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Abstract: Deep learning has been widely used in remote sensing image segmentation, while a lack
of training data remains a significant issue. The few-shot segmentation of remote sensing images
refers to the segmenting of novel classes with a few annotated samples. Although the few-shot
segmentation of remote sensing images method based on meta-learning can get rid of the dependence
on large data training, the generalization ability of the model is still low. This work presents a
few-shot segmentation of remote sensing images with a self-supervised background learner to boost
the generalization capacity for unseen categories to handle this challenge. The methodology in this
paper is divided into two main modules: a meta learner and a background learner. The background
learner supervises the feature extractor to learning latent categories in the image background. The
meta learner expands on the classic metric learning framework by optimizing feature representation
through contrastive learning between target classes and latent classes acquired from the background
learner. Experiments on the Vaihingen dataset and the Zurich Summer dataset show that our model
has satisfactory in-domain and cross-domain transferring abilities. In addition, broad experimental
evaluations on PASCAL-5i and COCO-20i demonstrate that our model outperforms the prior works
of few-shot segmentation. Our approach surpassed previous methods by 1.1% with ResNet-101 in a
1-way 5-shot setting.

Keywords: few-shot segmentation; few-shot segmentation of remote sensing images; self-supervised
learning; contrast learning

1. Introduction

Remote sensing image segmentation is mainly used to identify and segment out
ground objects in images. Therefore, semantic segmentation, as a basic vision task, has
essential applications in remote sensing image segmentation. Deep learning has yielded
great results in the direction of fully supervised semantic segmentation [1–3]. However,
training a fully supervised semantic segmentation model requires many densely labeled
images, and segmentation in remote sensing images requires more labeled samples, and
the labeling process is laborious.

To alleviate the need for dense pixel annotation, few-shot segmentation of remote
sensing images is proposed. Few-shot segmentation aims to segment novel classes ac-
cording to common features among base classes learned during the training phase. A
better-performing few-shot segmentation of remote sensing images model should be able
to adapt to novel classes by learning only a few annotated samples. Currently, the major-
ity of few-shot learning approaches adhere to a meta-learning paradigm. Due to better
flexibility and accuracy, metric-based meta-learning models are widely used in few-shot
segmentation tasks.
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A typical few-shot segmentation model treats non-target classes as the background
in support images, leading to specific features being undermined. The features of latent
classes in the background can be taken as a reference to discriminate between the fore-
ground and background. To this end, mining latent novel classes can widen the gap
between the background and foreground prototypes. Furthermore, similar and dissimilar
categories might be misclassified in the category representation space. Our method use
contrastive learning to decrease the distance between similar categories and increase the
distance between different categories in the embedding space, hence improving the feature
extractor’s accuracy for category representation.

We propose a few-shot segmentation of the remote sensing images model using a
self-supervised background learner to overcome the problem of feature undermining and
discriminator bias. Considering that there is also rich feature information in the background
of the support set, the background learner learns from the unlabeled data to assist the
meta-learner for further feature enhancement. In addition, to learn richer general features
between categories, our model uses contrastive learning to make the category embedding
space more uniformly distributed and to retain more feature information.

In summary, our contributions lie in these particular aspects:

• We propose that when segmenting novel classes, the background learner can learn
the latent classes and assist the feature extractor in obtaining information about other
classes in the background. The background learner eliminates confusion between the
target class and non-target class objects with different semantics in the query image,
and improves segmentation accuracy.

• We use contrast learning to refine the segmented edges by explicitly classifying query
and background features in the embedding space.

• This provides a more accurate segmentation model for the few-shot segmentation of
remote sensing images. This addresses the costly problem of annotating images of
new classes in remote sensing.

2. Related work
2.1. Few-Shot Learning

In many application scenarios, the models have a limited number of annotated samples
to generalize well. Few-shot learning is proposed, to recognize the novel classes with a
few samples by learning meta-knowledge among the different categories. Generally, few-
shot learning is classified as being model-based [4], metrics-based [5], and optimization-
based [6–8]. Particularly, the Siamese network [9] laid the foundations for later metrics-
based model growth. Additionally, the matching network [6] provides another idea for the
development of non-parametric metrics learning. In the metrics learning framework, the
prototype network [7] leads the model to focus on the similarity between the support and
query pairs while ignoring semantic features learning.

2.2. Few-Shot Segmentation of Remote Sensing Images

In semantic segmentation, approaches on the basis of few-learning can segment novel
classes with only a few annotated images. Recent works can be divided into two categories
using different focal points, i.e., a parameter matching-based method and a prototype-based
method. In a breakthrough of few-shot segmentation, PANet [10] introduced a prototype
alignment method that provides highly representative prototypes for each semantic class
and that segments query objects based on feature matching. Furtherly, segmentation that
is based on deep learning methods relies on big data training [11,12], but remote sensing
images are densely annotated and laborious to acquire. The studies in [13–17] explore how
to reduce the need for dense annotation from self-/semi-supervised learning and weakly
supervised learning. Jiang et al. [18] introduced a few-shot learning method for remote
sensing image segmentation. However, few-shot learning is not maturely applied in remote
sensing image segmentation.
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2.3. Self-Supervised Learning

The influence of a fully supervised learning model will be considerably constrained
for specific tasks, owing to a lack of data and labels. However, self-supervised learning
can improve the feature extraction ability of the model when faced with a new field and
task that lacks abundant labeled data. MoCo’s [19] appearance triggered a surge in visual
self-supervised learning. Then, one by one, SimCLR [20], BYOL [21], SwAV [22], and other
self-supervised learning algorithms were proposed. The model can learn features using self-
supervised learning based on a pretext task [23]. A pretext task, such as generating a pseudo-
label using a superpixel method, can provide additional local information that is used for
few-shot learning to compensate for the lack of annotated data. Self-supervised learning
has been widely used for the task of few-shot segmentation. For example, SSL-ALPNet [24]
employs superpixel-based pseudo-label rather than manual annotation. MLC [25] uses
an offline annotation module to generate pseudo masks of unlabeled data as a pretext
task. SSNet [26] obtains supervised information in the background of the query set via
super-pixel segmentation.

3. Problem Setting

Our model conducts training process on base classes Cbase with abundant annotated
images, and then use the generalization ability to segment novel classes Cnovel with few
annotated images (Cbase ∪ Cnovel = ∅). Our model extracts images containing base classes
from train set Dbase, and images including the novel classes compose test set Dnovel . The
training set Dbase = (Ii, Mi)

Nbase
i=1 is constructed using Nbase image-mask pairs that have

objects in Cbase, where i states the i-th image and Mi represents the corresponding mask.
The test set has the same construction as the training set. A few-shot segmentation training
episode typically consists of a set of query images Q and a set of supporting images
S with ground-truth masks. We require the additional set of images E in our few-shot
segmentation setting. In detail, a training episode of few-shot segmentation is composed of
n ways for every way to have k shots support samples, q query images, and e extra images.

4. Methods
4.1. Overview

As previously mentioned, non-target classes in the images are simply treated as a
background. To alleviate this issue, we consider the features of non-target classes that
lead the feature extractor to learn features in the background. In addition, we apply
contrastive learning to obtain a more accurate discriminator. Noteworthly, the meta-learner
use fully supervised learning and the background learner use self-supervised learning.
These two branches jointly supervise the feature extractor; hence, we define our model as
semi-supervised learning.

Our framework. We designed a few-shot segmentation framework that learns meta-
knowledge via training on supporting-query pairs, and that mines the latent novel classes in
the contexts via self-supervised learning. With the auxiliary supervision named background
learner, our method can learn semantic features in the background that help discriminate
the support classes in the complicated scene. The model (Figure 1) conducts semantic
segmentation by first sending support and query images to an encoder that extracts features.
Then, the support prototypes are computed from the prototype generation module that
contains masked average pooling. The background learner trains the model with extra
images to mine latent novel classes, as introduced in Section 4.2. To learn richer general
features between categories, our model employs contrastive learning via infoNCE loss, as
described in Section 4.3. Support and query prototypes from the meta learner are used as
positive samples, whereas latent category prototypes from the background learner are kept
as negative samples in the memory bank.
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Figure 1. The main architecture of the presented framework. The dotted box is a self-supervised
background learner (in Section 4.2), which mines latent classes in the background. The contrastive
representation learning branch is described in Section 4.3.

In this work, we added self-supervised learning from additional unlabeled images to
learn the image background features. In the background learner, we added extra images
into an encoder–decoder to obtain prediction maps where the encoder is shared with the
characteristics extractor of the supporting and query images. Training with the additional
branch, we calculated the segmentation loss Lseg as follows:

Lseg = Lmeta + µLbackground + λLcontrastive, (1)

where Lmeta represents the ground truth segmentation loss of the query image, Lbackground
denotes the extra images segmentation loss, and Lcontrastive is the contrastive loss. The
settings of hyperparameters µ and λ are analyzed in detail in Section 6.2.5.

4.2. Background Learner
4.2.1. Pseudo-Label Generation

A self-supervised pretext task attempts to make greater use of background pixel infor-
mation. Pseudo-label generation utilizes super-pixel segmentation to segment unlabeled
data (Figure 2). We chose SLIC as the method for superpixel generation. The SLIC method
generates superpixels via iterative clustering. In detail, we set the compactness to 10 and
n_segments to 100, and selected the five superpixels with the highest class activation values
from the final k generated superpixels as the background in potential classes. For the
number of potential classes selected, we set k to 5. In Section 6.2.5, we demonstrate a
comparison experiment for the hyperparameter k taking values.

The pseudo-label generation denotes each super-pixel as a pseudo-class cp and gener-
ates the corresponding binary mask Mp. The class activation score S(cp) of each pseudo-
class cp is calculated by the average of the extracted extra feature Fe:

S(cp) =
∑(x,y) Fe

(x,y)Mp
(x,y)(cp)

∑(x,y) Mp
(x,y)(cp)

, (2)
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The five classes c̃p with the highest activation scores in the pseudo-classes were
selected as the most likely latent novel classes in the background. The corresponding binary
mask is denoted as M̃p.

Figure 2. Detail diagram of pseudo-label generation module.

4.2.2. Loss Function

The model optimizes the parameters by reducing the value of the loss function. The
model applies a cross-entropy loss function in the background learner to supervise the
training of our model. In the background learner branch, since our model defines the
number of pseudo-classes to be five, the background learner uses a multi-category cross-
entropy loss. We define Lbackground as the multi-category cross-entropy loss between the
pseudo-class mask M̃p and predicted extra mask M̂p by:

Lbackground =
1

HW ∑
(x,y)

∑̃
cp

1[Mx,y = c̃p]logM̃p, (3)

where HW is the height and width of feature maps, M̃p represents the generated pseudo-
class label, and M̂p represents the predicted background feature mask.

4.3. Contrastive Representation Learning

Contrastive learning allows the model to learn similarities and differences between
feature points to learn general features between categories. In the vector representation
space, contrastive learning enables the model to bring positive samples closer to the anchor
samples and negative samples further away.

Contrastive learning is more effective when there are enough negative samples; how-
ever, standard few-shot learning frameworks may relate to less negative samples. Accord-
ing to this question, we introduce extra unlabeled images as negative samples (Figure 3).
On the one hand, these extra images supervise the feature extractor in mining background
information, and on the other hand, they can be utilized as negative examples in contrastive
learning to supervise the model in learning general features between images.

To increase the negative samples set, we employ a memory bank to store negative
samples, as inspired by SimCLR [20]. k negative samples are stored in the memory bank,
represented as x−k = {xk1, xk2...xkn}. The positive samples generated by query image encod-
ing are denoted as x+k = xk0, while the negative samples generated by supporting image
encoding are denoted as xq, forming the space of all samples for the contrastive learning.

Positive samples are the support and query prototypes encoded from the support and
query images, while negative samples are the potential background classes obtained from
the background learner branch. Clustering between similar prototypes is strengthened by
increasing the distance between the positive and negative samples using infoNCE loss [19]:

Lcontrastive = −log
exp(s(xq, xk0)/τ)

exp(s(xq, xk0)/τ) + ∑n
i=1 exp(s(xq, xki)/τ)

, (4)
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where Lcontrastive denotes the loss between the positive and negative samples in contrastive
learning. τ represents the temperature coefficient; we set τ = 0.03, based on broad
experiments. s(·, ·) is the distance measure function between the positive and negative
samples; we chose the cosine similarity function as the measure function in this paper:

s(xq, xk) =
xq
>xk

‖ xq ‖‖ xk ‖
. (5)

Figure 3. Detailed diagram of contrastive representation learning that learns general features between
categories by computing distance between target classes and latent classes.

5. Experiments
5.1. Dataset and Metrics

PASCAL-5i and COCO-20i. The performance of our model is evaluated on two
datasets, i.e., PASCAL-5i and COCO-20i. The PASCAL-5i dataset has 20 classes, consisting
of PASCAL VOC 2012 [27] and augmented SBD [28]. The COCO-20i dataset contains
80 categories. In the few-shot segmentation task, the classes of both the datasets are divided
into four folds; three folds are used for training, and the fourth fold is used for assessment.

Remote sensing dataset. We ran trials using the Vaihingen dataset and the Zurich
Summer dataset to assess the effectiveness of our model for remote sensing. The Vaihingen
dataset was provided by the International Society for Photogrammetry and Remote Sensing
(ISPRS), which collected data from high-resolution aerial images of Vaihingen, with each
image labeled with six classes. The Zurich Summer dataset consists of 20 photos, including
eight classes. The Zurich dataset can reflect real-world conditions well, which helps with
evaluating the performance of the segmentation models in remote sensing. Details of these
two remote sensing datasets are shown in the (Table 1).

Table 1. Detailed information of remote sensing datasets.

Datasets Number of Images Region Resolution (m) Channels Including Categories

ISPRS 16 Vaihingen 0.09 near-infrared (NIR),
red (R), green (G)

impervious surface, building,
low vegetation, tree,

car, clutter

Zurich Summer 20 Zurich 0.62 near-infrared (NIR),
red (R), green (G)

road, building, tree, grass,
bare soil, water, railway,

swimming pool

Baseline and metrics. PANet was used as the baseline model, because our model is
based on metric learning. Following previous methods, the mean Intersection-over-Union
(mIoU) is adopted for evaluating the model performance. On in-domain and cross-domain
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transfer, the remote sensing image segmentation performance is assessed using the F1 score
of each class, and the overall accuracy.

5.2. Implementation and Training Details

Network structure. To prove the effectiveness of our approach, ResNet-50 and ResNet-
101 were separately applied to be the feature extractor. The last level of the ResNet is deleted
for improved generalization, and the last ReLU is replaced by cosine similarity [10]. As for
the auxiliary semantic branch for learning background features, a lightweight decoder is
introduced behind the encoder shared with the meta-learner. The decoder consists of three
convolution layers, and all except the final convolution are followed by batch normalization
and ReLU. ImageNet pre-trained ResNet parameters are used for initialization, as in
previous approaches.

Implementation details. In particular, on PASCAL-5i and COCO-20i, all episodes are
developed with a support-query pair, and an additional image that supervises the model
learning background features in the training phase. To train the model, we used the SGD
optimizer with a learning rate of 5 × 10−4 that decays by 0.1 every 10,000 iterations, and
a momentum of 0.9. To obtain improved model parameters, the SGD backpropagation
approach continually modifies the model parameters over 3000 iterations. The training
image and mask pairs were cropped to (417,417) and enhanced through random horizontal
flipping. Specifically, our model stores the negative samples in a memory bank where
a dictionary is developed to store and update the embedding of negative samples. The
system of this experiment was Ubuntu 16.04, and the processor was Intel Xeon Silver 4210R.
The graphics processor (GPU) was the GeForce RTX 3090 GPU with 1 TB memory.

6. Discussion
6.1. Comparison with the State-of-the-Art

Extensive experiments were conducted to evaluate the model performance on PASCAL-
5i and COCO-20i. In particular, we chose ResNet-50 and ResNet-101 to be the encoding
networks. In convolutional neural networks, ResNet is the feature extractor with the best
segmentation effect. The extracted feature information is more detailed as a result of having
more layers. Based on experimental experience in most peer papers, we chose the two
most traditional resnets, Resnet-50 and Resnet-101, for the comparison experiments. More
experimental results are shown in Figure A1. To assess the performance of the model in
remote sensing image segmentation, we compared the result between full supervised deep
learning models and different few-shot segmentation models on the Vaihingen dataset and
the Zurich Summer dataset.

6.1.1. Pascal-5i

On ResNet-50 and ResNet-101, our approach outperformed previous methods (Table 2).
In particular, our approach outperformed previous methods by 1.1% with ResNet-101 in a
1-way 5-shot setting, and by 0.9% with ResNet-50 in a 1-way 1-shot setting. Our approach is
on par with the cutting-edge technology in other settings. From the experimental findings,
the generalization ability of our model is reflected in the segmentation results on the
PASCAL-5i dataset, which illustrates the necessity for improvement.

6.1.2. COCO-20i

The COCO-20i dataset includes more categories than the PASCAL-5i dataset, and has
more realistic scenes. We recorded the results of our approach in Table 3. In this dataset, our
approach outperformed previous methods by a considerable margin (0.6%) on the 1-shot
setting with ResNet-50. The results recorded in Tables 2 and 3 demonstrate the superiority
of our approach.
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Table 2. Mean-IoU of 1-way on PASCAL-5i. Bold numbers represent the best data in the comparison
experiment.

Method Backbone
1-Shot 5-Shot

Fold1 Fold2 Fold3 Fold4 Mean Fold1 Fold2 Fold3 Fold4 Mean

PANet [10]

ResNet-50

44.0 57.5 50.8 44.0 49.1 55.3 67.2 61.3 53.2 59.3
PPNet [29] 48.6 60.6 55.7 46.5 52.8 56.9 66.3 64.8 56.0 61.0
PMMs [30] 55.2 66.9 52.6 50.7 56.3 56.3 67.3 54.5 51.0 57.3
PFENet [31] 58.7 66.5 52.4 53.3 57.8 62.1 69.7 54.8 56.9 60.9
ASGNet [32] 56.8 65.9 54.8 51.7 57.2 61.7 68.5 62.2 55.4 61.9

MLC [25] 54.9 66.5 61.7 48.3 57.9 64.0 72.6 71.9 58.7 66.8
ours 53.6 62.9 57.8 51.3 56.4 65.3 71.2 71.3 63.2 67.7

PPNet [29]

ResNet-101

52.7 62.8 57.4 47.7 55.2 60.3 70.0 69.4 60.7 65.1
PFENet [31] 60.5 69.4 54.4 55.9 60.1 62.8 70.4 54.9 57.6 61.4
ASGNet [32] 59.8 67.4 55.6 54.4 59.3 64.6 71.3 64.2 57.3 64.4

MLC [25] 61.7 72.4 63.4 57.6 63.8 66.2 75.4 72.0 63.4 69.3
ours 62.5 73.9 62.9 57.7 64.3 67.1 73.4 69.5 62.7 68.2

Table 3. Mean-IoU of 1-way on COCO-20i. Bold numbers represent the best data in the comparison
experiment.

Method Backbone
1-Shot 5-Shot

Fold1 Fold2 Fold3 Fold4 Mean Fold1 Fold2 Fold3 Fold4 Mean

PANet [10]

ResNet-50

31.5 22.6 21.5 16.2 23.0 45.9 29.6 30.6 29.6 33.8
PPNet [29] 36.5 26.5 26.0 19.7 27.2 48.9 31.4 36.0 30.6 36.7
PMMs [30] 29.5 36.8 28.9 27.0 30.6 33.8 42.0 33.0 33.3 35.5
PFENet [31] 34.3 33.0 32.3 30.1 32.4 38.5 38.6 38.2 34.3 37.4

ours 34.7 33.6 31.7 32.0 33.0 37.2 36.9 37.4 33.5 36.3

6.1.3. Vaihingen

To show our model’s generalization capability, we trained it on the PASCAL-5i dataset
and tested it on the Vaihingen dataset. To segment the remote sensing images, we directly
transferred the parameters trained on the PASCAL-5i dataset. The performance of all
comparing methods is listed in Table 4, and there is a significant performance improvement
compared with other few-shot segmentation models, outperforming PANet [10] by 7.5%.
Segmentation performance is prominent in ‘building’ and ‘tree’ classes, and it surpasses
PANet [10] by 19.9% in the ‘car’ class. The qualitative outcomes of our method on the
Vaihingen dataset are shown in Figure 4.

Table 4. F1 score of each class, and the overall accuracy using Vaihingen dataset (comparison between
deep learning and few-shot learning of segmentation model).

Method Imp. Surf. Building Low Veg. Tree Car Overall

FCN [1] 89.7 92.4 82.9 87.3 70.5 85.5
SegNet [33] 90.2 91.3 81.5 87.7 84.8 85.3

PANet [10] 49.4 68.5 38.2 70.8 25.5 60.3
ours 65.9 76.4 40.7 79.4 45.4 70.3

6.1.4. Zurich

We evaluated the generalization ability of our model on the Zurich Summer dataset.
The model performance was particularly good in the ‘tree’ and ‘water’ classes. Table 5
shows the results of all approaches, and illustrates a considerable performance improve-
ment compared with other few-shot segmentation models, exceeding PANet [10] by 13.2%
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overall. The qualitative outcomes of our method on the Zurich dataset are shown in
Figure 5.

Figure 4. Qualitative outcomes of our method on Vaihingen dataset.

Figure 5. Qualitative outcomes of our method on Zurich dataset.
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Table 5. F1 score of each class and overall accuracy on Zurich dataset (comparison between deep
learning and few-shot learning of segmentation model).

Method Road Building Tree Grass Soil Water Railway Pool Overall

FCN [1] 88.3 93.3 92.4 89.4 67.9 96.8 2.9 88.1 77.4
SegNet [33] 90.2 91.3 89.5 85.3 69.2 91.3 2.3 89.6 76.0

PANet [10] 48.2 53.6 58.4 67.9 45.4 70.1 0.8 59.7 50.5
ours 64.2 72.2 79.6 77.1 49.1 89.3 1.3 77.0 63.7

6.2. Ablation Study
6.2.1. Effectiveness of Different Components

Our model contains two main parts, the background learner and the contrastive repre-
sentation learning. The effectiveness of each component is evaluated on the PASCAL-5i

dataset (Table 6). The background learner contributes the most to performance improve-
ment, achieving a 0.9% increase in accuracy. The contrastive representation learning is
indispensable and provides a 0.5% accuracy improvement. Our method achieves an ideal
improvement with these two components.

Table 6. Ablation studies on the effects of different components. Contrastive Representation Learn-
ing (CRL): Contrast target classes and latent classes. Background Learner (BL): Mine latent classes
in the background using the background learner. Checkmark indicates the modules used in the
comparison experiment and bold numbers represent the best data in the comparison experiment.

BL CRL Fold1 Fold2 Fold3 Fold4 Mean

52.6 60.5 55.7 49.8 54.8
! 53.0 61.9 57.6 50.8 55.7

! 53.1 61.4 56.8 49.9 55.3
! ! 53.6 62.9 57.8 51.3 56.4

6.2.2. Effect of the Background Learner

We used unlabeled images to supervise the background latent features. The unlabeled
objects in the background were over-smoothed in the previous methods, which under-
mined the features. Extra images served as negative samples and allowed comparisons
to be made. In the background learner, we selected a batch-size of extra images in 1, 2, 4,
and 8, where the model obtained the highest accuracy for the batch-size of 2. We show the
segmentation accuracy of the model with different batch-sizes in Table 7. Semantic seg-
mentation is a dense classification task that needs positive and negative samples to balance
the feature distribution. The background learner supervised our model by recognizing
the semantic features in the background that helped the matching network discriminate
between background and foreground. To this end, mining the latent class broadened the
gap between the background and foreground prototypes in the embedding space. This
broadening leads the matching network to segment objects within complex backgrounds.
We visualized the ability to recognize semantic features (Figure 6), which shows the features
cluster in the embedding space. Few-shot segmentation model mostly uses the parameters
pre-trained on ImageNet dataset to initialize the model; In Figure 6, (a) is the distribution
of category objects clustered by pre-trained parameters in the embedding space, (b) is
the object distribution generated after the training of baseline model, and (c) is the object
distribution generated by our model with background learner-assisted training. As shown
in Figure 6, our model with a background learner significantly increased the intra-class
similarity, meaning that points representing objects in each category were more highly
clustered. We recorded the performance of our model with a variable number of classes in
the query image to analyze the effect of the background learner (Figure 7). When the query
image had numerous categories, our model fared better in terms of data performance.
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Table 7. Ablation studies on the batch-size of extra images in background learner.

Batchsize 1 2 4 8

mIoU 55.8 56.4 52.3 49.0

Figure 6. The t-sne visualization of the model and different colors represent features of different
categories with and without background learner is shown in the figure.

Figure 7. The performance of our model with different numbers of classes in query image.

6.2.3. Effect of Contrastive Representation Learning

The contrastive representation learning is indispensable and provides a 0.5% accuracy
improvement. Our model maintains the representation of positive samples close to one
another and the representation of negative and positive samples far apart by using a
contrast loss. By using contrast learning, the learnt representation can disregard changes
brought on by background alterations so that it can learn higher-dimensional and more
important feature information. Unlike other contrastive learning approaches, our model
stores the negative samples required for comparison in a memory bank, rather than relying
on batch size. In practice, a dictionary is developed to store and update the embedding of
negative samples.

6.2.4. In-Domain and Cross-Domain Transfer

To demonstrate the generalization ability of our model, its performance is shown in
terms of cross-domain segmentation and in-domain category transfer.
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Cross-domain segmentation. We transfer the parameters trained on the PASCAL-5i

dataset directly to segment remote sensing images, which evaluates the generalization
ability of our model over different domain categories.

In-domain category transfer. Our model was trained on the Vaihingen dataset, al-
lowing it to learn more targeted parameters. The performance of our model was tested
with a new category from the same dataset. Following the setup for training the few-shot
segmentation model, our model takes four categories of samples from the Vaihingen dataset
as the training set, and the remaining one category as the test set.

A comparison between cross-domain segmentation and in-domain category transfer
on ‘impervious surface’ and ‘building’ classes is shown in Table 8, which demonstrates
how training the model on an in-domain category can improve the accuracy. The F1 score
of the building and impervious surface class on the in-domain category transfer is 1.8%
and 1.6% higher than that of the cross-domain segmentation.

Table 8. F1 score of building and impervious surface on cross-domain and in-domain transfer.

Category Cross-Domain In-Domain

Buildings 76.4 78.2
Imp. surf. 65.9 67.5

6.2.5. Hyper-Parameters

In the pseudo-label generation, we set the number of the cluster as 5 after the ablation
experiments. The ablations on the hyper-parameter k in the pseudo-label generation are
presented in Table 9. We compare the performance of the model when k = 1, 3, 5, 7, and find
that the performance of the model is the best when k = 5. Another three hyperparameters
are set in our model, namely the coefficient µ before the two loss functions, and the
temperature coefficient λ in the contrast loss. As shown in Figure 8, the hyperparameters
are verified with ResNet-50 in a 1-way 1-shot setting, and the best segmentation accuracy
is attained when the coefficients µ and λ are set to 0.4 and 0.6, respectively. The impact of
the contrastive learning model is significantly influenced by the temperature coefficient τ.
If it is set to different parameters, the effect may be tens of percent points worse. Generally
speaking, the temperature coefficient τ should take a relatively small value from experience,
ranging from 0.01 to 0.1. The temperature coefficient τ in the contrast loss was set to 0.03
according to broad experiments.

Figure 8. Comparative experimental results for different values of the hyperparameters. (a) µ is
the coefficient before the loss function of the background learner. (b) λ is the coefficient before the
contrast loss. (c) τ is the temperature coefficient in the contrast loss.



Remote Sens. 2022, 14, 4254 13 of 17

Table 9. Ablation studies on the hyper-parameter k in pseudo-label generation. Bold numbers
represent the best data in the comparison experiment.

K Fold1 Fold2 Fold3 Fold4 Mean

1 52.7 61.9 56.7 50.5 55.5
3 53.3 62.5 57.4 51.1 56.0
5 53.6 62.9 57.8 51.3 56.4
7 53.5 61.4 57.2 50.8 55.7

7. Conclusions

This work presents a novel background learner to learn latent background features.
With the self-supervised background learner, the feature extractor can mine the latent novel
classes in the background. By using the self-supervised method, our model improves
in segmentation accuracy without marking costs. Another novelty is the application of
contrastive representation learning, which can generate a more accurate discriminator
with the use of a contrastive loss. With all these components, our method dramatically
improves and is on par with the cutting-edge technology of PASCAL-5i and COCO-20i. In
addition, our model combines few-shot learning and remote sensing image segmentation,
and obtains good results on a dataset of remote sensing images. Few-shot segmentation
using a self-supervised background learner achieves a good result that may allow for
background knowledge to be learned. Furthermore, our model demonstrates that few-shot
learning can obtain good results within remote sensing image segmentation.

8. Limitation

It can be seen from Figure 9 that the segmentation results obtained by our model
when segmenting ‘road’, ‘tree’, and ‘grass’ are relatively rough, and that the segmentation
of small objects in the picture is not accurate enough. During the experiments, we also
discovered that partial segmentation results exist and caused semantic confusion. Semantic
confusion often appears in images with similar semantics, as shown in Figure 10. Categories
with similar semantics, such as dogs and sheep, or chairs and tables, are confused in the
same image. For instance, ‘sheep’ is erroneously segmented as ‘dog’ in the middle group
of images.

Figure 9. Rough segmentation results on Zurich.
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Figure 10. Segmentation results with semantic confusion problem in PASCAL-5i.
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Appendix A. Qualitative Results

Figure A1. Qualitative outcomes of our method in 1-way 1-shot setting on PASCAL-5i.
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