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Abstract: Accurately estimating forest aboveground biomass (AGB) based on remote sensing (RS)
images at the regional level is challenging due to the uncertainty of the modeling sample size. In this
study, a new optimizing method for the samples was suggested by integrating variance function in
Geostatistics and value coefficient (VC) in Value Engineering. In order to evaluate the influence of
the sample size for RS models, the random forest regression (RFR), nearest neighbor (K-NN) method,
and partial least squares regression (PLSR) were conducted by combining Landsat8/OLI imagery
in 2016 and 91 Pinus densata sample plots in Shangri-La City of China. The mean of the root mean
square error (RMSE) of 200 random sampling tests was adopted as the accuracy evaluation index of
the RS models and VC as a relative cost index of the modeling samples. The research results showed
that: (1) the statistical values (mean, standard deviation, and coefficient of variation) for each group
of samples based on 200 experiments were not significantly different from the sampling population
(91 samples) by t-test (p = 0.01), and the sampling results were reliable for establishing RS models;
(2) The reliable analysis on the RFR, K-NN, and PLSR models with sample groups showed that the
VC decreases with increasing samples, and the decreasing trend of VC is consistent. The number
of optimal samples for RFR, K-NN, and PLSR was 55, 54, and 56 based on the spherical model of
variance function, respectively, and the optimal results were consistent. (3) Among the established
models based on the optimal samples, the RFR model with the determination coefficient R2 = 0.8485,
RMSE = 12.25 Mg/hm2, and the estimation accuracy P = 81.125% was better than K-NN and PLSR.
Therefore, they could be used as models for estimating the aboveground biomass of Pinus densata
in the study area. For the optimal sample size and sampling population, the RFR model of Pinus
densata AGB was established, combining 26 variable factors in the study area. The total AGB with the
optimal samples was 1.22 × 107 Mg, and the estimation result with the sampling population was
1.24 × 107 Mg based on Landsat8/OLI images. Respectively, the average AGB was 66.42 Mg/hm2

and 67.51 Mg/hm2, with a relative precision of 98.39%. The estimation results of the two sample
groups were consistent.

Keywords: variance function; value coefficient; optimal sample size; aboveground forest biomass;
remote sensing estimation; Landsat 8/OLI

1. Introduction

Forest biomass is an important indicator for estimating forest productivity, terrestrial
ecosystem function, and sustainable forest management. With the fast development of
remote sensing technology, multi-source remote sensing data have replaced the traditional
ground sampling survey method for forest aboveground biomass inversion. It can ob-
tain the quantity, spatial distribution, and dynamic change of forest resources and realize
the quantitative inversion of the forest measurement parameters combined with various
models and sample surveys [1,2]. Therefore, it can meet the requirements for monitoring
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and analyzing forest resources and ecological processes at different scales while saving
the investigation cost. Recently, various studies have been performed to establish non-
parametric remote sensing estimation models of forest aboveground biomass based on
optical remote sensing data, such as decision tree regression, k-nearest neighbor method,
support vector machine regression, and artificial neural network models [3–10]. The un-
certainty of the model has attracted much attention in the quantitative inversion of forest
biomass by remote sensing [11–14]. The above uncertainties mainly include ground data
measurement uncertainty, model selection uncertainty, and spatial sampling uncertainty.
Shettles et al. [15] pointed out that the model uncertainty accounted for a large proportion
(about 70%) of the total uncertainty among the three uncertainties. Compared with statis-
tical models, the number of samples used for remote sensing modeling has a significant
impact on the uncertainty caused by the model parameters, and the uncertainty of model
parameters gradually decreases with the increase in the number of samples [16]. The remote
sensing estimation accuracy of forest biomass on a regional scale based on a statistical
model relies on the model training accuracy under different sample sizes. Given traditional
statistical sampling data, 30 for a small sample and 50 for a large sample are only empirical
sample sizes. The larger the number of samples, the better the model’s reliability. However,
too many samples need to consume more human and material resources and financial
resources. In forestry production, under the premise of ensuring a certain model accuracy,
modeling with as few samples as possible is one of the important problems to be solved in
quantitative remote sensing.

There have been few developments on the uncertainty of the sample size used for a
remote sensing estimation model of forest measurement parameters at the regional scale
worldwide. The main reason is to ensure the model’s reliability while discussing the
sample problem. However, the feature variables for the remote sensing estimation of forest
measurement parameters based on statistical models have obvious mechanism problems.
Moreover, the influence of the number of samples on the model accuracy depends on the
modeling method. Some methods are suitable for large samples, while some can obtain
superior results using small samples. Furthermore, apart from the number of samples,
the samples’ distribution, diversity, and representativeness are also key parameters. The
effect of sample size on the analysis results is not apparent for homogeneous samples. In
the previous studies based on the number of samples of the model, Fu et al. [17] analyzed
the uncertainty of the estimated regional biomass based on the sample size of single-tree
biomass modeling and believed that increasing the amount of modeling data can effectively
improve the biomass model’s estimation accuracy, accuracy, and work efficiency, and
reduce the uncertainty. In practice, it is challenging to obtain forest resource survey data.
Due to a limited number of samples, the model will have an “over-learning” phenomenon.
The non-parametric method to estimate forest aboveground biomass can effectively solve
this problem [18]. According to the estimation and application of remote sensing-based
regional forest biomass, Wu demonstrated that increasing the sample size could improve
the modeling accuracy, especially for the support vector machine algorithm. However, the
accuracy changes reflected by partial least squares regression (PLS) and k-nearest neighbors
(K-NN) algorithms indicate that increasing the number of samples cannot necessarily
improve the accuracy. Thus, different estimation methods need to find the most suitable
number of samples.

Aiming at the uncertainty of samples in remote sensing models of forest biomass using
traditional statistical models, a new method to solve reasonable samples was suggested
that should integrate the geostatistical variance function and VC in value engineering to
explore the change of VC with the change of samples and then solve the reasonable sample
size for a remote sensing estimation of forest biomass.

In this study, a Pinus densata forest, a typical forest ecosystem in Shangri-La, Yunnan
Province, was taken as the research object, and the mean value of the root mean square
error (RMSE) based on 200 experiments of random sampling results as the evaluation index
of model accuracy for different sample groups. Combining Landsat 8/OLI image and
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91 sample plots, the comparative analysis of model accuracy was conducted to provide a
feasible model of reasonable samples for forest biomass remote sensing estimation based
on random forest regression (RFR), nearest neighbor value (K-NN) regression (K-NN)
regression, and partial least squares regression (PLSR).

Existing and limited studies on sample optimization at a regional scale for AGB esti-
mation are primarily concerned with how to design sample spots and select models [6–11].
There have been no published reports on how to model the relationships between sample
sizes and estimated accuracy. Therefore, this research aims at optimising samples for
statistical models and exploring the feasibility of approaches to improving forest AGB
estimation accuracy in the alpine mountains of Yunnan Province, China.

2. Study Area and Materials
2.1. Description of the Study Area

The study area, Shangri-La City, is located in the northwest of Yunnan Province in
southwestern China, neighboring Sichuan and Tibet (Figure 1). The geographical coordi-
nates are 99◦23′6.08′′–100◦18′29.15′′ east longitude and 26◦52′11.44′′–28◦50′59.57′′ north
latitude. Shangri-La has a total area of 1.142 million hm2. The Jinsha River surrounds
it on the east, south, and west sides. It is the junction of Yunnan, Sichuan, and Tibet
provinces and the world’s natural heritage “Three Parallel Rivers” scenic spot. High terrain,
low heat, and low temperature are the main characteristics of Shangri-La. The altitude is
1503–5545 m, the annual average temperature is 5.5 celsius centigrade, the annual average
precipitation is 618.4 mm, the average snowfall day is 35.7 d, and the annual daylight rate
is 40–50%, belonging to the mountain cold temperate monsoon climate. The study area is
rich in plant resources due to the dense tributaries of the Jinsha River water system, ice
and snowmelt water, plateau lakes, and other water resources, and the forest soil types
are dominated by brown soil and red soil. The forest vegetation area is large, the coverage
rate is high, and the distribution of north–south differences is obvious. There are mainly
10 types of vegetation, including Picea asperata, Abies fabri, Pinus densata, Pinus yunnanensis,
and Quercus semicarpifolia. Picea asperata in the study area is a local pioneer species and the
largest area tree species. Whether natural or planted stands, they were all pure, so they
were used as a case for this study.

2.2. Sample Plots Data and Calculation of AGB

A total of 91 sample plots in the study area were inventoried in 2016. They were
circular sample plots with a size of 1 hectare, which were usually known as angle gauge
controlling sample plots (AGCSP) [19]. The plots were systematically allocated on a
previous spatial distribution map of forest types (Figure 1). Within each plot, the average
diameter at breast height (DBH) and tree height (H) were recorded. The calculation of
the AGB of each plot has two steps. Firstly, the individual-average-standard tree AGB in
AGCSP was calculated by the average tree height and average diameter at the breast height
of the plot. The Individual tree aboveground biomass model of Pinus densata is shown
in Equations (1) and (2) [6,20]. Secondly, the number of trees per hectare was calculated
according to Equation (3), and the sample plot’s aboveground biomass was obtained by
combining the single-average-standard tree aboveground biomass and the number of
Pinus densata.

Within 91 sample plots, the minimum, maximum, mean, and the standard deviations
of the aboveground biomass of different tree species are recorded in Table 1. The maximum
is 133.61 Mg/hm2, and the minimum is 3.36 Mg/hm2.

AGB = 0.048
(

DBH2H
)0.880

(1)

AGB = 0.0955
(

DBH2H
)0.8329

(2)
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N = Fg

k

∑
j=1

1
gj

Zj (3)

where Equation (1) is the model of aboveground single tree biomass of Picea asperata and
Abies fabri, and Equation (2) is the model of the aboveground single tree biomass of Pinus
densata. AGB is for aboveground biomass; DBH is the diameter at breast height; H is single
tree height; Zj is the number of counted trees of the jth diameter interval class (assuming
that there are k diameter classes); gj is the sectional area of the median value of the diameter
class; Fg is the sectional area coefficient of angle gauge; N is the obtained number of trees
per hectare.

Figure 1. Location of study area. Shangri-La City in the northwest of Yunnan Province in southwest-
ern China. (Note: (a) the study area is located in Southwestern China; (b) Shangri-La City is part of
Yunnan province, and (c) a standard false color composite of Landsat Thematic Mapper (TM) band 4
in red, band 3 in green, and band 2 in blue, highlighting vegetated areas in red color, yellow triangle
is the 91 sample plots of Pinus densata).

Table 1. Description of the forest biomass observations.

Species Sample Size
(N)

Minimum
(Mg/hm2)

Maximum
(Mg/hm2)

Average
(Mg/hm2)

SD
(Mg/hm2)

Pinus densata 91 3.36 133.61 64.56 31.84

2.3. Collection of Remote Sensing Data and Preprocessing

Three Landsat 8/OLI images with L1 (no radiometric calibration and atmospheric
correction) products were obtained from Geospatial Data Cloud (http://www.gscloud.
cn/, accessed on 13 January 2022) on 9 November 2016 (path/rows: 132/040, 132/041),
while on 20 December 2016 (path/rows: 131/041). The three images adopt a Universal
Transverse Mercator coordinate system (UTM) projection with zone 17 north, WGS84
ellipsoid, with a spatial resolution of 30 m × 30 m. The images have 11 spectral bands
and were mosaicked into one image, while 1–7 bands (on coastal band, three visible bands,
one NIR band, and two SWIR bands) were only utilized in this study. The images were

http://www.gscloud.cn/
http://www.gscloud.cn/
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pre-processed by the software ENVI 5.3, including radiometric calibration and atmospheric
correction (FLAASH).

2.4. Extraction of Feature Variables from Remote Sensing Data

For AGB modelling at a regional scale, the variables contain spectral bands, vegetation
indices, and textures [21–26]. The main feature parameters include 1–7 bands of the prepro-
cessed image, the spectral reciprocal value of the bands, the band combination, and the
texture feature factor [6]. The texture feature factor is based on eight texture feature param-
eters defined by Haralick et al. [1], and moving windows size (5 × 5, 7 × 7, 9 × 9 pixels)
and different bands (bands 3–7) were employed to calculate the texture features.

(1) Spectra feature parameters

For spectral bands, 23 modeling variables were extracted including the original spectral
bands (b1, b2, b3, b4, b5, b6, b7), reciprocal spectral bands (1/b1, 1/b2, 1/b3, 1/b4, 1/b5,
1/b6, 1/b7), and combination bands ((b5 − b4)/(b5 + b4), b2/b5, b3/b5, b4/b5, b6/b5,
b7/b5, (b4 + b6)/b7, (b4 + b6 + b7)/b5, (b3 + b4 + b6)/b7) [6].

(2) Texture feature parameters

Textures are important features of remote sensing images, which play an impor-
tant role in remote sensing image classification, quantitative remote sensing, and other
fields [21,23,26]. They can represent ground object structure information in remote sensing
images, reflecting the important information of spatial changes of land cover type in remote
sensing images [22,24,25]. Currently, the main methods for texture feature extraction are
statistical, structural, and spectral decomposition methods [6,24]. In this study, texture fea-
ture calculation was performed based on moving windows size (5× 5, 7× 7, 9 × 9, 11 × 11,
15 × 15, 19× 19, 25× 25 pixels) and Landsat8 OLI bands (band 3, 4, 5, 6, 7) according to the
eight texture feature parameters defined by Haralick et al. Therefore, 280 texture feature
variables were extracted as the alternative parameters of AGB estimation and modeling.
The calculation equations of eight texture features are listed in Table 2.

Table 2. Calculation formulas of texture features.

Texture Feature
Parameters Equations Texture Feature

Parameters Equations

Mean, ME
N−1
∑

i,j=0
iPi,j Dissimilarity, DI

N−1
∑

i,j=0
iPi,j|i− j|

Variance, VA
N−1
∑

i,j=0
iPi,j(i−ME)2 Entropy, EN

N−1
∑

i,j=0
iPi,j

∣∣∣− ln Pi,j

∣∣∣
Homogeneity, HO

N−1
∑

i,j=0
i Pi,j

1+(i−j)2 Second Moment, SM
N−1
∑

i,j=0
iPi,j

2

Contrast, CO
N−1
∑

i,j=0
iPi,j(i− 1)2 Correlation, CR

N−1
∑

i,j=0
iPi,j

[
(i−ME)(j−ME)√

VAiVAj

]
Note: where Pi,j is the probability of (i, j) appearing in the image, and i, j are the pixel values respectively.

3. Methods
3.1. Experimental Design of Sample Groups

In general, sufficiently large training samples facilitate the construction of remote
sensing models with better adaptability and stability [6–8]. However, excessive sample
plots consume more human, material, and financial resources. In forestry production, it
is important to design a reasonable number of samples within a model’s accuracy and
stability. The research was based on the number of samples and the accuracy of the model.
A random sampling test was devised.

For the convenience of description, x represents the number of samples, and Z(x)
represents the estimation accuracy of the models versus the number of samples. Each
experiment randomly selects x samples with an interval of 2 from the sampling population
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(91 samples) as group samples, and the number of each group samples x (x ≥ 26) starts
from 26 (due to the number of model’s parameters was 26) to avoid model overfitting. The
model was run, and the estimation accuracy of the model was recorded for each group.
The experiment was repeated 200 times due to the difference between the mean value of
200 and 1500 trials being not significant by t-test (p = 0.01) (Figure 2). When the number of
samples x exceeded the total number of samples, the experiment was over. The 200 times
cycle experiment was set to avoid the randomness of a single experiment.

Remote Sens. 2022, 14, x FOR PEER REVIEW 6 of 19 
 

 

Table 2. Calculation formulas of texture features. 

Texture Feature 

Parameters 
Equations 

Texture Feature 

Parameters 
Equations 

Mean, ME ∑ 𝑖𝑃𝑖,𝑗

𝑁−1

𝑖,𝑗=0

 Dissimilarity, DI ∑ 𝑖

𝑁−1

𝑖,𝑗=0

𝑃𝑖,𝑗|𝑖 − 𝑗| 

Variance, VA ∑ 𝑖𝑃𝑖,𝑗(𝑖 − 𝑀𝐸)
2

𝑁−1

𝑖,𝑗=0

 Entropy, EN ∑ 𝑖

𝑁−1

𝑖,𝑗=0

𝑃𝑖,𝑗|− ln𝑃𝑖,𝑗| 

Homogeneity, HO ∑ 𝑖
𝑃𝑖,𝑗

1 + (𝑖 − 𝑗)2

𝑁−1

𝑖,𝑗=0

 Second Moment, SM ∑ 𝑖𝑃𝑖,𝑗
2

𝑁−1

𝑖,𝑗=0

 

Contrast, CO ∑ 𝑖

𝑁−1

𝑖,𝑗=0

𝑃𝑖,𝑗(𝑖 − 1)
2 Correlation, CR ∑ 𝑖𝑃𝑖,𝑗

𝑁−1

𝑖,𝑗=0

[
(𝑖 − 𝑀𝐸)(𝑗 − 𝑀𝐸)

√𝑉𝐴𝑖𝑉𝐴𝑗
] 

Note: where Pi,j is the probability of (i, j) appearing in the image, and i, j are the pixel values respec-

tively. 

3. Methods 

3.1. Experimental Design of Sample Groups 

In general, sufficiently large training samples facilitate the construction of remote 

sensing models with better adaptability and stability [6–8]. However, excessive sample 

plots consume more human, material, and financial resources. In forestry production, it is 

important to design a reasonable number of samples within a model’s accuracy and sta-

bility. The research was based on the number of samples and the accuracy of the model. 

A random sampling test was devised. 

For the convenience of description, x represents the number of samples, and Z(x) 

represents the estimation accuracy of the models versus the number of samples. Each ex-

periment randomly selects x samples with an interval of 2 from the sampling population 

(91 samples) as group samples, and the number of each group samples x (x ≥ 26) starts 

from 26 (due to the number of model’s parameters was 26) to avoid model overfitting. The 

model was run, and the estimation accuracy of the model was recorded for each group. 

The experiment was repeated 200 times due to the difference between the mean value of 

200 and 1500 trials being not significant by t-test (p = 0.01) (Figure 2). When the number of 

samples x exceeded the total number of samples, the experiment was over. The 200 times 

cycle experiment was set to avoid the randomness of a single experiment. 

 

Figure 2. Variability of 200 experimental results (sample size = 50). 

  

0

10

20

30

40

50

60

70

80

0 200 400 600 800 1000 1200 1400 1600

M
ea

n
 o

f 
sa

m
p

le

Sampling Number

Figure 2. Variability of 200 experimental results (sample size = 50).

3.2. Estimation Method and Accuracy Evaluation Indexes

(1) Random Forest Regression (RFR)

Random forest was proposed by Breiman and Cutler in 2001 [27]. The algorithm
uses the Bootstrap sampling method. First, n random samples are taken from the original
sample set as a sample set Dn. and n decision tree models Gn(x) are trained with the sample
set Dn. When training the nodes of the decision tree model, an optimal feature is selected
among k randomly selected sample features to do the left and right subtree division of the
decision tree. This study uses a regression algorithm; then the final category is the mean of
the leaf nodes reached by that sample point [28].

(2) K-Nearest Neighbor (K-NN)

In the K-NN regression model, the observed value samples of the feature variables are
designated as the reference set, the prediction set of the variables to be tested is designated
as the target set, and the space defined by feature variables is the feature space. The
predicted value mp of the continuous variable biomass m on the pixel p can be calculated
as [6,20]:

mp =
k

∑
i=1

wipmi (4)

where mi is the measured value at the reference sample site i for the variable m; k is the
neighbor’s number when calculating the predicted value mp; wip is the pixel weight value
calculated as follows:

wip =

 d−t
pi ,p/

ik(p)
∑

j=i1(p)
d−t

pj ,p

0, other conditions
, only if i ∈ {i1(p), . . . , ik(p)} (5)
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where i is the reference set sample; p is the target set pixel; pj is the sample corresponding
to the reference set sample j, d−t

pi ,p is the distance decomposition factor; k and t are constants,
where their optimal values can be selected by repeated testing. {i1(p), . . . , ik(p)} are the k
reference set samples most similar to the pixel p measured in the feature space. The spatial
similarity of feature variables indicated by dpi ,p can be obtained as:

dpi ,p =

√√√√ n f

∑
l=1

(
fl,pj
− fl,p

)
(6)

where fl,pj
and fl,p are the feature variables of the spectral bands and their derivation

factors of the remote sensing image corresponding to the reference set and the target set
samples, respectively. n f is the number of feature variables; p is the pixel of the target set;
pi is the pixel corresponding to the sample i of the reference set.

Referring to my previous related research results [24], the parameters of the K-NN
model in this study were chosen as follows: distance metric was used in the form of
Euclidean distance, with a k value equal to 8 and a t value equal to 1.

(3) Partial Least Squares Regression (PLSR)

PLSR is a multivariate statistical analysis method that consists of a combination of
multiple linear regression, principal component analysis, and typical correlation analysis.
The PLSR method combines the correlation between the independent and dependent vari-
ables while extracting the characteristics, which eliminates the complex covariance of the
original variables while preserving the large variance, thus allowing the created regression
model to reflect the corresponding relationship between the dependent and independent
variables. The PLSR method has the advantage of dealing with this problem and is able to
remove unsuitable samples from the residuals of the calibration model more easily and
build the best model quickly. PLSR first constructs new variables named components, each
of which is a linear combination of the dependent variable and determines its coefficients by
combining the independent and dependent variables, and finally constructs the regression
equation between the dependent variable and these components using the least squares
method. The PLSR model is as follows [29]:

yk = λ0κ + λ1κT1 + . . . + λnκ(κ = 1, 2, . . . , n) (7)

where T1, . . . , Tn are the linear combinations of the bands of the spectrum, respectively,
and λi (i =1, . . . , n) is the coefficients, which can be estimated by least squares.

(4) Evaluation of Model Accuracy

The traditional statistical model-based accuracy evaluation indexes mainly use the
coefficient of determination (R2), root mean square error (RMSE), and estimation accuracy
(P). Generally, the larger R2, the smaller RMSE, and the higher P. RMSE (Equation (8)) were
utilized to evaluate the uncertainty of the model’s sample size in this study.

In order to estimate the RMSE of the models for different samples, Leave-one-out
(LOO) cross-validation was employed; that is, for N samples, one sample is drawn from N
samples as the test set, while the remaining N − 1 samples were adopted as the reference
set, and the cycle was repeated N times until the end. This study statistically analyzed the
model predicted value ŷi (i = 1, . . . , N) of the N samples and the measured value (yi) of
the corresponding sample. The model stability was evaluated using the average RMSE for
each group of samples based on 200 tests.

RMSE =

√
∑N

i=1(ŷi − yi)
2

N
(8)

where yi and ŷi are the measured and predicted values of the sample size of the ith group,
respectively.
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3.3. Optimal Samples Estimation Integrating Semi-Variance Functions and Value Coefficients

(5) Value coefficients (VC)

The uncertainty analysis was conducted on the model sample size using the value
coefficient (VC), which calculating formula is VC = F/C (where F is the function coefficient
and C is the cost coefficient). The VC means the relative ratio of the degree of matching
between the function and cost of a product in Value Engineering to help engineers find
engineering improvement objects and reduce costs when conducting cost analysis [29].
In this study, the relative ratios of the RMSE between per group samples and sampling
population was used as the function coefficient F, and the relative ratio of the cost was used
as the cost coefficient C, i.e., F = RMSEsample/RMSEpopulation and C = Nsample/Npopulation. It
indicates a relative variation between a model’s accuracy (RMSE) and the cost of modeling
samples based on the sampling population.

VC(i) =
RMSEi/RMSET

Ni/NT
(9)

where NT is the sampling population, RMSET is the model’s root mean square error; Ni is
the number of ith group samples, and VC(i) is the model’s value coefficient with Ni samples,
RMSEi is its root mean square error.

(6) Semi-variance Functions

Assuming that the values of the regionalized variable (γ(h)) at space points X and
X + h are Z(X) and Z(X + h), the semi-variance function, also known as the “semi-covariance
function”, is defined as follows [30]:

γ(h) =
1

2N(h)

N(h)

∑
i=1

[Z(xi)− Z(xi + h)] (10)

where N(h) is the number of point pairs at distance h. Since γ(h) is unknown, it must
be obtained by the relevant model from the experimental data, such as a spherical model:

γ(h) =


0 h = 0
C0 + C

(
3h
2a −

h3

2a3

)
0 < h ≤ a

C0 + C h > a

(11)

where C0 is the nugget variance, C is the partial sill, i.e., arch height, C0 + C is the sill, and a
is the range, which indicates the maximum distance of a regionalized variables from spatial
autocorrelation to irrelevance.

(7) Optimal Samples Estimation

In this study, the initial analysis was derived from scatterplots that the values of
VC (Y-axis) were graphed against the values of cost, i.e., the number of sample plots (X-
axis); and the approach of the parameters based on semi-variogram was suitable for the
relationship between VC and the number of sample plots. Here, the change in values of VC
was attributed to spatial autocorrelation, and the number of samples was regarded as the
spatial distance. To estimate the optimal value of group samples, the range parameter of
spatial distance was established, that is, the maximum distance of spatial autocorrelation
or variability.

Based on the spherical model, h is Ni, i.e., the number of ith group samples (h = s + 26)
when solving the optimal samples. γ(h) is the value coefficients of models, Co is the value
of VC at N = 26 (s = 0), C is the change rate of VC, Co + C is the maximum or minimum
VC when the cost reaches its optimal sample size. When estimating the parameters of
the spherical model, let γ(h) = Y(x), X1 = x, X2 = x3, C0 = B0, 3C

2a = B1, and −C
2a3 = B2.

The transformed linear model is shown in Equation (12), and the parameters (B0, B1, B2)
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are obtained using the least-squares method. The optimal sample size corresponding to
different models is shown in Equation (13).

Y(x) = B0 + B1X1 + B2X2 (12)

Noptimal =

√
−B1

3B2
(13)

4. Results
4.1. Collection of Model Feature Variables

In order to establish the remote sensing model, feature variable factors should be
first selected. The correlation analysis between the aboveground biomass of Pinus densata
and remote sensing spectral feature variables reveals a strong correlation between the
spectral band combination values and aboveground biomass. There is a very significant
correlation level with the variable values of (B4 + B6)/B7, (B3 + B4 + B6)/B7), B6/B5,
and B7/B5 within 23 spectra feature parameters, while only 22 variables were significant
within 280 texture feature parameters. This study employed 26 feature factors with highly
significant correlation levels (four band combinations and 22 texture features, as shown
in Figure 3) to establish AGB models. The correlation between the forest aboveground
biomass and remote sensing feature variables of Pinus densata is shown in Figure 3. The
correlation coefficients ranged from −0.24 to 0.26, with the strongest correlation being
(B4 + B6)/B7. As shown in Figure 3, 7-5-CO represents contrast (CO) texture filtering under
the 5 × 5 window of the 7th band, Bi is the ith band of Landsat8 OLI (i = 1, 2, . . . , 7), and
so on. All corresponding characteristic variables of biomass estimation models for Pinus
densata. was shown in Table 3.

Figure 3. Correlation between Pinus densata biomass and remote sensing feature variables.
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Table 3. Characteristic variables of biomass estimation models for Pinus densata.

Variable Types 26 Characteristic Variables

Texture features variables

3-19-CO, 4-11-EN, 4-15-HO, 4-15-DI, 4-15-EN, 4-19-HO,
4-19-DI, 4-19-EN, 4-25-HO, 4-25-DI, 4-25-EN, 5-11-SM,
5-15-DI, 5-19-SM, 6-5-SM, 6-5-CO, 6-7-SM, 6-9-SM, 6-11-SM,
6-15-SM, 6-19-SM, 7-5-CO

Spectral feature variables (B3 + B4 + B6)/B7, (B4 + B6)/B7, B7/B5, B6/B5

4.2. Sampling Effect

In general, the reliability analysis of the uncertainty of sample size on RS models
accuracy should depend on sufficiently large samples. Therefore, this experiment adopted
91 sample plots of Pinus densata as the sampling population surveyed by the National Forest
Resources Planning and Design Department in 2016 according to systematic sampling with
more than 90% estimation accuracy, which can adequately represent the overall changes of
typical forest ecosystems in the study area. The reliability of the sampling results requires
that the mean of samples per group should be consistent with the sampling population.

Therefore, to avoid the random error of a single experiment, the samples mean of
200 random selections was used as the statistical value per group (Table 4). By t-test
(p = 0.01), the statistical per group was not significantly different from the sampling popu-
lation (91 samples), and the group samples could be used as the model training sample for
the accuracy calculation.

Table 4. Statistical values of different sample sizes under 200 random sampling.

Number
(N)

MEAN
(Mg/hm2)

STDV
(Mg/hm2) CV Number

(N)
MEAN

(Mg/hm2)
STDV

(Mg/hm2) CV

26 64.1250 31.1622 0.4885 60 64.7301 31.4118 0.4860
28 64.1084 30.9366 0.4852 62 64.6219 31.6234 0.4899
30 64.1363 31.3576 0.4916 64 64.2446 31.4907 0.4906
32 64.9825 30.9830 0.4792 66 64.5929 31.6167 0.4899
34 64.4875 31.5644 0.4920 68 64.4334 31.5488 0.4899
36 64.8181 31.1635 0.4829 70 64.3674 31.5703 0.4909
38 64.4959 31.3397 0.4876 72 64.4704 31.6147 0.4907
40 64.9200 31.5427 0.4873 74 64.5597 31.6779 0.4910
42 64.1528 31.3019 0.4893 76 64.7947 31.6243 0.4883
44 64.5796 31.3125 0.4859 78 64.4896 31.6672 0.4912
46 64.6162 31.4065 0.4871 80 64.5684 31.5644 0.4890
48 64.6764 31.4140 0.4868 82 64.4872 31.6410 0.4908
50 64.4293 31.7441 0.4938 84 64.6030 31.7069 0.4909
52 64.0252 31.2946 0.4896 86 64.5759 31.6848 0.4907
54 64.7302 31.2874 0.4841 88 64.5169 31.6846 0.4911
56 64.4366 31.4135 0.4883 90 64.5806 31.6278 0.4898
58 64.5098 31.6588 0.4914 91 64.5601 31.8402 0.4907

Note: MEAN is sample average of group samples, STDV is standard deviation, CV is coefficient of variation.

4.3. Statistical Analysis of Model Accuracy

The accuracy of the remote sensing estimation of biomass at a regional scale depends
on the model, and the estimating results of different models within the same group of
samples varies. In this study, three models, RFR, PLSR, and K-NN were selected to analyze
the variation of model accuracy under different samples.

Table 5 shows the variation of the value coefficient of the aboveground biomass
estimation model based on the RFR model. By t-test (p < 0.01), the VC difference between
the group samples and the sampling population (sample size = 91) is not significant,
indicating that the sampling results are consistent with the population.
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Table 5. The value coefficients of RF model based on different sample size.

Number
(N) VC Number

(N) VC Number
(N) VC Number

(N) VC

26 3.6725 44 2.1048 62 1.4970 80 1.1378
28 3.3303 46 2.0238 64 1.4387 82 1.1153
30 3.1921 48 1.9382 66 1.3992 84 1.0873
32 2.9421 50 1.8750 68 1.3587 86 1.0661
34 2.7792 52 1.7665 70 1.3244 88 1.0378
36 2.6112 54 1.7184 72 1.2804 90 1.0116
38 2.4604 56 1.6545 74 1.2512 91 1.0000
40 2.3421 58 1.6001 76 1.2104
42 2.2155 60 1.5333 78 1.1755

In Figure 4, the VC of the three models (Figure 4a–c) decreases with the increasing
cost of modeling samples. When the sample number of Pinus densata is less than 50, the
VC variance is 1.5 times that of the sampling population, and the relative ratios of VC are
large; and the sample number is larger than 50, the trend of change is flat. It indicates that
increasing the sample is beneficial to the model accuracy within 50 samples; if the sample
size exceeds 50, the VC change rate decreases. If the sample size is further increased, the
model accuracy change should be flat. Correspondingly, the cost is too high.

4.4. Determination of Optimal Sample Size

Taking the VC of the models as the variance function γ(h), and the sample size as
the spatial distance h, the linear transformation of the spherical model was performed.
Furthermore, the spherical model parameters (Nugget variance: C0, Partial sill: C, Range: a,
Sill: C0 + C) were obtained, and the corresponding range “a” was the optimal number of
samples. The calculation results of the variogram parameters are shown in Table 6.

Table 6. Fitting parameters of variation function based on spherical model.

Model B0 B1 B2 Nugget Variance
(C0)

Sill
(C0 + C)

Sampling Variation
(C0/C + C0)

Range
(a)

RFR 3.5788 0.062479 −0.000007 3.5788 5.850802 61.17% 55
K-NN 3.4261 0.061024 −0.000007 3.4261 5.619168 60.97% 54
PLSR 2.9717 0.0564 −0.00006 2.9717 5.07636 58.54% 56

The variogram results reveal that the ratio of nugget variance to sill value (C0/C)
reflects the degree of spatial variation of models VC to samples. Generally, it may be
divided into three grades: 0–25%, 25–75%, and above 75%, indicating the weak, medium,
and high spatial variation, respectively [27]. The results in Table 3 indicated that the spatial
variances of samples to VC for the RFR, K-NN, and PLSR models were 61.17, 60.97, and
58.54%, all of which reached a moderate spatial variance. Correspondingly, there was a
moderate spatial correlation between model accuracy and cost variation, and the spherical
model parameters could be solved (Table 6). According to Equation (13), the optimal
samples of RS models for the RFR, K-NN, and PLSR were 55, 54, and 56 (Table 7), and the
results of the optimal sample sizes were consistent. Respectively, the modeling costs were
only 60.44, 59.34, and 61.54% of the total costs (91 samples).



Remote Sens. 2022, 14, 4187 12 of 19

Table 7. Estimation accuracy with reasonable sample size.

Model
Optimized

Samples
(N)

Decision
Coefficient (R2)

RMSE
(Mg/hm2)

Estimation
Accuracy

(P%)

RFR 55 0.8485 12.2535 81.1253
K-NN 54 0.2658 28.7278 55.3621
PLSR 56 0.3972 28.0759 56.3810

Note: The coefficient of determination (R2), root mean square error (RMSE) and estimation accuracy (P) were the
mean of estimation accuracy with optimized samples based on 200 tests.

4.5. Forest AGB Estimation Based on Optimized Samples

For the optimal sample size, the RFR, K-NN, and PLSR models of AGB Pinus densata
were established in the study area, combining 26 variable factors. The modeling accuracy
is shown in Table 7. The results showed that the mean of estimation accuracy, coefficient
of determination (R2), root mean square error (RMSE), and estimation accuracy (P) were
0.85, 12.2535 Mg/hm2 and 81.13% for the RFR model, which is better than K-NN (R2 = 0.27,
RMSE = 28.7278 Mg/hm2, P = 55.36%) and PLSR (R2 = 0.40, RMSE = 28.0759 Mg/hm2,
P = 56.38%) based on 200 tests. Therefore, the RFR model was used to estimate the AGB of
Pinus densata in the study area.

Based on the sub-compartment data of the National Forest Resources Planning and
Design Survey in the study area, the distribution area of Pinus densata was extracted, with a
total area of 183,671.1470 hm2. Using the RFR model and Leave-one-out cross-validation,
combined with the optimal sample size of 55 and the sampling population (91 samples), the
coefficients of determination of the modeling accuracy were 0.852 and 0.8478 (Figure 5a,b),
which was better than the K-NN (R2 = 0.0464, Figure 5c; R2 = 0.2078, Figure 5d) and
PLSR (R2 = 0.0548, Figure 5e; R2 = 0.1501, Figure 5f) models, and the total AGB was
1.22 × 107 Mg and 1.24 × 107 Mg based on Landsat8/OLI images, and the average AGB
was 66.42 Mg/hm2 and 67.51 Mg/hm2, respectively, and their spatial distribution is shown
in Figure 6a,b.
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Figure 4. Variation of model value coefficients with sample size (a) RFR; (b) KNN; (c) PLSR.
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Figure 5. Biomass measured value compared with RFR (a,b), K-NN (c,d), and PLSR (e,f) model
predicted value.
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Figure 6. Map of biomass inversion basic data (a) Inverse map of alpine biomass from 55 samples.
(b) Inverse map of biomass from 91 samples.

5. Discussion
5.1. Sample Size Problem for Remote Sensing Estimation of Forest Aboveground Biomass
at Country Scale

In this paper, we estimated the optimal samples for RS models, such as the random
forest regression (RFR), nearest neighbor (K-NN) method, and partial least squares re-
gression (PLSR) by combining Landsat8/OLI imagery and 91 sample plots at a regional
scale. The optimal results of the RFR, K-NN, and PLSR models were 55, 54, and 56, which
were solved by the least squares method based on linear transformation to the spherical
model of variance function. The idea behind these models is that as the value coefficient
of the model’s RMSE decreases, the number of sample plots, i.e., modeling cost, change
quickly at the beginning, then slowly and eventually smoothly. When the value coefficient
becomes smooth, the corresponding numbers of the modeling samples (cost of models) can
be regarded as optimal samples. The optimal results of the three models were consistent.

While the available research on the remote sensing estimation of forest AGB was
based on the traditional empirical sample size, i.e., 30 is a small sample and 50 is a large
sample [7,9,11,13,14]. In general, the larger the number of samples, the better the model’s
reliability. There are few reports on the uncertainty of the sample size of the remote sensing
estimation model at the regional scale. This is mainly due to the fact that the optimal
sample size changes with the object, such as Pinus densata, Pinus yunnanensis. On the other
hand, it requires not only a stable model and a sufficiently large sample size but also a
normal distribution of samples and a stable evaluation index of model accuracy variation.
In this study, the optimal sample size was solved by integrating geostatistical variance
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function and value coefficient in value engineering, which was reconstructed using the
model accuracy evaluation index RMSE and the model sample cost. The optimizing method
of the sample size is one of the innovative points of this study.

5.2. Selection Problem for Remote Sensing Estimation Models of AGB and Feature Variables

The nonparametric models, such as neural network models (NNM), support vector
machine regression (SVMR), RFR, K-NN, and parametric models such as linear regression
analysis, PLSR, are often used to develop AGB estimation at region scale [6–12,21–26].
When analyzing sample uncertainty based on remote sensing estimation models, firstly, the
models of RS should be reliable; secondly, the influence of sample size on model accuracy
is related to the estimation methods, some of which are suitable for large samples such
as K-NN, and some of which can obtain better results with small samples such as SVMR.
In this study, the nonparametric models RFR, K-NN, and parametric PLSR models were
selected because the RFR model is better than the others in anti-noise and voiding the risk
of overestimations by introducing random factors [27]; the K-NN model is suitable for
large samples because of non-assumptions on the data and non-sensitivity to abnormal
samples [28], and the PLSR model can effectively eliminate the model parameter covariance
problem [31].

According to the results of the selected three modes (RFR, K-NN, and PLSR), it seems
that the optimal sample sizes are almost the same (55, 54, and 56), although the RMSEs for
them are significantly different (12.25 vs. 28.73 or 28.08). It is implied that the optimization
results have little relationship with the estimation accuracy of the selected model for
aboveground biomass.

To further verify whether the optimal method was correlated with the selected model,
an experiment using the SVMR model was conducted. The optimal method was similar to
that of using the RFR model and cross-validation. By combining Landsat8/OLI imagery
and 91 sample plots at region scale, the optimal number of samples for the SVMR model
was 54, for which the coefficients of determination of model and estimation accuracy were
0.011 and 51.49%, respectively. The optimization result of the SVMR model was almost
the same as those of the three selected models (RFR, K-NN, and PLSR). It shows that the
optimal samples are independent of the accuracy of the selected model. The optimal results
of the selected models were consistent.

Zhao’s study [21] has implied that the potential uncertainty of remote sensing estima-
tion models may be caused by optical imagers with different temporal, spatial, radiometric,
and spectral resolutions. The feature variables values extracted from optical images were
different even at the same time, in the same place, and for the same feature object. In this
study, 26 independent variables with textural features and vegetation indexes were selected
by correlation analysis between AGB and variables feature based on Landsat8 OLI. The
difference in optimizing samples was not significant by modeling with 26 independent
variables. For other optimal images, such as SPOT5, IKNOS, QuickBird, and MODIS, the
result should be analyzed in future work.

5.3. Validity of Estimation Results Based on Optimal Sample Size

The verification of the accuracy of the aboveground biomass estimation results
of forests at a regional scale has been a difficult problem in quantitative remote
sensing [21–26,31–36]. The main reason is the difficulty of obtaining the field measure-
ment values at the regional level. The existing studies on the validity of estimation results
at a regional scale on AGB estimation focus mainly on how to improve remote sensing
models’ accuracy evaluation, such as optimizing model algorithms [6], optimizing model
features variables [21,34], and using multi-source remote sensing collaboration [12,33–36].

In Lu’s study [12], aboveground forest biomass was estimated with Landsat and
LiDAR data. Although the estimation accuracy of the remote sensing model was high, the
validity of the estimation result depended on the model itself and sample spots. As the



Remote Sens. 2022, 14, 4187 17 of 19

validity is lacking a sampling control statistical survey in the study area, the credibility of
the results needs to be further improved.

In this study, the aboveground biomass of Pinus densata was counted using the data
measured by the National Forest Resources Planning and Design Survey in 2016 in the study
area. Wang’s [32] study showed that the total biomass of Pinus densata was 1.3347 × 107 Mg,
and the average biomass was 72.6705 Mg/hm2. Using Wang’s results as the real reference
value, the estimated results based on the RFR regression model were 1.22 × 107 Mg and
1.24 × 107 Mg at the sample sizes of 55 and 91, with absolute precision of 91.41 and
92.90%, respectively. This indicates the reliability of the RFR model based on the optimal
sample size.

5.4. Optimal Solution Problem about Equations (12) and (13)

Wang’s [32] study shows that Equations (12) and (13) have three cases after calculating
B0, B1, and B2.

(1) B0 > 0, B1 > 0, B2 < 0, when the three parameters (the nugget variance C0, the partial
sill C, and the range a) are optimally fitted based on spherical model of variation
functions, Equations (12) and (13) have optimal solutions.

(2) B0 < 0, B1 > 0, B2 < 0, as B0 < 0, that is, the parameter C0 < 0, it does not meet the
requirements of the spherical model. So it is necessary to let B0 = 0, then the Equation
(12) becomes Y(X) = B1X1 + B0X2, and Equation (13) has the optimal solution.

(3) B0 > 0, B1 > 0, B2 ≥ 0, if B2 = 0, Equation (13) becomes Y(X) = B0 + B1X. For a linear
model, not a spherical model, the parameters can be solved according to the estimation
method of the parameters of the linear regression model. The other is B2 > 0 when
the original data are adjusted by adding or deleting some unimportant data points
from the actual variance function points and repeatedly adjusting it many times until
B2 < 0.

6. Conclusions

In the paper, integrating the theory of semi-variance function in geostatistics and
value coefficients in value engineering, a new method suggested that a reasonable sample
size was estimated by remote sensing models of forest biomass. The main conclusions are
as follows:

(1) The statistical values (mean, standard deviation, and coefficient of variation) for each
group of samples based on 200 experiments are not significantly different from the
overall samples (91 samples) by t-test (p = 0.01), and the sampling results were reliable
for establishing RS models.

(2) The reliable analysis of value coefficients based on RFR, K-NN, and PLSR models with
sample groups shows that the VC decreases with increasing samples of every group,
and the decreasing trend of VC is consistent. The optimal samples of RFR, K-NN,
and PLSR were 55, 54, and 56 based on the spherical model of variance function,
respectively, and the optimal results are consistent.

(3) Among the established models based on the optimal samples, the RFR model with
the determination coefficient R2 = 0.8485, RMSE = 12.25 Mg/hm2, and the estimation
accuracy P = 81.1253% was better than K-NN and PLSR. It could be used as a model
for estimating the aboveground biomass of Pinus densata in study area. Based on the
optimal 55 samples of the RFR model and overall (91 samples), the total aboveground
biomass in the study area was 1.22 × 107 Mg and 1.24 × 107 Mg, and the average
aboveground biomass was 66.42 Mg/hm2 and 67.51 Mg/hm2, respectively, with a
relative precision of 98.39%, and the estimation results of two groups were consistent.
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