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Abstract: The geometric registration of mountainous remote sensing images is always a challenging
project, as terrain fluctuations increase the complexity. Deep learning, with its superior computing
power and data-driven nature, promises to solve this problem. However, the lack of an appropriate
dataset limits the development of deep learning technology for mountainous remote sensing image
registration, which it still an unsolved problem in photogrammetry and remote sensing. To remedy
this problem, this paper presents a manually constructed imagery dataset of mountainous regions,
called the MID (mountainous imagery dataset). To create the MID, we use 38 images from the Gaofen-
2 satellite developed by China and generated 4093 pairs of reference and sensed image patches,
making this the first real mountainous dataset to our knowledge. Simultaneously, we propose a fully
unsupervised, convolutional-network-based iterative registration scheme for the MID. First, the large
and global deformation of the reference and sensed images is reduced using an affine registration
module, generating the coarse alignment. Then, the local and varied distortions are learned and
eliminated progressively using a hybrid dilated convolution (HDC)-based encoder–decoder module
with multistep iterations, achieving fine registration results. The HDC aims to increase the receptive
field without blocking the artifacts, allowing for the continuous characteristics of the mountainous
images of a local region to be represented. We provide a performance analysis of some typical
registration algorithms and the developed approach for the MID. The proposed scheme gives the
highest registration precision, achieving the subpixel alignment of mountainous remote sensing
images. Additionally, the experimental results demonstrate the usability of the MID, which can lay a
foundation for the development of deep learning technology in large mountainous remote sensing
image registration tasks.

Keywords: hybrid dilation convolution; iterative registration; mountainous imagery dataset; remote
sensing; unsupervised convolutional network

1. Introduction

More often than not, the application of remote sensing data, such as image fusion,
change detection, and image mosaic data, requires the employed images to be in the same
coordinate system, i.e., the same surface features in the same position [1]. However, such a
condition is sometimes quite challenging to be accomplished for raw satellite image pairs,
as the available remote sensing images may be collected from different satellite sensors, may
be multitemporal, or may have inconsistent acquisition angles [2,3], making the geometric
registration an indispensable preprocessing step [4].
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Over the past decades, quite a few technologies have been developed for remote
sensing image registration, which are routinely classified into intensity-based (area-based),
feature-based, and hybrid methods [4,5]. The conventional intensity-based approaches
directly employ the intensity to iteratively search for the optimal parameters of the specified
transformation model [6]. The similarity measure is the key component, such as normalized
cross-correlation (NCC) [6], mutual information (MI) [7], and phase congruency (PC)
approaches [8]. The intensity-based algorithms with high-precision alignment as the
original image information can be adopted without any error accumulation. However,
most of them are sensitive to large rotations and scale differences and are quite time-
consuming [3]. Compared with the traditional ones, the optical flow estimation approach
applied to remote sensing image registration is relatively novel [9,10], of which the product
is a per-pixel displacement field. The very local and variable deformations due to terrain
elevation can be eliminated in mountainous regions because of the advantages of per-pixel
computation [11,12]. However, occlusion is always troublesome when aiming for accurate
calculations, as it refers to land-use or land-cover (LULC) changes in remote sensing
images [10,13]. Additionally, it exhibits the limitation of containing large deformations.

Unlike the intensity-based method, another method adopts some remarkable and
invariant geometric features (e.g., feature points, polylines, and polygons) for alignment
instead of the original image, which is the feature-based approach [14]. It is widely applied
for heterogeneous image alignment, such as for optical and synthetic aperture radar (SAR)
image registration [15], optical and infrared images alignment [16], and optical and LiDAR
image registration [17]. It generally demonstrates higher efficiency than the intensity-based
approach; meanwhile, the algorithm sometimes provides poor registration for errors in
the process of extracting or matching features, even regarding the position of the matched
features [4]. For the hybrid algorithm, it generally points to the combination of two or more
different alignment commands, most of which are solved in a serial computation [18,19].
Aiming at eliminating the large deformation between the reference and sensed images,
feature-based technologies are commonly used [20], such as the scale-invariant feature
transform (SIFT) [21], sped-up robust features (SURF) [22], and oriented fast and rotated
brief (ORB) methods [23]. The intensity-based algorithm is assigned to improve the accu-
racy via the CC (cross-correlation) [24], MI, and phase-based correlation approaches, among
others. These combinations usually result in high-precision geometric registration as a
successive improvement from coarse-to-fine resolutions [7,25,26]. However, the combina-
tions are more time-consuming than the intensity-based or feature-based algorithm. From
the above discussion, based on the traditional algorithms, the high-precision alignment of
mountainous remote sensing images is difficult to achieve, as the positional relationship
is complicated.

Recently, with the transition of deep learning technology from computer vision to the
remote sensing field [2,27], some innovations have been introduced to the conventional
algorithms [28–30], again allowing remote sensing image registration. The deep-learning-
based algorithm can automatically learn high-level features, supplementing the conven-
tional geometric features [31–34]. Moreover, its particular feedback scheme is beneficial
for feature extraction, guided by the result of the feature matching [14]. Therefore, deep
learning technology, as represented by a convolutional network, can achieve more fea-
tures with high position accuracy and give a better matching performance than traditional
techniques [35–37]. Additionally, some algorithms take advantage of the powerful deep
learning computation potential, directly learning the mapping function for the spatial
alignment of two scenes covering the same region [38,39]. This approach could be con-
cretely comprehended using supervised and unsupervised learning [40,41]. The key point
of supervised registration is the ground truth information, such as for the manual matching
labels [38], real deformation field [42], and geometric transform matrix [39]. Additionally,
guided by its supervised manner, the transformation matrix is creatively transformed into
a regression problem [39,43]. For example, a dual DenseNet [44] (D-DenseNet) model
was proposed in [39] to regress the corner displacement by subsequently calculating the
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projection transformation matrix of the corresponding coordinates. From our perspective,
obtaining the ground truth alignment information is challenging unless performing the
simulation experiment, which cannot present the real spatial relationship of the satellite
images. As for unsupervised deep learning, real reference information is not necessary.
When applied for image registration, it employs a spatial transformation network to warp
the sensed image to the coordinate system of the reference image without any human
annotations [40,45,46]. In [47], the end-to-end training of a deep learning model was em-
ployed to couple the linear and deformable registration problems. Vakalopoulou et al.
constructed a similar convolutional neural network (CNN) architecture for remote sensing
imagery alignment, which is completely unsupervised [48]. In [45], a multistep unsuper-
vised deformable image registration approach was proposed with a specified maximum
displacement in advance, aligning the given image pairs through an iterative process. This
registration strategy is popular in medical image registration, although it requires more
process steps to achieve fine results [49,50]. Thus, the unsupervised algorithms always take
the flat regions in remote sensing field, including urban and suburban scenes, as the main
experimental data, while the deformation is more complicated in mountainous images as
they require significant nonlinear spatial mapping.

Inspired by the above observation and conclusion, the unsupervised learning-based
pixel-by-pixel registration method promises to solve the mountainous remote sensing
image alignment problem. Thus, with a newly constructed imagery dataset, we propose to
advance the mountainous remote sensing image registration process based on an unsuper-
vised deep learning framework, taking advantage of the coarse-to-fine resolution strategy
and multistep iterations. The contributions of this work are summarized as follows:

(1) First, for the first time, a mountainous remote sensing imagery dataset (MID) for
geometric registration is constructed. The dataset consists of 4093 pairs of image
patches located in some specified mountains in China;

(2) Then, a coarse-to-fine unsupervised cascading convolutional network is developed,
consisting of an affine registration module (ARM) and an iterative hybrid dilation
convolution-based encoder–decoder (HDCED) module. The entire network is trained
in an end-to-end manner, and the previous result is always connected to the reference
image as the input of the subsequent process.

The remainder of the paper is organized as follows. The MID dataset is introduced
in Section 2. Section 3 presents in detail the proposed method for mountainous remote
sensing image registration. To demonstrate the performance of the proposed algorithm
as well as some of the typical approaches for the MID, an experimental analysis is given
in Section 4. Section 5 discusses the parameter settings and limitations of the proposed
algorithm based on the MID dataset. Finally, we conclude the paper and the prospects are
summarized in Section 6.

2. The Mountainous Remote Sensing Imagery Dataset (MID)

It is worth noting that there is not a public and sufficient dataset consisting of real
remote sensing images for geometric registration yet, especially covering mountainous
regions. This is the biggest obstacle to the development of deep learning in this field [27].
Moreover, the public and unified dataset performs well in the fair evaluation of different
alignment schemes. Under these circumstances, we established a real MID. It will be
publicly available online and could be utilized freely for remote sensing image registration
and comparisons of different alignment algorithms.

2.1. Construction of the MID

There are some existing public remote sensing imagery datasets with different spatial reso-
lutions and abundant surface features. One dataset (https://github.com/MountainAndGhost/
remote-sensing-images-registration-dataset, accessed on 27 September 2020) consists of three
subdatasets, including 396 pairs of images with a spatial resolution of 0.23 m, 420 pairs of
images mainly covering farmland regions with a 3.75 m spatial resolution, and the last one

https://github.com/MountainAndGhost/remote-sensing-images-registration-dataset
https://github.com/MountainAndGhost/remote-sensing-images-registration-dataset
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with a 30 m resolution containing 165 pairs of images. All images to be registered are simu-
lated; that is to say, the sensed image is produced by transforming the reference image with
a specified matrix. It cannot accurately represent the real deformation of two raw satellite
imageries. The ISPRS IKONOS dataset (https://www.isprs.org/data/ikonos/default.aspx,
accessed on 29 March 2021) provides one bitemporal pair of high-resolution (1 m× 1m) im-
ages, only covering the urban region with dense high-rise buildings. Differing from them, the
real remote sensing images covering mountainous regions have more complex and varied
deformations, which cannot be described using these existed datasets. Thus, we construct a
real mountainous remote sensing imagery dataset with dozens of multitemporal Gaofen-2
satellite image pairs.

As one of the optical satellites independently developed in China, the Gaofen-2
satellite produces multispectral and panchromatic images with respective ground sampling
distances (GSDs) of 4 m and 1 m [51]. We used 38 scenes covering mountains mainly in
Beijing, Shanxi, and Shaanxi provinces, China (Figure 1). Most of the selected images are
located in the south of Shaanxi province, where Qinling is found. The selection principle is
that the images should be as cloud-free as possible, and the imaging time for two images
in a pair should be relatively close (shown in Table 1) or the vegetation in the image
should have a similar growth state (shown in Figure 1). When constructing the MID, the
selected images are first processed via ENVI. The “RPC Orthorectification Workflow” in
the toolbox is utilized to the write geographic information into the raw image from the
rational polynomial coefficient (RPC) file in the original folder. In the process, the built-in
Global Multiresolution Terrain Elevation Data 2010 (GMTED2010) dataset with a spatial
resolution of 0.008333 degrees is automatically employed to provide elevation information
for the corresponding pixel. Then, we determined the overlap of two images according to
the eight vertex geographic coordinates, extracting the overlapping region as the yellow
dotted rectangular shown in Figure 2.
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Table 1. The imaging time of two images in each pair for MID construction.

1 2 3 4 5 6 7 8 9 10
11-11-2021 28-05-2020 09-06-2017 22-11-2021 13-01-2017 25-04-2020 19-10-2020 02-04-2016 29-09-2021 29-09-2021

27-10-2021 08-05-2021 01-07-2021 13-01-2017 22-11-2021 25-04-2020 02-04-2016 19-10-2020 09-05-2021 09-05-2021

11 12 13 14 15 16 17 18 19

29-09-2021 29-09-2021 29-09-2021 09-05-2021 29-09-2021 26-01-2021 11-01-2021 04-12-2019 05-12-2016

09-05-2021 09-05-2021 09-05-2021 29-09-2021 09-05-2021 11-01-2021 26-01-2021 16-02-2020 26-10-2018
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Figure 2. Overlapping extraction and clipping process for a pair of images.

To obtain as many image patches as possible with the limited remote sensing images,
we divided the extracted images with some specified pixels overlapping at the edges of
neighboring blocks. This means that the last 256 pixels in the previous patch belong to the
next patch as well in the horizontal and vertical directions. This is illustrated in Figure 2
with red, blue, and green rectangles. Under these circumstances, by further screening we
produced 4093 pairs of image patches, thereby constructing our MID, with an image size
of 512× 512. This is larger than that in the computer vision or medical fields, because
of the limited structural features and deformation in the region that is too small, which
cannot represent the characteristics of a mountainous image. Additionally, all multispectral
images are converted to grayscale to construct the network as the different bands of an
image are registered. The same displacement field is applied to all bands for multispectral
image alignment.

2.2. Splits of the Dataset

We split the dataset MID into training, validation, and testing sets via random selection.
Concretely, 2719 pairs of mountainous images were randomly selected, building up a
registration network. The validation set consisting of 907 pairs of images was employed
with models developed in the training stage, performing as an early model selector. The
testing set with 467 pairs of images is independent on the training and validation sets,
providing an unbiased evaluation of the trained model.

3. Coarse-to-Fine Unsupervised Cascading Networks for Geometric Registration

The CNN plays an essential role in deep learning technology because of its ability
to learn high-level semantic features. Taking advantage of the CNN, we proposed a
coarse-to-fine unsupervised cascading network to achieve the high-precision alignment of
mountainous remote sensing images on the basis of the constructed MID.
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3.1. Network Architecture

As shown in Figure 3, the proposed framework consists of two essential modules,
labeled in green and blue. Green represents the coarse stage, where a pair of image patches
are connected and put into an ARM. Following the regressed transformation matrix, the
preregistered result is generated after coordinate transformation and resampling. When
coming to the blue part, namely the refinement processing, the previous output is connected
with the reference image as the HDCED input. This is a cyclic structure, which is terminated
after a predefined number of iterations. In the loop body, the input of the current step
involves the integration of the previous result and the reference image. The noticeable
alignment result is exported when satisfying the predefined condition and jumping out of
the loop.
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result, the brightness of the reference image in swipe view is adjusted; “n” is the number of iterations,
and “N” is the predefined maximum number of iterations.)

3.1.1. The Coarse Alignment Using the ARM

Generally, the deformation between two real remote sensing images is unpredictable,
especially in mountainous regions, which cannot be well registered by the common scheme.
To this end, the coarse-to-fine registration framework is always effective [7,25,26], and
we enforced it based on CNN. The coarse registration using the ARM eliminates the
relatively large deformations, such as the rotation and translation, which is equivalent to
the traditional global alignment method using the area-based or feature-based approaches.

As illustrated in Figure 4, the convolution part is employed to gradually downsample
the input feature maps and capture the high-level semantic features. The fully connected
(FC) layers regress the affine transformation matrix. The ten convolutional layers consist of
the convolution parts, and each layer is followed by a nonlinear activation function of the
rectified linear unit (ReLU) [52]. Unlike the general setting, the convolution stride equals
two at the different scales in this paper, instead of the pooling layers used to reduce the size
of the feature map by half [53]. With the reduction in the image scale, the number of feature
channels containing high-level semantic information gradually increases. Subsequently,
the learned features are delivered to the FC part, consisting of four layers. In the first three
layers, the input features are successively linearized to the specified ReLU and dropout
function [54]. It is worth noting that the dropout function can randomly delete some nodes



Remote Sens. 2022, 14, 4178 7 of 21

in the training stage, avoiding overfitting, especially for a complex network with a small
dataset [55]. The last FC only contains the linear layer used to transform the previous
features into six parameters for further regression of the transformation model. The six
output numeric parameters represent a 2× 2 transform matrix and a 2× 1 translation
matrix. Concretely, the former depicts the rotation, scaling, or shearing transformation,
and the last one is the translation vector of the x- and y-directions. With the regressed
transformation matrix A, the pixel-by-pixel displacement field is defined as:

DFA :
{

∆x = a0x + a1y + a2 − x
∆y = a3x + a4y + a5 − y

(1)

where (x, y) represents the specified coordinate in the sensed image and A =

[
a0 a1 a2
a3 a4 a5

]
is the affine transformation model. The sensed image is then transformed in accordance
with the displacement field and resampled by the bilinear interpolation, obtaining the
coarsely aligned image.
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3.1.2. The Refinement Registration Network with the HDCED

Despite the performance of the ARM for reducing large and global deformations,
the very local and varied distortions still remain in the reference and sensed image. To
further eliminate them to achieve fine alignment, the refinement registration network of
the HDCED is constructed following the ARM.

The encoder network is the same as the convolutional part of the ARM, which involves
downscaling the input feature image gradually and capturing the high-level semantic
information. The decoder network is designed to upscale the input feature maps and
recover the spatial information progressively. It consists of six layers and is symmetrical
to the encoder network. The deconvolutional layers are learned to expand the input
size and reduce the number of input feature channels. Therefore, each deconvolutional
layer contains elements from three aspects, including the deconvoluted feature maps, the
upsampled one, and the feature maps from the encoder subnetwork of the same scale,
which is the skip connection, as we know. The channels of the feature map are labeled
on the head of each layer at the encoder and decoder stages, as shown in Figure 5. The
submodule will output the per-pixel displacement field, using a feature map with two
channels (displacement for the x- and y-directions) of the same size as the input. Especially
the pink part is prominent, consisting of five stacked HDC blocks.
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Figure 5. Overview of the HDCED used for the refinement of the registration process.

Dilated convolutions are important for image processing tasks, as they enlarge the
receptive fields of the network without downsampling or increasing the number of model
parameters [56], as shown in Figure 6a. However, the gridding effect is apparent with
increasing dilation rates, expanding the receptive fields of output neurons [57]. Moreover,
using large dilation rate information may only be beneficial for some large regions, and it
may demonstrate disadvantages for small objects and may miss some detailed informa-
tion [56]. To make full use of the image information, borrowing the idea in [58], we adopted
an HDC block in the encoder–decoder network. The HDC utilizes the general convolution
operation to further learn the abstract features in detail, as shown in Figure 6b. Although
the operation principle is the same, the dilation rate of the HDC is not invariable. The
dilation rate in this paper consists of five subsequent convolutional layers with dilation
rates of 1, 3, 5, 7, and 11, respectively.
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Figure 6. Illustration of the gridding problem. (a) All convolutional layers exhibit the same dilation
rate r = 2. From left to right: Green marked features correspond to the calculation of the central red
feature using three convolution layers with a 3× 3 kernel size. (b) Subsequent convolutional layers
exhibit dilation rates of r = 1, 2, and 3, respectively. This means the receptive field is unchanged
without the gridding problem.
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3.2. Implementation Details of the Proposed Framework

In the proposed network, the kernel size of all convolutional layers is 3× 3, while it is
4× 4 in the decoder network, and these kernels are initialized randomly from a Gaussian
distribution. The Adam solver is utilized to optimize the entire network [59]. The network
is trained for 100 epochs, and the learning rate is initialized to 0.001 and then decreased by
a factor of 0.96 every ten epochs. All experiments are conducted in a workstation with a
Pytorch neural network architecture and an NVIDIA GeForce GTX 3080 GPU.

Theoretically, the proposed framework is unsupervised, whereby the real deformation
between the reference and sensed image is unknown. Our primary aim here is to learn
the relative position of the sensed image compared to the reference one. Under this
circumstance, the reference image is the golden standard and the warped image should
have the same spatial position as far as possible. We introduce the correlation coefficient as
the similarity measurement to evaluate the registration result, defined as follows:

CorrCoe f [Ir, Is] =
Cov[Ir, Is]√

Cov[Ir, Ir]
√

Cov[Is, Is]
(2)

where Cov represents the covariance. The covariance between Ir and Is is defined as:

Cov[Ir, Is] =
1

M× N

M

∑
i=1

N

∑
j=1

(Ir(i, j)− µr)(Is(i, j)− µs) (3)

M×N points to the image size, and the reference image has the same size as the sensed image;
µr and µs are the means of the image intensity of the reference and sensed images, respectively.

Additionally, regularization losses are introduced to prevent the displacement field
from being unrealistic or overfitting. They are constructed with the first-order gradient of a
two-channel displacement field.

RL =
1

M× N

M

∑
i=1

N

∑
j=1

(∇u(i, j))2 + (∇v(i, j))2 (4)

where u and v are the displacement field in the x- and y-directions; ∇ represents the
gradient of the specified variable.

Therefore, the loss function of the proposed network framework is defined as:

Loss = CorrCoe f + RL (5)

To derive the appropriate and accurate registration result, we execute the refinement
registration with the HDCED iteratively. The previous output is connected with the
reference image in the channel dimension and fed into the current operation. Theoretically,
the more times the loop is conducted, the better the registration result will be. Then, we
set five iterations in our enforcement process to balance the accuracy of the alignment
and running time. The final aligned and reference images are employed to calculate the
similarity, further adjusting the network parameters for outperformance.

4. Experiments

First, the testing set of the MID is quantitatively and qualitatively analyzed to evaluate
the registration performance of the proposed pipeline, as well as some typical approaches.
Firstly, the evaluation indicators and the experimental scheme are described in Section 4.1.
Then, Section 4.2 presents a detailed comparison of the proposed alignment scheme, includ-
ing the visual comparisons and the quantitative evaluation between the coarse registration
using the ARM and the result of the ARM together with the five iterated HDCED phases.
Section 4.3 describes the performance comparison with the latest technologies based on
the MID, including SIFT [21], a registration method used for building the local models
by blocking (APAP) [60], an unsupervised multistep deformable registration (UMDR)
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approach [45], and a registration algorithm based on improved optical flow estimation
(OFM) [11].

4.1. Evaluation Metrics and Experimental Scheme

The visual observation of the reference and aligned images using swipe view is
intuitive and accurate, although it is a bit subjective and depends on personal experience.
Thus, quantitative indicators are employed, assisting each other to fully evaluate the
alignment using three indicators: the MI [7], structural similarity (SSIM), and root means
square error (RMSE) [25,61,62].

The MI is a radiation-related indicator directly calculated from the intensity infor-
mation. It is generally employed as the similarity index of the intermediate process of
area-based registration. We take advantage of the MI to estimate the overall alignment,
which is defined as:

MI(R, S) = H(R) + H(S)− H(R, S) (6)

where H(R) and H(S) are the entropies of the reference and sensed images, respectively,
and H(R, S) is the joint entropy. The similarity between the two images grows as the MI
increases, i.e., the registration result gradually gets better.

The development in the mountainous region is relatively slower than in the flat region,
and the structure of the corresponding image changes little over time. Therefore, we employ
the SSIM as an additional similarity measurement to judge the alignments [63,64]. It is
defined as:

SSIM[Ir, Is] =
(2µrµs + c1)(2σrs + c2)

(µ2
r + µ2

s + c1)(σ2
r + σ2

s )
(7)

where µr and µs are the averages of the corresponding image intensity levels, and σx
and σy are the variance levels; σrs represents the covariance between the reference and
warped images; c1 = (k1L)2, k1 = 0.01, and L represents the range of image intensity levels;
c2 = (k2L)2 and k2 = 0.03.

Generally, there should be the same ground object on the same coordinate for two
aligned images, i.e., the Euclidean distance of the corresponding surface features should
be zero. Therefore, many pairs of coordinates are manually selected to calculate the mean
distance, i.e., the RMSE, to quantitatively evaluate the alignment:

RMSE =

√√√√ 1
N

N

∑
i=1

(∆xi)
2 + (∆yi)

2 (8)

where N is the number of points. ∆xi and ∆yi are the residual differences of the i − th
checkpoint pair in the x- and y-directions respectively. A smaller RMSE means a better
result. For the RMSE calculation, several evaluated points were manually extracted from
the reference and aligned images.

It is known that the SIFT aims to extract feature points for transformation model
estimation, and the global matrix is representative of the classic approach [21]. The core of
the APAP approach is blocking, whereby images are divided into many blocks and each of
them owns a mapping function [60]. Perhaps it will perform well in mountainous remote
sensing image registration, as the local deformation can be considered. The OFM allowing
for the varied distortions calculates the pixel-by-pixel displacement for the corresponding
coordinates of the two images. Additionally, it corrects the abnormal displacement caused
by the LULC [12] with some predefined parameters. The UMDR based on a network is
employed in [45], which is similar to our proposed algorithm, which adopts the iterative
registration without the coarse alignment using the ARM. Moreover, the maximum dis-
placement is assessed and specified in advance, which may influence the registration result
with an inappropriate initial value.
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Since there are many images used for testing, some registration results are displayed
for visual observation. For example, there are four aligned images used for the internal
comparison of our proposed algorithm in the ablation experiment, and four are used for a
comparison of the different registration methods.

4.2. Ablation Experiment for the Proposed Algorithm

As presented in Section 3, the proposed algorithm generally consists of two parts,
the ARM and HDCED. The ARM appears in the preregistration stage, and the HDCED is
designed to refine the previous result. In other words, the ARM provides an initial reduction
in deformation between the reference and sensed images, as shown in Figure 7. When
simultaneously overlapping the reference and sensed images of each pair, the generated
images are indefinable, and many ghosts are found in the significant ridgelines or valleys.
These effects are mitigated in the preregistration results in Figure 7d, as aligned by the ARM.
Fortunately, the overlapping of the results from the entire proposed algorithm and the
reference image is clear, which looks like a whole image, as presented in the fifth column
of Figure 7. To further observe the results, some subimages are selected and enlarged
in Figure 8. While observing the enlarged subimages, we came to the same conclusion.
There are large deformations of two mountainous remote sensing images when focusing
on the seams in the vertical and horizontal directions. Most of the deformation is largely
eliminated by the ARM, which provides an ideal input for the subsequent alignment. After
five iterations of the HDCED, the high-precision alignments are generated, as shown in
Figure 8c,f. Both in the horizontal and vertical directions, ignoring a seam line in the middle
of the image, the mosaicked subimage looks like a complete one, where the connected
linear features are not misplaced.
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Figure 7. Registration results for the ARM and the entire proposed framework. (a) The reference
image, (b) the sensed image, (c) the overlap between the reference and sensed image, (d) the overlap
between the reference and ARM aligned result, and (e) the overlap between the reference and
proposed alignments. (Note: the sub-image surrounded by the blue and yellow rectangles will be
enlarged and explained in the following.)
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Figure 8. Enlargement of selected subimages via the reference and sensed (aligned) image mosaic:
(a) the original images, (b) the ARM result, and (c) the proposed result used for vertical observations;
(d) the original images, (e) the ARM result, (f) and the proposed result used for horizontal observations.

Additionally, we conducted a quantitative analysis to make the internal comparison
more reliable. The MI and SSIM indicators were adopted as the accuracy metrics to
respectively evaluate the alignment regarding the intensity consistency and structure
consistency aspects. The higher the values of the MI and SSIM, the better the registration
performance. As shown in Table 2, all values are maximized in the proposed method
column, demonstrating that refining the preregistered result using the HDCED iteratively
is necessary. Additionally, the ARM is indispensable for decreasing the large deformation
between the reference and sensed images and delivers the preregistered results to the
refinement stage for more accurate outputs.

Table 2. Internal quantitative comparison of the proposed algorithm.

Experiment Indicators Original ARM Proposed

Test-1
MI (↑) 0.2650 1.0730 1.2459

SSIM (↑) 0.1735 0.1880 0.9115

Test-2
MI (↑) 0.2428 0.9370 1.0843

SSIM (↑) 0.1175 0.2273 0.8592

Test-3
MI (↑) 0.1712 0.6416 0.7277

SSIM (↑) 0.1676 0.6846 0.8490

Test-4
MI (↑) 0.0779 0.4422 0.5515

SSIM (↑) 0.1591 0.2914 0.7690

4.3. Comparison between the Proposed and Other Algorithms

The above qualitative and quantitative analysis shows that the proposed registration
strategy successively solves the mountainous remote sensing image registration problem.
To further demonstrate the proposed algorithm, we compare it with four different ap-
proaches that are representative of conventional or deep-learning-based methods. The
SSIM indicator is adopted as the accuracy metric, and the higher the SSIM, the better the
registration performance. Furthermore, to verify the robustness of the proposed algorithm,
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we introduce the box plot to show the SSIM. The advantage of the box plot is that it can
accurately and stably present the SSIM distribution without being affected by outliers, and
is particularly useful for comparing distributions between several sets of data. The box plot
is based on a five-number summary: the minimum, first quartile, median, third quartile,
and maximum. The box size is decided by the region between the first and third quartiles
of the SSIM distribution. If the box is too large, the SSIM distribution is discrete with
fluctuation, and on the contrary the data are concentrated. On the other hand, the spaces
between the minimum and first quartile and between the third quartile and maximum
can also indicate the degree of dispersion in the data, i.e., the smaller the space, the more
concentrated the data [65].

As shown in Figure 9, the box plots record the SSIM distributions of the compared
methods for 467 pairs of mountainous remote sensing images in our testing dataset. It can
be seen that the box size and space between the minimum and first quartile and between
the third quartile and maximum for the proposed algorithm are the smallest. Moreover, the
box location of the proposed algorithm is the highest as well, demonstrating the robustness
and superiority of the proposed method.
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Figure 9. Box plots of SSIM distributions of different registration algorithms for 467 pairs of testing
images. Note: the iteration number for the UMDR is three, as recommended, and the maximum
displacement is set to ten when training the network with our training set, which may not be optimal.

As presented in Section 4.2, the visual comparison can provide the observer with direct
discovery in detail to ensure a quantitative evaluation for a comprehensive comparison.
Therefore, four representative testing images with inconsistent surface structural features
are selected, as shown in Figures 10–13. The original reference and sensed images are
listed in Figures 10a,b, 11a,b, 12a,b and 13a,b, respectively. When overlapping, as shown in
Figures 10c, 11c, 12c and 13c, unsurprisingly there are distinct ghosts, and it can be seen that
the image comes from two different ones. This is because the two images to be registered
are not in the same coordinate system, and the same ground surface features have different
spatial positions. Subsequently, when putting the focus on Figures 10d, 11d, 12d and 13d,
the overlapping images are the combination of the reference image and the aligned result
from the proposed algorithm. The ridges and valleys are clear enough, and a few buildings
are well defined also. Most importantly, the overlaid image looks like a single image rather
than the superposition of two different ones.
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Figure 10. Visual comparisons of different registration methods used in test 1: (a) reference image;
(b) sensed image; (c) overlap of the reference and the sensed images; (d) overlap of the reference
and the proposed alignments. The enlarged subimages of (e) the original images, (f) SIFT, (g) APAP,
(h) OFM, (i) UMDR, and (j) proposed image.
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Figure 11. Visual comparisons of different registration methods used in test 2: (a) reference image;
(b) sensed image; (c) overlap of the reference and the sensed images; (d) overlap of the reference
and the proposed alignments. The enlarged subimages of (e) the original images, (f) SIFT, (g) APAP,
(h) OFM, (i) UMDR, and (j) proposed image.
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Figure 12. Visual comparisons of different registration methods used in test 3: (a) reference image;
(b) sensed image; (c) overlap of the reference and the sensed images; (d) overlap of the reference
and the proposed alignments. The enlarged subimages of (e) the original images, (f) SIFT, (g) APAP,
(h) OFM, (i) UMDR, and (j) proposed image.
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(b) sensed image; (c) overlap of the reference and the sensed images; (d) overlap of the reference
and the proposed alignments. The enlarged subimages of (e) the original images, (f) SIFT, (g) APAP,
(h) OFM, (i) UMDR, and (j) proposed image.

Since comparisons of the registration effects of different algorithms based on the
blur degree of the overlapping images are limited, some subimages from the swipe
views of the reference and aligned images were extracted and enlarged, as shown in
Figures 10f–j, 11f–j, 12f–j and 13f–j. To effectively observe the registration result, the con-
centration should be placed on the seams of the subimage. Figures 10e, 11e, 12e and 13e
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show that large and significant deformations can be found between the original reference
and sensed images. Therefore, the overlapping images in Figures 10c, 11c, 12c and 13c are
blurry. For the traditional methods, the SIFT method can eliminate most of the deformation,
but the linear features are still staggered at the edges in the horizontal and vertical direc-
tions, as the subimages in Figures 10f, 11f, 12f and 13f show. The reason for this is that the
SIFT algorithm only represents the feature point detection and extraction processes, and is
popular and robust in the computer vision and remote sensing fields. It may not perform
well with the weak textures of mountainous remote sensing images, and some mismatched
feature points may be found for the repeated textures. Moreover, the global transformation
model could not accurately describe the local spatial position mapping. Additionally, the
APAP approach is based on the SIFT as well, whereby the local transformation models
are applied. Figures 10g, 11g, 12g and 13g show that the geometric dislocations at the
seams are further reduced by the APAP approach. Even in Figure 13g, the sensed image is
completely aligned to the reference image in the vertical direction. The distortion in the
horizontal direction is sufficiently small and almost invisible. The sensed images of the
OFM in Figures 10h and 12h are completely registered to the reference in the horizontal
direction, and the very high-precision registration appears in Figure 13h. The misalignment
of the remaining subimages is caused by the inaccurate displacements from the OFM. The
OFM mainly constructs a variational model with grayscale and gradient consistency as
the constraint conditions. When the image content is inconsistent due to the disunity of
the imaging angles, the estimated displacements may be inaccurate, meaning they cannot
be completely corrected by the OFM, successively causing misalignment. In addition, the
OFM is sensitive to large deformation. Unfortunately, the UMDR approach generates the
most terrible alignments of the four visual experiments and gives only a tiny improvement
over the original reference and sensed images, as shown in Figures 10i, 11i, 12i and 13i.
This is because the rough maximum displacement of the trained data cannot be known
in advance. The inappropriate initial value misleads the trained network, resulting in
the unregistered image. Compared with the four approaches, the proposed algorithm
accurately aligns the sensed image to the reference image in the horizontal and vertical
directions, as shown in Figures 10j, 11j, 12j and 13j. The linear features at the joint of the
two views are sequential and look like they come from the same scene. Above all, the
OFM shows suboptimal performance in mountainous remote sensing image registration.
The alignments generated by the proposed method are more accurate where the spatial
positions of the corresponding ground objects are almost identical.

Furthermore, some distinct points are simultaneously selected in the reference, sensed,
and aligned images to calculate the RMSE values of the corresponding pixels to further
compare the proposed algorithm with the other four registration methods quantitatively.
As shown in Table 3, on the whole, the large deformations between the reference and
sensed images are significantly reduced by the listed registration algorithms. The proposed
algorithm achieves remarkable alignments in the four experiments because of the subpixel
results for the mountainous remote sensing images. In the first and second experiments,
the OFM produces a worse registration result than those of the SIFT and APAP approaches.
When observing the experimental images, there is an obvious non-correspondence of
the surface features in the reference and sensed images caused by the different imaging
viewpoints. This leads to incorrect displacements and subsequently causes low registration.
The calculated RMSE is large since we extracted some feature points at these locations,
indicating that the OFM generates low registration accuracy in these experiments. For the
last experiment, the APAP exhibits a high RMSE, which is not what we expected, as some
inaccurate transformation models are given to the local image blocks. The registration
accuracy of the UMDR is the worst among the methods, and its improvement is negligible
compared with the original RMSE. Perhaps giving an appropriate maximum displacement
is beneficial for a high-precision registration approach. However, the deformation of
different remote sensing images cannot be known in advance.
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Table 3. The RMSE values of the above experiments (pixels).

Original SIFT APAP OFM UMDR Proposed

test 1 39.8819 2.8262 2.5981 3.5969 39.436 0.4099

test 2 39.0149 3.7366 2.0555 3.5231 32.5883 0.6124

test 3 20.9156 1.6163 1.5411 0.4330 19.4459 0.3708

test 4 26.0337 0.5000 1.9333 0.4743 25.5903 0.2739

5. Discussion

The number of iterations used for refinement registration using the HDCED deter-
mines whether the program ends or not. This is critical in all parameters of our program,
and the number of iterations was set as five in the experiments. Here, some discussions
will be presented for this parameter, and experiments regarding the specified number
will be analyzed as well. Additionally, we plan to further discuss the limitations of the
proposed algorithm.

5.1. Definition of the Number of Iterations for Refinement Registration Using the HDCED

The geometric deformation process is complicated and variable between the reference
and remote sensing images covering the mountainous region. The ARM is designed to
eliminate the large and global deformations, without considering the local small distortions.
The HDCED learns the high-level sematic features and regresses the per-pixel displacement
field, focusing on the geometric relationship between each pair of corresponding pixels.
Moreover, the HDCED could be executed for many iterations, progressively moving the
displacement field as close to the perfect one as possible. However, the program cannot go
on forever, leaving the ow to define the appropriate number of iterations, or when to stop
the iterations?

Allowing for the memory of our GPU, we set the iteration numbers from one to
fourteen. It is worth noting that the experimental configuration and parameters of each
iteration were the same, except for the number of iterations. As described in Section 4, the
structural similarity evaluation indicator (SSIM) was employed to evaluate the registration
results. Since the training stage is generally time-consuming, it plays an essential role in
evaluating an algorithm’s efficiency. The running times for the network training phases
with different numbers of iterations were counted, as shown in Figure 14.
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The SSIM values show a state of fluctuating growth as the iteration numbers of the
HDCED increase, while the runtime shows a sustained increase. According to the trend of
the orange line, the larger the iteration number, the better the registration result. However,
the efficiency of the entire program and the performance of our workstation cannot be
ignored. When the iteration number is 12, the increment of the runtime is minimal among
all experiments, while there is just a 0.0072 increment in the SSIM. In other words, we did
not obtain a more accurate alignment with a lower running time. Further, we compare
the increment of the runtime and the SSIM values of two adjacent HDCED iterations.
The number 5 gives a relatively favorable result. Concretely, when the iteration number
increases to 5, the elapsed time increases by 0.8114 h and the SSIM grows by 0.0167. The
increment of the runtime is relatively small, whereas the improvement of the aligned results
is relatively large. Thus, we set 5 as the iteration number for the HDCED in our experiments.

5.2. Limitation

Generally, image registration processes are the prerequisites for image quality improve-
ments, such as cloud removal, image stretching, and shadow removal processes. When we
tested our proposed algorithm with a mountainous remote sensing image containing thin
clouds, some abnormal contents appeared in the aligned image, as shown in Figure 15. The
thin cloud or mist covers the reference image in Figure 15a, and the thickness of the cloud
is not uniform. Conversely, the sensed image is relatively clear. No abundant geometric
features can be found compared with the flat region images. The cloud or mist blurs the
details of the image, aggravating the difficulty of the mountainous remote sensing image
registration process. The calculated displacement field is not accurate enough, resulting
in incorrectly transformed coordinates and subsequently causing abnormal contents, as
shown in Figure 15c. This is against the basic principle of geometric registration. To over-
come this disadvantage, we think that the image registration process should be conducted
after the thin cloud or mist removal process. Additionally, we think that the SAR image
covering the mountains is a good alternative without the influence of clouds, which is our
next target. To comprehensively make use of their complementary information, we will
achieve the accurate registration of SAR and optical images.
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Figure 15. The registration of images obscured by thin clouds or mist: (a) reference image; (b) sensed
image; (c) aligned image.

6. Conclusions

In this paper, we presented a novel mountainous remote sensing imagery dataset,
consisting of 4093 pairs of image patches with the size of 512 × 512 pixels. It mainly covers
a mountainous region, and is one of the few real remote sensing image registration datasets,
which are rare in this field. Next, it will be expanded with more mountainous remote
sensing images of other mountains in China for more research on the geometric registration
process. Additionally, we developed an automatic image registration algorithm based
on a coarse-to-fine unsupervised cascading convolutional network on the above dataset.
The ARM was constructed to reduce the large deformations between the reference and
sensed images, which generally cannot be predicted in advance. Then, the HDCED was
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used iteratively to successively eliminate the residual distortions, which were variable and
very local. From the ablation experiments and the comparisons of the different registration
algorithms, our proposed strategy provided high-precision alignments of the MID, prelim-
inarily solving this challenging issue. Additionally, the availability of the new MID was
verified, creating the possibility for the further development of unsupervised deep learning
technologies for remote sensing image registration.

However, compared with the conventional registration algorithms, and even other
deep learning-based methods, the proposed algorithm could only process remote sensing
images of a specified size. In other words, when the model is trained with a large number
of images measuring 512 × 512 pixels, the test data should be of the same size. This
greatly limits the popularization and application of this kind of algorithm. Perhaps the
appropriate size of the images should be input to train the registration network, meeting
the application requirements. The memory of the GPU and the computer performance
must be improved. Furthermore, the larger images to be registered could be divided based
on specified overlapping pixels, thereby inputting them into the training network. The
final global displacement field can also be assembled by weighting the displacement fields
of each local block. The problem will be further solved in future studies, as we hope
the mountainous remote sensing image registration process can efficiently give accurate
datasets for disaster detection and other mountainous research fields.
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