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Abstract: Leaf area index (LAI) is one of the key biophysical indicators for characterizing the growth
and status of vegetation and is also used in modeling earth system processes. Machine learning
algorithms (MLAs) such as random forest regression (RFR), artificial neural network regression
(ANNR) and support vector regression (SVR) based on satellite data have been widely used for the
estimation of LAI. However, the selection of input variables has a great impact on the estimation
performance of MLAs. In this study, we aimed to improve the LAI inversion model of Inner Mongolia
grassland based on MLAs incorporating empirical knowledge. Firstly, we used the ANNR, SVR and
RFR approaches, respectively, to rank the input variables including vegetation indices, climate factors,
soil factors and topography factors and found that Normalized Difference Phenology Index (NDPI)
contributed the most to LAI estimation. Secondly, we selected four sets of input variables, namely, all
variables—A, model selected variables—B, overlapping variables—C and self-defined variables—D,
respectively. Subsequently, we built twelve LAI estimation models (RFR-A, RFR-B, RFR-C, etc.) based
on three MLAs and four sets of input variables. The evaluation of them showed the RFR produced
higher prediction accuracy, followed by ANNR and SVR. Furthermore, the RFR-D presented the
highest accuracy in predicting LAI (R2 = 0.55, RMSE = 0.37 m2/m2, MAE = 0.29 m2/m2). Finally, we
compared our results with MODIS LAI and GEOV2 LAI products and found that all of them showed
a similar spatial distribution of grassland LAI in the four sub-regions covering all grassland types,
but our model exhibited larger LAI values in the desert steppe and smaller LAI values in the others.
These findings demonstrated that MLAs incorporating empirical knowledge could improve the
accuracy of modelling LAI and further study is necessary to reduce the uncertainty in LAI mapping
in grassland.

Keywords: leaf area index (LAI); prior knowledge; Landsat8 OLI; machine learning regression; LAI
products; grassland
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1. Introduction

Grassland is a huge carbon stock with a strong carbon sink function [1]. It not only
has an important position in the carbon cycle of terrestrial ecosystem, but also plays an
important role in achieving the goals of carbon peaking and carbon neutrality. Leaf area
index (LAI), defined as half leaf surface area per unit ground surface area, is a quantitative
description of the amount of leaf area in an ecosystem [2–4]. As an important indicator
for describing grassland growth and status, LAI is closely related to vegetation light use,
evapotranspiration and energy exchange assessment. Meanwhile, LAI can indirectly reflect
climate change, which serves as an important basis for vegetation feedback to the climate
system [4–8]. The wide geographic distribution, complex grass species and high spatial
heterogeneity of natural grassland make LAI inversion difficult [9,10]. In addition, direct
validation of coarse satellite-derived products based on ground truth data is needed. One
way to validate the LAI products from regional to global domains is to apply high-resolution
LAI maps as a reference [11]. Therefore, it requires approaches to up-scale the ground
truth data to the corresponding satellite products. These research implications highlight
that the development of LAI inversion algorithms and related datasets with a high spatial
resolution is necessary.

Traditional methods of measuring LAI rely heavily on ground-based measurements,
which are time-consuming, complex and not easily carried out over long periods of time
across large areas [12,13]. Since the 1980s, a variety of satellites carrying different optical
sensors have been launched to provide continuous and repeated observations on the earth,
which has brought a new era of LAI estimation [14]. With the availability of satellite data, it
is possible to estimate the LAI and further analyze the spatial and temporal characteristics
of the LAI on large scale and over long time series [15,16]. Various studies have assessed
methods for quantitative LAI estimation using satellite data, which include parametric
regression methods, nonparametric regression methods including linear and nonlinear
machine learning algorithms (MLAs), physical model methods and hybrid model methods
that combine RTM simulations with MLAs [17–19]. However, considering the global or
regional monitoring applications, the statistical approaches based on vegetation indices
(VIs) may be too simplistic while radiative transfer models may be too cumbersome to
generate near real-time and accurate products [20].

As canopy characteristic inversion techniques, MLAs have shown impressive perfor-
mances in their ability to map the non-linear relationship between the canopy parameterizes
and the reflected signal, and in their fast-mapping speed compared to look-up tables [19–22].
With advances in computer technology and related techniques, the applications of MLAs
cover broad areas, including vegetation, water resources and meteorology and have yielded
encouraging results [23–25] Several studies have documented the successful application
of MLAs to estimate LAI for various vegetation types, including crops [22], forests [24]
and grassland [26]. Meanwhile, comparisons between random forest regression (RFR),
support vector regression (SVR) and artificial neural networks regression (ANNR) have
indicated that these methods have similar competitive performances [27,28]. Additional
studies have shown that multi-factor models have advantages over single-factor models
in simulating canopy parameters using MLAs [9,29]. Therefore, multiple factors affecting
grassland LAI estimation, such as topography, climate, soil, and grass types should be
taken into consideration in LAI modeling.

Previous studies have confirmed the effectiveness of applying MLAs to grassland LAI
estimation. However, the datasets in these studies were collected within limited study
areas and sample plots. Some of them focused on using the reflectance of waveband and
VIs as input variables [26]. It is highly possible that there may be differences in the form
and accuracy of LAI estimation models according to various datasets and different regions.
Therefore, this study compares the performance of different MLAs in estimating LAI in
combination with different sets of input variables using the same dataset collected from
191 in situ LAI sample plots, with the main objectives of (1) assessing the importance of
multiple variables in the estimation of grassland LAI; (2) developing a high accuracy MLAs
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model incorporating empirical knowledge to predict LAI; and (3) analyzing the similarities
and differences between our results and major satellite-based LAI products.

2. Materials and Methods
2.1. Study Region

The Inner Mongolia steppe (97◦12′~126◦04′E, 37◦34′~53◦23′N) is an important part
of the Eurasia grassland, located in an arid and semi-arid region at mid-latitude, with
a typical temperate continental climate. The average annual temperature ranges from 0
to 8 ◦C and the annual total precipitation ranges from 50 to 450 mm. From northeast to
southwest, precipitation gradually decreases, and temperature gradually increases, creating
a zonal distribution of soil and vegetation. The horizontal zonation of the Inner Mongolia
steppe is relatively obvious, transitioning from meadow steppe and typical steppe to desert
steppe. The meadow steppe is rich in species, with a magnificent appearance and high
productivity; the typical steppe is the most representative type of temperate steppe with a
medium coverage and productivity; the desert steppe is short and sparse, with the lowest
coverage and productivity (Figure 1a).
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Figure 1. (a) Spatial distribution of grassland types and field sample plots in the study area; (b) the
basic sample unit (30 m × 30 m); (c) the measurement of LAI for each subplot (1 m × 1 m).

2.2. Data Collection and Processing
2.2.1. In Situ LAI Measurement

We obtained a total of 191 in situ LAI sample plots through field surveys from July
to August during the peak grassland growth in the year of 2015, 2016, 2018 and 2019
(Figure 1a). In each 30 m × 30 m sample plot, five 1 × 1 m quadratic subplots (one in
the center and four in each corner) were established (Figure 1b,c). A handheld Garmin
GPS 72H was used to determine the geographic location of each sample plot in the field.
The LAI was measured with a LAI-2200C plant canopy analyzer (Li-Cor, Lincoln, NE,
USA) at a 270◦ view cap. In each subplot, the LAI value was obtained according to the
“ABBBBB” principle, where the A represented the reading value above the canopy and
the B represented the reading value below the canopy. The measurements were collected
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under suitable sky conditions, near sunrise or sunset or on cloudy days. The LAI value of
each sample plot was acquired by averaging the measurements of the five subplots.

2.2.2. Remotely Sensed Data

We used Landsat8 OLI (Operational Land Imager) dataset in this study. The spec-
tral bands of Landsat8 OLI provided by the USGS (United States Geological Survey)
shared data platform include visible (452–512, 532–590, 636–673 nm), near-infrared (NIR;
851–879 nm) and shortwave infrared (SWIR; 1566–1651, 2107–2294 nm) wavelengths
(Figure 2b), with a spatial resolution of 30 m and 16-day return cycle. The spatial res-
olution of 30 m is higher than that of existing LAI products and better reflects differences
between regions. It is available from the GEE (Google Earth Engine) platform, which
is named as “USGS Landsat8 Level 2, Collection 2, Tier 1”. The good quality surface
reflectance data at each wavelength band were used to calculate VIs subsequently. The VIs
included RVI, NDVI, TDVI, CI and NDPI (Table 1).
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Landsat 8 OLI and reflectance of the sample plots (b).

Table 1. Vegetation indices used in this study.

Vegetation Index Equation References

Ratio Vegetation Index RVI = ρnir
ρred

[30]

Normalized Difference
Vegetation Index NDVI = ρnir−ρred

ρnir+ρred
[31]

Transformed Difference
Vegetation Index TDVI = 1.5×(ρnir−ρred)√

ρnir
2−ρred+0.5

[32]

Chlorophyll Index CI = ρnir
ρgreen − 1 [33]

Normalized Difference
Phenology Index NDPI = ρnir−(0.74×ρred+0.26×ρswir)

ρnir+(0.74×ρred+0.26×ρswir)
[34]

where ρgreen, ρred, ρnir and ρswir refer to the reflectance in the green, red, near-infrared and shortwave infrared
bands (corresponding Landsat8 OLI band 3, 4, 5 and 6), respectively.

The MODIS LAI and GEOV2 LAI are two global LAI products that are widely used
in the research community. The MODIS LAI product (MOD15A2H) is provided in the
sinusoidal projection at an 8-day temporal resolution and a 500 m spatial resolution. The
MODIS LAI retrieval algorithm includes a primary algorithm based on a three-dimensional
(3D) radiative transfer model and an alternate algorithm for regression relations [35].
The algorithm chooses the “best” pixel available from all the acquisitions of the Terra
sensor from within the 8-day time step. The dataset ranges from 2000 to the present
(https://ladswed.nascom.nasa.gov/, accessed on 12 October 2020). The GEOV2 LAI

https://ladswed.nascom.nasa.gov/
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product is provided in the Plate Carrée projection at a 10-day temporal resolution and a
1 km spatial resolution. It is derived from the SPOT/VEGETATION sensor data based
on a neural network. Frist, they obtain a training dataset, which is a fused LAI using
the CYCLOPE and MODIS LAI products, and then the calibrated neural network is used
to obtain the GEOV2 LAI product [36]. The dataset ranges from 1999 to the present
(http://land.copernicus.eu/global/, accessed on 12 October 2020).

2.2.3. Climate, Soil and Topography Data

Climate, soil and topography variables were used in LAI modeling. The climate
dataset containing temperature and precipitation indicators was obtained from China
Meteorological Sharing Service System (https://data.cma.cn/, accessed on 16 July 2020).
We used kriging interpolation to generate spatially continuous year-by-year meteorological
datasets based on 130 ground stations in Inner Mongolia and surrounding areas. The mean
values of temperature and precipitation from 2000 to 2019 were calculated to represent
a stable climate condition within the study area. The soil dataset was obtained from the
National Earth System Science Data Center, National Science and Technology Infrastructure
of China, which was extracted for soil organic carbon content, 0–20 cm soil clay content and
0–20 cm sand content (http://www.geodata.cn/, accessed on 29 January 2022). The soil
clay and sand content datasets are based on soil profile data and use an integrated machine
learning algorithm (Random Forest) to construct relationships between soil mechanical
composition and environmental covariates for the corresponding depth interval during
the period 2010 to 2018 at a 1 km spatial resolution. The soil organic carbon content
dataset is based on typical soil profiles from the second national soil census, with climate,
vegetation and topography factors as auxiliary variables, and soil landscape models such
as geo-weighted regression, geo-weighted regression kriging, multiple linear regression
and regression kriging to produce soil organic carbon content data for the 500 m resolution
surface layer in China. The Digital Elevation Model (DEM) dataset was obtained from
a joint survey completed by National Aeronautics and Space Administration (NASA)
and the National Mapping Agency (NIMA), and the Shuttle Radar Topography Mission
(SRTM) system on board the US space shuttle Endeavour with a spatial resolution of 30 m
(https://lpdaac.usgs.gov/, accessed on 12 October 2021). Calculating slope and aspect was
performed using Arcgis10.2. All datasets were resampled to a spatial resolution consistent
with the remotely sensed data.

2.2.4. Grassland Type Data

Grassland type data were mapped on 1:1,000,000 digital vegetation maps and the
main natural grassland types covering China were classified into 18 categories based on
the vegetation–habitat classification of grassland types [37]. In this study, some of the
types were combined on this basis to obtain four types including meadow, meadow steppe,
typical steppe and desert steppe.

2.3. Machine Learning Algorithms and Measure of Variable Importance Methods
2.3.1. Random Forest Regression

The Random Forest (RF) is an integrated algorithm for unpruned classification or
regression trees created using bootstrap samples of training data and random feature
selection in tree induction proposed by Breiman [38,39]. It contains a metric for ranking
importance values, and the importance of each variable can be calculated in two different
ways, including increase in node purity (IncNodePurity) and increase in mean squared
error (%IncMSE) [40]. In both algorithms, higher values indicate that the variable is more
important. The IncNodePurity is measured by the sum of squared residuals, represent-
ing the effect of each variable on the heterogeneity of observations at each node of the
classification tree, and thus comparing the importance of the variable. The %IncMSE is
measured by the error increased to the model prediction through randomly assigning a
value to each predictor variable that is more important if it is replaced at random. There

http://land.copernicus.eu/global/
https://data.cma.cn/
http://www.geodata.cn/
https://lpdaac.usgs.gov/
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are some differences in the ranking of the importance of the variables derived from the two
methods. In this study, the %IncMSE method was used to estimate the relative importance
of a particular variable [29]. In particular, two important hyperparametric tree predictors
(ntree) and split nodes (mtry) need to be optimized in the RFR model [41] to obtain tuning
parameters and accuracy evaluations using the grid search and CV processes. The analysis
was performed using the “Random Forest” package in the statistical package R 4.1.1.

2.3.2. Artificial Neural Network Regression

The Artificial Neural Networks (ANNs) are non-linear statistical learning methods
and are one of the most commonly used modelling techniques with a highly interconnected
structure, similar to the human brain, that mimics the operation and connectivity of
biological neurons [42]. This refers to a multilayer network structure consisting of an
input layer, an output layer and a hidden layer. The mean impact value (MIV) method is
one of the best indicators for evaluating the correlation of variables in ANNs. The MIV
reflects the changes in the weight matrix of each variable in the neural network and allows
a quantitative evaluation of the importance of each independent variable on the influence
of the dependent variable [43]. The absolute magnitude represents the relative weight of
the influence of the respective variable on the dependent variable. In ANNR, to design
the network for optimal topology, the optimal numbers of hidden layers and neurons are
determined based on a trial-and-error process [44]. The analysis was performed using the
“nnet” package in the statistical package R 4.1.1.

2.3.3. Support Vector Regression

The support vector machine is a relatively simple supervised MLAs to solve classifica-
tion or regression problems proposed by Cortes and Vapnik in 1995 [45]. The essence of
the support vector regression (SVR) is to find a hyperplane between different data types to
create boundaries. In two-dimensional space, this hyperplane is a straight line. Compared
to traditional methods, SVR can handle high-dimensional data better with relatively few
training samples and can generalize complex models. In SVR, the two parameters, gamma
and cost, affect the model’s performance [46]. We selected the parameters with the lowest
errors as the optimal parameter combination by the grid search method to obtain the error
deviations under different parameter combinations. The analysis was performed using the
“e1071” package in the statistical package R 4.1.1. Use the “rminer” package to generate a
regression model of the importance of the variables.

2.4. Performance Evaluation of the Model

We used the coefficient of determination (R2), root mean square error (RMSE), and
mean absolute error (MAE) as measures based on the 10-fold cross validation method to
evaluate the performance of each model. The sample plots were split into 10 datasets of
equal numbers of plots, and these measures were calculated for each dataset. This process
was repeated 10 times to ensure that all the data were involved in the training of the model
and the validation of the results. Finally, these measurements were averaged to obtain the
final R2, RMSE and MAE values of each model. Higher R2 and lower RMSE values indicate
that the model has a better precision in LAI estimation. R2, RMSE and MAE values can be
expressed as follows:

R2 = 1− ∑n
i=1 (yi −

_
y i)

2

∑n
i=1 (yi − yi)

2 (1)

RMSE =

√
1
n∑n

i=1 (yi −
_
y i)

2
(2)

MAE =
1
n∑n

i=1

∣∣∣yi −
_
y i

∣∣∣ (3)
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where
_
y i is the predicted LAI, yi is the measured LAI, yi is the measured mean values of

LAI and n is the number of measured LAI in the validation dataset.

3. Results
3.1. In Situ LAI Characteristics and Correlation Analysis

Of all the sample plots, 18 sample plots were distributed in meadow, 34 in meadow
steppe, 110 in typical steppe and 29 in desert steppe (Figure 2a). According to the Shapiro–
Wilk normality test, the four datasets all conformed to a normal distribution. Generally, the
mean values of the in situ LAI ranged from 0.22 to 3.01 m2/m2 among all sample plots. The
LAI values in meadow ranged from 0.38 to 2.47 m2/m2 with a mean value of 1.35 m2/m2;
in meadow steppe, the mean and variability of LAI values were relatively high, with a
mean LAI value of 1.45 m2/m2; in typical steppe, the LAI values had a distribution range
of 0.34–2.34 m2/m2 with a mean value of 1.18 m2/m2. The LAI values of desert steppe had
a minimum value of 0.22 m2/m2 and a maximum value of 1.06 m2/m2 with a mean value
of 0.57 m2/m2. The reflectance of the sample plots had the widest range of variation in the
SWIR1 and SWIR2 bands. The SWIR1 band reflectance was generally used to calculate the
VIs (Figure 2b).

Pearson correlation coefficients were used to explore the relationship between LAI
and multiple variables. We initially selected a total of 13 variables, covering VIs, soil factors,
climate factors and topography factors. The VIs included RVI, NDVI, TDVI, CI and NDPI.
Soil factors included soil organic carbon content (SOC), clay content (Clay) and sand gravel
content (Sand) of topsoil (0–20 cm). Topography factors included elevation (DEM), slope
(Slope) and aspect (Aspect). Climate factors included annual mean temperature (MAT)
and precipitation (MAP) from 2000 to 2019. Of the 13 variables, only Aspect and MAT
were not correlated with LAI at the 0.05 level of significance. After the above analysis,
11 predictive variables were chosen to train the models, which were significantly correlated
with the measured LAI. These VIs were all significantly positively correlated with LAI, with
NDPI having the highest correlation with LAI (r = 0.74). DEM was significantly negatively
correlated with LAI (r = −0.31). MAP was significantly positively correlated with LAI
(r = 0.55), and Clay and SOC were both significantly positively correlated with LAI with
correlation coefficients of 0.18 and 0.38, respectively. Sand was significantly negatively
correlated with LAI (r = −0.33), as shown in Figure 3.
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Figure 3. Correlation coefficients between the multiple variables and in situ LAI.
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3.2. Variable Importance

Prior to using the MLAs, optimal tuning of the model parameters was carried out
to improve the stability, reliability and generalization of the model results. The optimum
parameters for both the RFR, ANNR and SVR approaches were chosen. See Section 2.3 for
details of the method for selecting the parameters for each MLAs. In this study, for RFR,
we found that the model performed better when ntree was set to 3 and the mtry was set to
800. For ANNR, after several trials, we found that using the hidden layer model containing
1 neuron performed the best. For SVR, we found that it performed best when the cost was
set to 1 and the gamma was set to 0.1 (Figure 4). Other parameters used the default values
from the packages.
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Figure 4. The settings and selecting values of tuning parameters using RFR (left), ANNR (middle)
and SVR (right) models.

Table 2 illustrates the relative importance of the input variables to the LAI estimates
in the RFR, ANNR and SVR models. All variables involved in training were ranked. A
common feature of the results from all the importance ranking methods was that these
VIs were in the top of the ranking. NDPI which takes SWIR into consideration was the
best performer of all models, followed by NDVI, with the other variables performing
inconsistently. For the RFR and SVR models, MAP was also a relatively important variable.
However, the importance ranking of MAP in the ANNR model was relatively low. DEM
was not high in the importance ranking of all three models.

3.3. Model Building and Evaluation

We established four variable sets to compare and select the best independent variable
combination. Variable set A covered all variables listed in Table 2. Variable set B included
the top five variables ranked by importance in RFR, ANNR and SVR, respectively, with
a cumulative mean impact value of at least 85% based on ANNR. Variable set C is the
overlapping variables in variable set B of the three methods, which included NDPI and
NDVI in this study. These mentioned variable sets were established on statistical or
mathematical methods. Some variables with an empirically significant relationship with
vegetation growth such as SOC, DEM and MAP were excluded. Meanwhile, the NDPI
and the NDVI had a significant relationship (r = 0.98). Therefore, variable set D was a
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self-defined combination of variables incorporating empirical knowledge, which included
NDPI, MAP, SOC and DEM and they were both mathematically and empirically selected
variables. Thus, we compared 12 models in total including three machine learning models
(RFR, ANNR and SVR) with different numbers of input variables (A: all variables, B: model
selected variables, C: overlapping variables and D: self-defined variables). The evaluation
results of 12 models (RFR-A, RFR-B, RFR-C, etc.) derived from 10-fold cross validation
method with respect to R2, RMSE and MAE are displayed in Figure 5.

Table 2. Ranking of variable importance based on the RFR, ANNR and SVR. Results are ranked
according to the summation of the three methods of sorting for each variable.

Variables
RFR ANNR SVR

%IncMSE Ranks Contribution (%) Ranks Importance Ranks

NDPI 23.39 1 30.66 1 0.21 1
NDVI 18.48 3 16.79 3 0.14 2
RVI 19.00 2 2.67 6 0.11 4

MAP 13.36 4 2.23 7 0.11 3
TDVI 7.62 6 16.94 2 0.06 7

CI 12.27 5 13.87 4 0.04 9
Clay −0.65 10 12.72 5 0.10 5
Slope 0.33 9 1.35 9 0.09 6
SOC 6.19 7 0.19 11 0.05 8
DEM 5.68 8 1.14 10 0.04 10
Sand −2.19 11 1.44 8 0.04 11
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Among these 12 models, simulated LAI showed a significant correlation with observed
LAI, with R2 ranging from 0.31 to 0.55, RMSE ranging from 0.37 to 0.47 m2/m2 and MAE
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ranging from 0.29 to 0.36 m2/m2. Among the three MLAs, the RFR model showed a higher
prediction accuracy, followed by ANNR, and SVR was less effective in simulating the LAI
in this study. Overall, the RFR model when NDPI, SOC, DEM and MAP were used as input
variables performed the best, with the highest R2 (0.55) and lowest RMSE (0.37 m2/m2) and
MAE (0.29 m2/m2). Subsequently, the results of the model’s 10-fold cross validation test
sets were pooled together to produce scatter plots of different grassland types, as shown
in Figure 6. The results show that the confidence interval was narrowest in areas with
LAI close to the mean value (1.17 m2/m2). Prediction uncertainty increased as the LAI of
grassland deviated from the mean value.

1 

 

 

Figure 6. In situ measured vs. estimated LAI using the RFR-D model. Green points represent the
meadow, yellow points represent the meadow steppe, blue points represent the typical steppe and
purple points represent the desert steppe. The liner regression line is shown with the 95% confidence
interval (dark shaded).

3.4. Intercomparison with Other LAI Products

We used the highest accuracy model (RFR-D) develop the spatial distribution of
LAI map (named the Landsat LAI). To better ensure the consistency across time of the
three products, we selected four sub-regions based on the spatial distribution of different
grassland types in Inner Mongolia to analyze the result of the model inversions chosen
in this study for comparison with MODIS LAI and GEOV2 LAI (Table 3, Figure 7a). The
dates of the two selected products storage were not recorded in the same way: MODIS LAI
was recorded at an 8-day temporal resolution and GEOV2 LAI was recorded at a 10-day
temporal resolution. This study for comparison recorded the time in year-month-day
and it should be noted that the time two products corresponded to the date for the time
resolution which corresponded to the last day of the date (Table 3). In order to directly
compare Landsat LAI, MODIS LAI and GEOV2 LAI products, they were resampled to the
same spatial resolution of 1 km. The distribution area of the magnitude of LAI values was
consistent, showing a trend of high northeast and low southwest in the four scenes, but
Landsat LAI with the resolution of 30 m showed more detail and MODIS LAI had more
invalid pixels (Figure 7b). The spatial distribution of LAI in terms of the grassland types
also correlated closely with our observations in the field survey.
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Table 3. The date of different products used in this study.

Product Types Spatial
Resolution

Date

123026 122028 124029 126030

Landsat LAI 30 m 16 July 2019 22 July 2018 17 July 2017 28 July 2016
MODIS LAI 500 m 19 July 2019 27 July 2018 19 July 2017 26 July 2016
GEOV2 LAI 1 km 20 July 2019 20 July 2018 20 July 2017 31 July 2016
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Figure 8 shows the intercomparison of grassland LAI in the four sub-regions among
MODIS LAI, GEOV2 LAI products and up-scaled Landsat LAI. Related studies have shown
that the GEOV2 LAI product performed better on grassland, and the results derived from
this study were used to compare with this product. There was a similar spatial distribution
for both products. A larger spatial variation was found in MODIS LAI compared to the
other products. Among the different grassland types, all three LAI products showed a
consistent trend, with meadow steppe being the highest, followed by meadow, followed
by typical steppe, with desert steppe row being the smallest. In addition, the LAI in this
study produced larger LAI values in the desert steppe and smaller LAI values in the other
grassland types. The Landsat LAI had the smallest standard deviation among the three
products. The modelling in this study was for the overall modelling of the sample plots
and was not split into different grassland types. According to the results of this study, we
found that there was a difference among different grassland types. The next study will be
modelled for different grassland types.
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4. Discussion

In this study, the initially selected variables covered VIs, climate factors, soil factors
and topography factors. The VIs included the RVI, the NDVI, the TDVI, the CI and the
NDPI, which both had strong relationships with the in situ measured LAI (Figure 3).
Meanwhile, these VIs have been proven to be advantageous in estimating vegetation
biophysical characteristics calculated from remotely sensed data [26,29]. The NDVI was
regarded as the most popular vegetation index among these Vis; however, it is strongly
influenced by soil reflectance at low LAI and its sensitivity decreases rapidly with increasing
LAI due to the light absorption in the red band became saturated at high LAI [33,47]. The
CI is a vegetation index created to estimate the chlorophyll content, which is calculated by
the reflectance in green and near-infrared band [33]. The NDPI is a new vegetation index
that was proposed in 2017 which has good advantages in the inversion of biomass and
the fraction of absorbed photosynthetically active radiation and is also proving to have
great potential for application [34,48,49]. Linear and logarithmic relationships between
the in situ measured LAI including all sample plots and these VIs are shown in Figure 9.
It can be seen that the saturation issue between the LAI and VIs was not evident in this
study; the linear regression models presented greater R2 values than logarithmic regression
models except for the NDVI, perhaps because the LAI values used for modeling were
between 0.22 and 3.01 m2/m2, which do not easily reach saturation, and related studies
have shown that a tendency to saturation begins to occur at higher LAI. The NDVI and
NDPI had a comparable R2 for linear and nonlinear regression models. NDPI can be used
in LAI estimation with the aim of increasing the sensitivity of high LAI areas and reducing
the effect the soil background [34]. The NDPI significantly reduced the soil impact on VIs
across large and heterogeneous grassland areas. It also indicates that NDPI performed
better in the inversion of LAI than the other VIs in this study. Furthermore, NDPI was
ranked first and entered the model as a variable regardless of the importance ranking
method used (Table 2). Thus, we consider NDPI to be a promising vegetation index for LAI
estimation.

MLAs have been widely used in recent years. The RFR model showed a higher
prediction accuracy, followed by ANNR and SVR, in simulating the LAI of Inner Mongolia
grassland in this study (Figure 5). The good performance of RFR has been demonstrated in
several published studies [26,50,51]. The RFR is insensitive to noise and overfitting, and can
model complex relationships with fewer parameters, resulting in a superior performance
compared to other regression algorithms. The selection of input variables had a great
impact on the estimation performance of MLAs. Analysis of the vegetation growth process
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showed that the influence factors ranged from climate to soil until the topography factors.
In the satellite-based LAI inversion process, both the color and texture of the soil affected
the inversion results, so the SOC, Clay and Sand were chosen as representative indicators.
The response of vegetation to climate change is very sensitive, and LAI, as an important
parameter of vegetation ecosystem, can also indirectly reflect climate change and this
phenomenon is particularly obvious in arid regions [7]. MAP and MAT illustrate the
climate condition. The grassland in Inner Mongolia is all relatively flat and less affected
by elevation. The importance of DEM was not ranked high in any of the three algorithms.
In addition, these VIs were a reflection of the vegetation growth condition. We obtained
a total of 13 variables, but it was not necessary to apply them all to the model building.
When it comes to the select of the variables in the models, it should not only depend
on the result of the machine learning. The principle of selecting variables should be to
comprehensively consider the growth environment of grassland and to adequately select
representative indicators that influence their growth factors. Nevertheless, the machine
learning approach selected parameters ignoring the vegetation growth process and was
based on the statistical results of the input data. When the variables with large importance
values were selected by MLAs, VIs tended to be ranked first; meanwhile, among the
four types of factors, VIs had the highest correlation coefficient with the in situ measured
LAI (Table 2, Figure 3), and there was a significant correlation between different VIs after
different combinations of bands when the calculation was performed with a relatively
single factor. This is because VIs reflect reflectance and LAI is a determinant factor of
canopy reflectance [52]. If the selection of variables involved in the modeling relied only on
the importance ranking results, this would affect the simulation results of the model as the
variables might be limited to one class of factors (Table 2). Therefore, the factors selected
by adding empirical knowledge are involved in training the models and comparing them
with other results to assess the differences between the models. Published studies have
shown the underlying mechanisms of using these variables to estimate grassland LAI from
remotely sensed data and that their contribution to grassland LAI estimates is the result of
the combined effect of soil, climate and topography [53]. To quantify the contribution of the
improvement of the estimation, we built the 12 different LAI estimation models. The results
also demonstrated that the model was simulated by considering multiple factors such as
NDPI, SOC, DEM and MAP which were used as regression variables and their correlation
was not the best, with LAI offering better results (Figure 5). Using MLAs to scale field-
measured LAI through high-resolution imagery to larger pixel sizes for comparison with
medium-resolution products can bridge the scale difference between ground-based LAI
measurements and medium-resolution pixels and can therefore be used as a method of scale
conversion [4]. There was covariance between the indices selected according to the machine
learning approach. The set of indicators constructed according to a priori knowledge was
used to build the model expressions with more comprehensive information. The data
covered a wide range of factors and were the result of a combination of multiple factors
driving the model expressions. In summary, the model expressions with the combination
of several strengths were also optimal. According to the statistical results, among the 12
LAI estimation models, the RFR-D had the highest accuracy. Meanwhile, this result was
also consistent with the above analysis and in line with our expectations.

We chose two widely used LAI products to compare our results with. In the process
of comparison between MODIS LAI and GEOV2 LAI, we found that they had a good
agreement, which was strongly related to the algorithms used in their production produce
process. GEOV2 LAI in the production process of MODIS LAI data when it is used as
training data will cause the two datasets to have a strong consistency [35,36]. At the same
time, the two products are global data, so not representative of the grassland. Our results
were based on in situ measured LAI, the spatial resolution was high and the regional LAI
distribution was persuasive. All the LAI products showed a consistent trend, with the LAI
in the meadow steppe being the highest, followed by the meadow, followed by the typical
steppe, and the LAI in the desert steppe was the smallest (Figure 8). This was mainly caused
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by the obvious spatial heterogeneity in the distribution of vegetation resources, which
reflected the spatial complexity and variability of ecosystem properties which form spatial
patterns that are closely related to ecosystem functions and processes [10]. The validation
of LAI products is critical to the use of satellite-based LAI products. Fang et al., [54] found
that the uncertainties of current LAI products still do not meet the accuracy demand of
GCOS. Validation of LAI products continues to be an important element. With respect to
the limitations in this study, data from only one time node were selected for comparison
with other products, and subsequent inversions of long time series should be performed
for a more comprehensive comparison and analysis. Comparative validations for more
products in the grassland applications will be carried out in the next step. The LAI of
different grassland types has significant differences. Due to the limited number of field
sample plots in this paper, a unified model was adopted to simulate LAI. In the future,
more data should be collected to establish models separately for different grassland types.
Since the image quality can be affected by cloudy weather, multi-source data fusion should
be considered in the process of acquiring long time series data [55].
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5. Conclusions

This study explored the results of different importance value ranking methods for all
variables, and compared the simulation results of different datasets as input data for RFR,
ANNR and SVR. Finally, two widely used LAI products were selected for a comparative
analysis. Based on three different algorithms for ranking the importance of all variables,
the sort of all variables was different. Among all the variables, NDPI was always ranked
in the first place, which was calculated by the reflectance of NIR and SWIR bands. It
had good advantages in the inversion of vegetation characteristics and was also proven
to have great potential for application. In the simulation of the LAI in Inner Mongolia
grassland, the RFR showed a higher prediction accuracy, followed by ANNR and SVR. The
highest model accuracy (R2 = 0.55, RMSE = 0.37 m2/m2, MAE = 0.29 m2/m2) was based
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on a combination dataset of the self-defined variables and RFR. Using MLAs, multi-factor
models have advantages over single-factor models in simulating vegetation characteristics.
The self-defined variables contain more information than the set of variables selected by the
machine learning approach. Intercomparison with MODIS LAI and GEOV2 LAI products
showed that the LAI in this study produced larger values in the desert steppe and smaller
values in the others. However, it had the smaller standard deviation and the differences
between the three products were consistent across the four sub-regions. In general, our
results demonstrated that MLAs incorporating empirical knowledge could improve the
accuracy of modelling LAI and provide guidance for LAI modeling and the validation of
LAI products. However, the application of this approach to regional mapping needs to be
further explored.
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