum of all pixels. However, OA only considers the number of correctly classified pixels on the diagonal axis in the confusion matrix. The Kappa coefficient comprehensively considers various factors in the confusion matrix and can determine the accuracy of the overall classification; the larger the value of the kappa coefficient, the higher the accuracy of the corresponding classification algorithm. Therefore, the OA and Kappa coefficients are usually used to jointly evaluate the classification accuracy of hyperspectral images.





3. Results


This section shows a comparison of the classification accuracies and solution times of the SVM, TWSVM, BAENSVM, LSSVM, LSTWSVM and LSBAENSVM methods when applied the four hyperspectral datasets, i.e., the Indian Pines, Kennedy Space Center, Pavia University, and Salinas sets. All classification algorithms are applied in a nonlinear fashion with a Gaussian kernel function.



3.1. Indian Pines Dataset


The Indian Pines dataset has a large difference in the number of samples of each category, and the number of some pixels is small. For this dataset, 10%, 20%, 30%, and 40% of each category are selected as training data. The rest of the data are used as the test set. In this way, we can test the computational times of each algorithm using datasets of different sizes and compare the classification accuracies.



The division of the training set of Indian Pines is shown in Table 1.



Figure 5 shows our solution time comparison of the SVM, TWSVM, BAENSVM, LSSVM, LSTWSVM and LSBAENSVM algorithms under the conditions of the usage of 10%, 20%, 30% and 40% of the Indian Pines training dataset. The indicated times are the average values of ten runs.



Figure 5 shows that when 10% of the data are selected as the training dataset and the data size is 1029, the training time of the BAENSVM is approximately three times that of the SVM. This is because the BAENSVM needs to solve two larger-scale matrices than the SVM solving matrix, significantly increasing the computational requirements. At this time, the solution time of the LSBAENSVM proposed in this paper is only 0.61 s, indicating a vast reduction in computational load thanks to the fact that the convex quadratic programming problem it solves has no constraints. In general, the least square forms of SVM, TWSVM and BAENSVM can greatly reduce the complexities of the calculations. The training times of LSSVM, LSTWSVM and LSBAENSVM are only 0.06, 0.06, and 0.61 s, respectively, which shows that introducing the least square form into the algorithm is an effective way to improve the calculation speed. Because LSBAENSVM has a larger calculation data matrix, the calculation complexity is still larger than those of LSSVM and LSTWSVM, but the training time remains modest compared with that of the BAENSVM, and its calculation speed is 27 times faster than BAENSVM using data on this scale. With a continuous increase in the number of training datasets, the solution time of each algorithm increases to varying degrees. Observe the broken line graph of the solution times of the six algorithms under 10%, 20%, 30%, and 40% of the training dataset. With an increase in the scale of the training data, the calculation consumption of the six algorithms increases by different degrees. Because the matrix of the two solving problems of the TWSVM is smaller, the increase in its computational complexity is smaller than that of the SVM. At the same time, the matrix of the two solving problems of the BAENSVM is larger than that of the SVM, so the increase in computational complexity is larger than that of the SVM. At this time, the computational complexities of the LSSVM, LSTWSVM, and LSBAENSVM methods increase very slightly. At 20%, 30%, and 40% of the training dataset, the speed of LSBAENSVM is 27 times, 36 times and 47 times faster than that of BAENSVM, respectively, indicating that the speed advantage of the former is more obvious with an increase in the scale of training data.



Table 2 shows the experimental accuracies of the SVM, TWSVM, BAENSVM, LSSVM, LSTWSVM, and LSBAENSVM methods under training datasets of 10%, 20%, 30%, and 40% scales of the Indian Pines dataset. The best experimental results are shown in bold.



Figure 6 sequentially shows the restoration graphs under the classification of SVM, TWSVM, BAENSVM, LSSVM, LSTWSVM, and LSBAENSVM, corresponding to the classification results presented in Table 2.



Table 2 shows the experimental accuracies of the six classification models. Figure 6 is a restoration diagram of the specific classification results of the experimental results in Table 2. Figure 6 shows that LSBAENSVM has fewer classification errors than the other algorithms in the four sets of experiments. From Table 2, to specifically analyze the experimental results, it can be seen that LSBAENSVM achieved the best classification results on the Indian Pines dataset. Compared with the BAENSVM model, when each class uses 10%, 20%, 30%, and 40% of the training data, the OA of LSBAENSVM is 0.63%, 0.45%, 0.39%, and 0.29% higher than that of BAENSVM, respectively, while the Kappa coefficients are 1.34%, 1.17%, 0.62%, and 0.69% higher than those of BAENSVM, respectively. The classification accuracy of the BAENSVM model is better than those of SVM and TWSVM. For example, using 10%, 20%, 30%, and 40% of the training data of, the OA of BAENSVM is 0.42%, 0.51%, 0.38%, and 0.42% higher than that of SVM, respectively, and the Kappa coefficients are 0.54%, 0.64%, 0.48%, and 0.48% higher than those of the SVM. This is because the BAENSVM algorithm is a nonparallel support vector machine constructed on the basis of an SVM. Under certain conditions, it can degenerate into an SVM, although the classification result must be better than that of an SVM. However, TWSVM only minimizes the empirical risk, which affects the classification accuracy, so the classification result is poor. While the LSSVM also achieves good classification results, LSBAENSVM has better classification accuracy. The OA is 0.1%, 0.15%, 0.17%, and 0.11% higher than that of SVM. Compared with the relationship between the BAENSVM and SVM, the LSBAENSVM is theoretically a nonparallel support vector machine based on an LSSVM but with better classification accuracy.




3.2. Kennedy Space Center Dataset


The Kennedy Space Center dataset has a small number of samples. For this dataset, 10%, 20%, 30%, and 40% of each category is selected as training data. The rest of the data are used as the test set. In this way, we can test the time requirement of each algorithm using datasets of different sizes and compare the classification accuracy.



The division of the Kennedy Space Center training set is shown in Table 3.



Figure 7 shows a solution time comparison of the SVM, TWSVM, BAENSVM, LSSVM, LSTWSVM and LSBAENSVM algorithms when using 10%, 20%, 30%, and 40% of the Kennedy Space Center training dataset. The indicated times are the average values of ten runs.



The six broken lines in Figure 7 show the solving speeds of the six models. It is obvious that the broken lines corresponding to the SVM, TWSVM, and BAENSVM models are above those corresponding to the LSSVM, LSTWSVM, and LSBAENSVM models. This is because the least square form applied in the former models greatly reduces the solving speed. Due to the increase in the data size, the training time of baensvm is increased by 2.8, 3.3, 4.0, and 4.45 times, respectively, compared to that of SVM. Additionally, it can be seen that the growth rate of the BAENSVM training times is more pronounced with an increase of data size. Compared with LSBAENSVM, the solution speed of LSBAENSVM is 29, 31, 33 and 35 times faster than that of BAENSVM; this is because the introduction of least squares converts the dual problem into an unconstrained convex quadratic programming problem, which greatly improves the solution speed.



Table 4 shows the experimental accuracies of the SVM, TWSVM, BAENSVM, LSSVM, LSTWSVM, and LSBAENSVM methods under training dataset scales of 10%, 20%, 30%, and 40% of the Kennedy Space Center datasets. The best experimental results are shown in bold.



Figure 8 sequentially shows the restoration graphs under the classification of SVM, TWSVM, BAENSVM, LSSVM, LSTWSVM, and LSBAENSVM, corresponding to the detailed classification results in Table 4.



Table 4 shows the experimental accuracies of six classification models. Figure 8 is a restoration diagram of the specific classification results of the experimental results in Table 4. Figure 8 shows that the LSBAENSVM has fewer classification errors than the other algorithms in the four sets of experiments. From Table 4, it can be seen that LSBAENSVM achieves the best classification results using the Kennedy Space Cente dataset. Compared with the BAENSVM model, when each class takes 10%, 20%, 30%, and 40% of the training data, the OA of LSBAENSVM is 0.71%, 0.58%, 0.46%, and 0.35% higher than that of BAENSVM, respectively, while the Kappa coefficients are 1.04%, 0.51%, 0.34%, and 0.25% higher than those of BAENSVM. The classification accuracy of the BAENSVM model is better than that of the SVM. For example, in the training data of 10%, 20%, 30% and 40%, the OA of BAENSVM is 0.31%, 0.17%, 0.22% and 0.23% higher than those of SVM, respectively, and the Kappa coefficients are 0.43%, 0.20%, 0.40% and 0.47% higher than those of the SVM. This is because the BAENSVM algorithm is a nonparallel support vector machine based on an SVM. As such, the classification accuracy of TWSVM is 0.96%, 0.86%, 0.60%, and 0.51% lower than that of BAENSVM. This is because baensvm minimizes the structural risk compared with TWSVM, and thus, has stronger generalization ability. While the LSSVM also achieves good classification results, LSBAENSVM has better classification accuracy than LSSVM. The OA is 0.23%, 0.21%, 0.18% and 0.26% higher than those of the SVM. Compared with the relationship between the BAENSVM and SVM, the LSBAENSVM is theoretically a nonparallel support vector machine based on an LSSVM but with better classification accuracy. As long as control penalty parameters c1 and c3 are small enough, the classification accuracy of lsbaensvm is similar to that of LSSVM.




3.3. Pavia University Dataset


The Pavia University dataset contains a large amount of data, and each category selects the same number of samples for training. For each category, 200, 300, 400, and 500 data points were selected as training samples to conduct four sets of experiments in order to test the classification results under different scales of training data. The specific classifications are shown in Table 5.



Figure 9 shows a solution time comparison of the SVM, TWSVM, BAENSVM, LSSVM, LSTWSVM, and LSBAENSVM algorithms under the four Pavia University experiments. The indicated times are the averages of ten runs.



As seen in Figure 9, when the number of training samples in each category is equal, the line graph of the TWSVM time-consumption calculation is completely under that of the support vector machine. This shows that TWSVM is less computationally expensive because it solves two matrix problems which are of smaller scales than those of the SVM. The BAENSVM time-consumption calculation line chart is far above other those of the classification algorithms. This is because this method needs to solve two convex quadratic programming problems, and the solution matrix size of each optimization problem is larger than that of an SVM. Therefore, the computational complexity of the BAENSVM algorithm is much greater than those of the other algorithms. In this experiment, when the training datasets of each category are 200, 300, 400 and 500 data points, the solution times of BAENSVM are 3.8, 4.8, 5.0 and 6.0 times those of the SVM, respectively. Therefore, with an increase in data size, the solution time of the BAENSVM increases gradually compared to the SVM. Observing the line graph, the calculation timelines corresponding to the three algorithms, i.e., LSSVM, LSTWSVM and LSBAENSVM, are far lower than those of SVM, TWSVM, and BAENSVM, indicating that the least squares form can significantly reduce the complexity of the calculations. It can be seen from the figure that when the training datasets of each category are 200, 300, 400, and 500 data points, the solution times of BAENSVM are 31.5, 40.3, 47.9, and 55.2 times those of the LSBAENSVM, respectively. As the size of the training set increases, the computational speed advantage of LSBAENSVM over BAENSVM increases.



Table 6 shows the experimental accuracies of the SVM, TWSVM, BAENSVM, LSSVM, LSTWSVM, and LSBAENSVM methods when using the Pavia University dataset. The best experimental results are shown in bold.



Figure 10 sequentially shows the restoration graphs under the classification of SVM, TWSVM, BAENSVM, LSSVM, LSTWSVM, and LSBAENSVM, corresponding to the classification results presented in Table 6.



Table 6 shows the experimental accuracies of the six classification models. Figure 10 shows that LSBAENSVM has fewer classification errors than the other algorithms in the four sets of experiments. From Table 6, it can be seen that LSBAENSVM achieves the best classification results on the Pavia University dataset. Compared with the BAENSVM model, the Oas of LSBAENSVM are 0.63%, 0.45%, 0.39%, and 0.29% higher than those of BAENSVM when 200, 300, 400, and 500 training data are taken for each class, respectively, and the Kappa coefficients are 0.86%, 0.68%, 0.51%, and 0.35% higher than those of BAENSVM. Compared with LSSVM, the Oas of LSBAENSVM are 0.68%, 0.61%, 0.52%, and 0.56% higher than those of LSSVM, respectively, while the Kappa coefficients are 0.80%, 0.67%, 0.58%, and 0.65% higher than those of BAENSVM. Similar to the relationship between the LSBAENSVM and BAENSVM, the LSBAENSVM is essentially equivalent to the nonparallel support vector machine algorithm obtained by adding the least squares of positive and negative samples to the LSSVM algorithm model. Therefore, theoretically, LSBAENSVM can obtain better accuracy than LSSVM.




3.4. Salinas Dataset


The Salinas dataset contains a large amount of data, and each category selects the same number of samples for training. For each category, 200, 300, 400, and 500 data points are selected as training samples to conduct four sets of experiments in order to test the classification results under different scales of training data. The specific classifications are shown in Table 7.



Figure 11 shows a solution time comparison of the SVM, TWSVM, BAENSVM, LSSVM, LSTWSVM, and LSBAENSVM algorithms under the four groups of Salinas experiments. The selected times are the average of ten runs.



Figure 11 shows a solution time consumption of SVM, TWSVM, BAENSVM, LSSVM, LSTWSVM, and LSBAENSVM based on the four groups of experiments. When the value of each category is the same as that of Pavia dataset, the classification category is increased to 16 categories, which makes finding the solution more difficult. When the training datasets of each category comprise 200, 300, 400 and 500 data points, the solution time of BAENSVM is 70, 184, 301, and 494, respectively. Under these circumstances, model training becomes more difficult. SVM and TWSVM have faster solution speeds than BAENSVM because of their small data size, but they also require more time. The introduction of the least square idea greatly improves the speed of the algorithm. It is obvious that the time requirements of LSSVM, LSTWSVM, and LSBAENSVM are far from those of SVM, TWSVM, and BAENSVM. The solution time of LSBAENSVM is 37, 44, 46, and 48 times faster than that of BAENSVM, which further verifies the efficacy of the algorithm with the least square approach.



Table 8 shows the experimental accuracy of the SVM, TWSVM, BAENSVM, LSSVM, LSTWSVM, and LSBAENSVM methods when using the Salinas dataset. The best experimental results are shown in bold.



Figure 12 sequentially shows the restoration graphs under the classification of SVM, TWSVM, BAENSVM, LSSVM, LSTWSVM, and LSBAENSVM, corresponding to the classification results presented in Table 8.



Table 8 shows the experimental accuracies of the six classification models. Figure 12 is a restoration diagram of the specific classification results of the experimental results in Table 8. Figure 12 shows that the LSBAENSVM has fewer classification errors than the other algorithms in the four sets of experiments. From Table 8, it can be seen that LSBAENSVM achieves the best classification results on the Salinas dataset. Compared with the BAENSVM model, the OAs of LSBAENSVM are 0.56%, 0.56%, 0.44%, and 0.42% higher than those of BAENSVM when 200, 300, 400, and 500 training data are taken for each class, respectively, and the Kappa coefficients are 0.56%, 0.55%, 0.49%, and 0.46% higher than those of BAENSVM. Compared with LSSVM, the OAs of LSBAENSVM are 0.35%, 0.35%, 0.29%, and 0.20% higher than those of LSSVM, and the Kappa coefficients are 0.40%, 0.39%, 0.30%, and 0.26% higher than those of BAENSVM. Because LSBAENSVM is equivalent to the improvement of a nonparallel support vector machine based on LSSVM, it invariably obtains classification accuracies which are superior to those of LSSVM.





4. Conclusions


As a classic classification algorithm, the support vector machine achieves good results in the classification of hyperspectral images. Aiming to overcome the problem whereby the parallel discriminant plane of an SVM cannot meet the real distribution trend of hyperspectral data, the BAENSVM features two nonparallel decision planes based on a support vector machine. This modification provides better results in terms of classification accuracy. However, the BAENSVM also has certain problems: larger-scale solving matrices require increased training times, and large-scale data may be difficult to solve. The algorithm model proposed in this paper introduces the idea of least squares on the basis of the BAENSVM, giving rise to the LSBAENSVM model. Compared with the BAENSVM, it has offers huge improvements in terms of training speed, giving rise to the possibility for larger-scale data training. Additionally, it exhibits improved experimental accuracy.



The algorithm in this paper has many parameters that need to be manually adjusted, which can be difficult during training. Here are some tips to reduce the complexity of parameter adjustment. First, set c1 = c2 and c3 = c4, and use the grid search method to optimize the two parameters at a certain interval. After finding the parameters which yield a high degree of accuracy, keep c1 = c2 unchanged and readjust c3 and c4 to obtain better values. Finally, find the optimal values for c1 and c2 in the same way. Parameters c3 and c4 have the same function as C in LSSVM. As such, if c3 = c4 is fixed and they take a small value, and c3 = c4 is adjusted at the same time, a pair of parallel classification decision planes, just like with the LSSVM, will be obtained. c1 and c2 represent the degree of offset on the parallel decision hyperplane. Adjusting their size yields a decision hyperplane that is more consistent with the data distribution. Such a parameter selection method ensures that the classification accuracy of lsbaensvm is not inferior to that of LSSVM, even if the optimal lsbaensvm parameter is not applied.



The algorithm model proposed in this paper only improves upon the BAENSVM model. Similar to the latter model, there is a gap in accuracy compared to current popular deep learning classification methods. The main reason for this is that the classification of the model only uses spectral information and does not make in-depth use of hyperspectral data features. The main purpose of this paper is to improve the training time problem of the BAENSVM model. In future, based on the LSBAENSVM classification model, we will deep-mine the hyperspectral data information, combining spatial and spectral information to further improve the classification accuracy. At present, many classification methods exist which combine spatial and spectral information. For example, by extracting spatial texture information to combine spatial spectral features, a Gabor filter can be applied to process spatial information, to extract texture information features at multiple scales and directions, and finally, to combine spectral feature vectors to form fusion features which can then be classified using the lsbaensvm model. Alternatively, image LBP features can be used to characterize spatial texture information and fuse it with spectral features. In such a setting, fusion features and the lsbaensvm algorithm can be used for classifications.
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Figure 1. Sample band from the Indian Pines dataset. 
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Figure 2. Sample band from the Kennedy Space Center dataset. 
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Figure 3. Sample band of the Pavia University dataset. 
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Figure 4. Sample band of the Salinas dataset. 






Figure 4. Sample band of the Salinas dataset.
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Figure 5. Time-consumption comparison of SVM, TWSVM, BAENSVM, LSSVM, LSTWSVM and LSBAENSVM at different scales using the Indian Pines training dataset. 






Figure 5. Time-consumption comparison of SVM, TWSVM, BAENSVM, LSSVM, LSTWSVM and LSBAENSVM at different scales using the Indian Pines training dataset.



[image: Remotesensing 14 04263 g005]







[image: Remotesensing 14 04263 g006 550] 





Figure 6. Indian Pines hyperspectral image classification result image. (a) 10% Indian Pines dataset, (b) 20% Indian Pines dataset, (c) 30% Indian Pines dataset, (d) 40% Indian Pines dataset, (e) ground truth. 






Figure 6. Indian Pines hyperspectral image classification result image. (a) 10% Indian Pines dataset, (b) 20% Indian Pines dataset, (c) 30% Indian Pines dataset, (d) 40% Indian Pines dataset, (e) ground truth.
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Figure 7. Time-consumption comparison of SVM, TWSVM, BAENSVM, LSSVM, LSTWSVM, and LSBAENSVM using different scales of the Kennedy Space Center training dataset. 
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Figure 8. Kennedy Space Center hyperspectral image classification result image. (a) 10% KSC dataset, (b) 20% KSC dataset, (c) 30% KSC dataset, (d) 40% KSC dataset, (e) ground truth. 
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Figure 9. Time-consumption comparison of SVM, TWSVM, BAENSVM, LSSVM, LSTWSVM, and LSBAENSVM using different scales of Pavia University training datasets. 
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Figure 10. Pavia University hyperspectral image classification result image. (a) Training Dataset 1, (b) training Dataset 2, (c) training Dataset 3, (d) training Dataset 4, (e) ground truth. 
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Figure 11. Time-consumption comparison of SVM, TWSVM, BAENSVM, LSSVM, LSTWSVM, and LSBAENSVM in different scales of the Salinas training dataset. 
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Figure 12. Salinas hyperspectral image classification result images. (a) Training Dataset 1, (b) training Dataset 2, (c) training Dataset 3, (d) training Dataset 4, (e) ground truth. 






Figure 12. Salinas hyperspectral image classification result images. (a) Training Dataset 1, (b) training Dataset 2, (c) training Dataset 3, (d) training Dataset 4, (e) ground truth.
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Table 1. The number of samples in each category of the Indian Pines dataset and the division of training samples.
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	Class
	Samples
	10%
	20%
	30%
	40%





	Alfalfa
	54
	5
	11
	16
	22



	Corn-notill
	1434
	143
	287
	430
	574



	Corn-mintill
	834
	83
	167
	250
	334



	Corn
	234
	23
	47
	70
	94



	Grass-pasture
	497
	50
	99
	149
	199



	Grass-trees
	747
	75
	149
	224
	299



	Grass-pasture-mowed
	26
	3
	5
	8
	11



	Hay-windrowed
	489
	49
	98
	147
	196



	Oats
	20
	2
	4
	6
	8



	Soybean-notill
	968
	97
	194
	290
	388



	Soybean-mintill
	2468
	247
	494
	740
	988



	Soybean-clean
	614
	61
	123
	184
	246



	Wheat
	212
	21
	42
	64
	85



	Woods
	1294
	129
	259
	388
	518



	Buildings-Grass-Trees-Drives
	300
	30
	60
	90
	120



	Stone-Steel-Towers
	95
	10
	19
	29
	38



	Total
	10,286
	1029
	2057
	3086
	4120
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Table 2. Classification results of Indian Pines hyperspectral images.






Table 2. Classification results of Indian Pines hyperspectral images.





	
Train Rate

	
Accuracy

	
SVM

	
TWSVM

	
BAENSVM

	
LSSVM

	
LSTWSVM

	
LSBAENSVM






	
10%

	
OA

	
82.42

	
82.79

	
82.84

	
84.08

	
83.49

	
84.18




	
Kappa

	
81.16

	
81.50

	
81.70

	
82.88

	
82.69

	
82.95




	
20%

	
OA

	
87.10

	
87.02

	
87.61

	
88.63

	
88.21

	
88.78




	
Kappa

	
86.06

	
86.07

	
86.70

	
87.44

	
87.38

	
87.78




	
30%

	
OA

	
89.41

	
89.43

	
89.79

	
90.24

	
90.09

	
90.41




	
Kappa

	
88.48

	
88.68

	
88.96

	
89.43

	
89.41

	
89.50




	
40%

	
OA

	
90.15

	
90.02

	
90.57

	
91.15

	
90.65

	
91.26




	
Kappa

	
89.28

	
89.39

	
89.76

	
90.49

	
89.89

	
90.57








Bold in the table indicates the optimal accuracy.
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Table 3. The number of samples in each category of the Kennedy Space Center dataset and the division of training samples.






Table 3. The number of samples in each category of the Kennedy Space Center dataset and the division of training samples.





	Class
	Samples
	10%
	20%
	30%
	40%





	Scrub
	761
	77
	153
	229
	305



	Willow swamp
	243
	25
	49
	73
	98



	CP hammock
	256
	26
	52
	77
	103



	Slash pine
	252
	26
	51
	76
	102



	Oak/Broadleaf
	161
	17
	33
	49
	65



	Hardwood
	229
	23
	46
	69
	92



	Swamp
	105
	11
	21
	32
	42



	Graminoid marsh
	431
	44
	87
	130
	173



	Spartina marsh
	520
	52
	104
	156
	208



	Cattail marsh
	404
	41
	81
	122
	162



	Salt marsh
	419
	42
	84
	126
	168



	Mud flats
	503
	51
	101
	151
	202



	Water
	527
	53
	106
	159
	211



	Total
	4811
	488
	968
	1449
	1931
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Table 4. Classification results of Kennedy Space Center hyperspectral images.






Table 4. Classification results of Kennedy Space Center hyperspectral images.





	
Train Number

	
Accuracy

	
SVM

	
TWSVM

	
BAENSVM

	
LSSVM

	
LSTWSVM

	
LSBAENSVM






	
10%

	
OA

	
91.84

	
91.19

	
92.15

	
92.63

	
91.54

	
92.86




	
Kappa

	
90.93

	
90.73

	
91.36

	
92.23

	
91.03

	
92.40




	
20%

	
OA

	
93.28

	
92.59

	
93.45

	
93.82

	
92.64

	
94.03




	
Kappa

	
92.75

	
92.23

	
92.95

	
93.31

	
92.29

	
93.46




	
30%

	
OA

	
94.08

	
93.70

	
94.30

	
94.58

	
93.97

	
94.76




	
Kappa

	
93.50

	
93.51

	
93.90

	
94.02

	
93.45

	
94.24




	
40%

	
OA

	
94.59

	
94.31

	
94.82

	
94.91

	
94.28

	
95.17




	
Kappa

	
94.02

	
94.03

	
94.49

	
94.42

	
93.96

	
94.74








Bold in the table indicates the optimal accuracy.
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Table 5. Ground truth classes for the Pavia University data and their respective numbers of samples.
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	Class
	Samples
	Train Dataset 1
	Train Dataset 2
	Train Dataset 3
	Train Dataset 4





	Asphalt
	6631
	200
	300
	400
	500



	Meadows
	18,649
	200
	300
	400
	500



	Gravel
	2099
	200
	300
	400
	500



	Trees
	3064
	200
	300
	400
	500



	Painted metal sheets
	1345
	200
	300
	400
	500



	Bare Soil
	5029
	200
	300
	400
	500



	Bitumen
	1330
	200
	300
	400
	500



	Self-Blocking Bricks
	3682
	200
	300
	400
	500



	Shadows
	947
	200
	300
	400
	500



	Total
	42,776
	1800
	2700
	3600
	4500
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Table 6. Classification results of Pavia University hyperspectral images.






Table 6. Classification results of Pavia University hyperspectral images.





	
Train Number

	
Accuracy

	
SVM

	
TWSVM

	
BAENSVM

	
LSSVM

	
LSTWSVM

	
LSBAENSVM






	
200

	
OA

	
91.35

	
91.68

	
91.87

	
91.82

	
91.46

	
92.50




	
Kappa

	
88.50

	
89.35

	
89.34

	
89.40

	
88.88

	
90.20




	
300

	
OA

	
91.75

	
91.95

	
92.36

	
92.20

	
92.14

	
92.81




	
Kappa

	
88.94

	
88.58

	
89.87

	
89.88

	
89.64

	
90.55




	
400

	
OA

	
92.57

	
91.89

	
92.73

	
92.60

	
92.71

	
93.12




	
Kappa

	
89.93

	
89.29

	
90.27

	
90.20

	
90.41

	
90.78




	
500

	
OA

	
92.83

	
92.32

	
93.13

	
92.89

	
93.07

	
93.42




	
Kappa

	
90.18

	
89.74

	
90.72

	
90.49

	
90.74

	
91.07








Bold in the table indicates the optimal accuracy.
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Table 7. Ground truth classes for the Salinas scene and their respective numbers of samples.






Table 7. Ground truth classes for the Salinas scene and their respective numbers of samples.





	Class
	Samples
	Train Dataset 1
	Train Dataset 2
	Train Dataset 3
	Train Dataset 4





	ineyard_green_weeds_1
	2009
	200
	300
	400
	500



	ineyard_green_weeds_2
	3726
	200
	300
	400
	500



	Fallow
	1976
	200
	300
	400
	500



	Fallow_rough_plow
	1394
	200
	300
	400
	500



	Fallow_smooth
	2678
	200
	300
	400
	500



	Stubble
	3959
	200
	300
	400
	500



	Celery
	3579
	200
	300
	400
	500



	Grapes_untrained
	11,271
	200
	300
	400
	500



	Soil_vinyard_develop
	6203
	200
	300
	400
	500



	Corn_senesced_green_weeds
	3278
	200
	300
	400
	500



	Lettuce_romaine_4wk
	1068
	200
	300
	400
	500



	Lettuce_romaine_5wk
	1927
	200
	300
	400
	500



	Lettuce_romaine_6wk
	916
	200
	300
	400
	500



	Lettuce_romaine_7wk
	1070
	200
	300
	400
	500



	Vinyard_untrained
	7268
	200
	300
	400
	500



	Vinyard_vertical_trellis
	1807
	200
	300
	400
	500



	Total
	54,129
	1800
	2700
	3600
	4500
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Table 8. Classification results of Salinas hyperspectral images.






Table 8. Classification results of Salinas hyperspectral images.





	
Train Number

	
Accuracy

	
SVM

	
TWSVM

	
BAENSVM

	
LSSVM

	
LSTWSVM

	
LSBAENSVM






	
200

	
OA

	
91.13

	
91.08

	
91.37

	
91.34

	
91.01

	
91.69




	
Kappa

	
90.19

	
90.12

	
90.39

	
90.35

	
89.97

	
90.75




	
300

	
OA

	
92.01

	
91.98

	
92.40

	
92.22

	
92.13

	
92.57




	
Kappa

	
91.14

	
91.06

	
91.51

	
91.30

	
91.29

	
91.69




	
400

	
OA

	
92.43

	
92.30

	
92.55

	
92.58

	
92.25

	
92.87




	
Kappa

	
91.52

	
91.37

	
91.63

	
91.71

	
91.32

	
92.01




	
500

	
OA

	
92.50

	
92.44

	
92.64

	
92.72

	
92.21

	
92.92




	
Kappa

	
91.57

	
91.52

	
91.67

	
91.77

	
91.25

	
92.03








Bold in the table indicates the optimal accuracy.
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