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Abstract: Historical patterns of snow cover and snowmelt are shifting due to climate warming and
perhaps some human activities, threatening natural water resources and the ecological environment.
Passive microwave remote sensing provides quantitative data for snow mass evaluation. Here, we
evaluated the long-term impact of climate warming on snowmelt rates, using snow water equivalent
(SWE) datasets derived from passive microwave remotely sensed data over China’s three main stable
snow cover regions during the past 40 years (1981–2020). The results showed that higher ablation
rates in spring were found in locations with a deeper SWE because of high snowmelt rates that
occurred in late spring and early summer in areas with a deeper snowpack. Annual maximum SWE
(snow water equivalent) has declined across two out of the three main mountains of China’s snow
cover regions over the past 40 years under climate warming. The maximum and mean snowmelt rate
was ca. 30 and 3 mm/day, respectively, over the three regions. Further, due to SWE being reduced
in these deep snowpack areas, moderate and high rates of snowmelt showed trends of decline after
2000. Accordingly, an earlier snow onset day (average 0.6~0.7 day/a) and slower snowmelt rates
characterized the mountainous areas across the three main snow cover regions. The slower snowmelt
rate is also closely related to vegetation improvement over the three main stable snow cover regions.
Therefore, not only vegetation in spring but also streamflow and other ecological processes could
be affected by the pronounced changes in SWE and snowmelt rates. These findings strengthen our
understanding of how to better assess ecological and environmental changes towards the sustainable
use of freshwater resources in spring and earlier summer months in snow-rich alpine regions.

Keywords: snowmelt rate; passive microwave remote sensing; climate warming; snow onset day

1. Introduction

Snow formation and deposition arises from weather-climate processes. Snow cover is
a key component of the Earth’s cryosphere, for which alpine snow has an extensive distribu-
tion whose subsequent melting can dominate local and regional hydrological dynamics in
mountainous areas, including those of China. At such high elevations, especially at higher
latitudes, snow cover and snowmelt jointly influence how the eco-geographical system
changes seasonally. Snowmelt is a major freshwater resource in many snow-rich regions,
with snowmelt water sustaining one-fourth of global GDP (gross domestic product) and
supplying more than one-sixth of the Earth’s population with drinking water [1]. With
about two-thirds of its ground covered by snow in winter, China is a snow-rich country
where snowmelt is a vital freshwater resource. It is the main water supply source for rivers,
reservoirs, and soil in northern China in spring, being directly related to the sustainable
development of the country’s economy in its main snow-covered regions. Hence, rigorous
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evaluation of the rate of snowmelt and its spatiotemporal variation is imperative to support
social progress and economic development.

China is a vast country with complex terrain, spanning about 50 degrees in latitude
and 61 degrees in longitude from east to west. China is located in a temperate seasonal
snow zone, and the snow cover is mainly distributed in three regions: northeastern China–
Inner Mongolia (herein northeast China), northern Xinjiang, and the Tibetan Plateau [2]. In
northern Xinjiang, yearly snowfall begins at the end of September, with more snow coming
during the winter months. Additionally, the stable seasonal snow in the region constitutes
an important freshwater resource in spring [3] and they are also prone to frequent snow
disasters [4]. Northeast China includes the provinces of Heilongjiang, Jilin, and Liaoning
and the northeast prairie region of Inner Mongolia, where yearly snowfall begins in early
October. This region has mountains (Changbai Mountains), forests (the Xing’an Mountains
region), and prairie pastures, for which snow is a crucial natural reservoir in winter and a
source of freshwater in spring during the sowing season of staple crops. The melting of
snow is also a critical hydrological process on the Tibetan Plateau, whose snow patterning
is quite complex. Due to the Plateau’s high altitude, glaciers and frozen soil are distributed
widely, such that both seasonally stable snow and unstable snow co-occur in this region,
which is the source of many major Asian rivers, hence its moniker: “Asia’s Water Tower” [5].

Ground-based observations of alpine SWE (snow water equivalent) or other snow
properties are challenging to obtain because of the great difficulty in accessing high-
elevation mountains and their risk of dangerous avalanches [6]. In recent years, remote
sensing has emerged as a dependable and efficient way to detect variation in the cryosphere
and its characteristics, namely the monitoring of snow cover [7,8]. Moreover, high-precision
remotely sensed datasets are now pivotal for performing snowmelt calculations over large
areas at the regional scale. In this respect, elucidating the spatiotemporal changes in
China’s snow properties based on remote sensing—e.g., snow cover extent, snow cover
phenology, snow depth, snow density, and SWE—has progressed substantially in recent
decades [9–11].

Given ongoing global warming and China climate warming [12–15], snow cover ex-
tent and SWE measurements based on remote sensing over the past four decades have
been widely studied [16–20]. Snow’s phenology and meteorology inferred from remotely
sensed data has revealed its dynamic relationship to climate change and the functioning
of ecosystems [21–23]. Yet, how snowmelt rates respond to climate change and related
consequences for the ecological environment are still scarcely reported on. Although a
few studies have investigated the snowmelt process in single or multiple basins [24–26],
the spatiotemporal variability of the snowmelt rate in China and its response to climate
warming and associated environmental effects remain unclear. However, snowmelt rates
in alpine regions have fast-changing hydrologic characteristics correlated with climatolog-
ical processes, soil moisture regimes, ecosystem functions, and streamflow changes. For
example, decreased spring snow cover over eastern Europe and the western Siberia Plain
was shown to closely correspond with irregular dry soil conditions from spring to summer,
thereby increasing surface heat flux and near-surface temperatures [27].

Snowmelt rate represents an integrated metric of snow in both its amount and timing
of melting, which determines the minimum hydrological partitioning to streamflow in cold
regions [28]. Change in the snowmelt rate simply means altered patterns of this process,
which may disrupt the balance between freshwater’s demand and supply, bring soil up to
field capacity, or facilitate percolation into the root zone and streamflow [29]. Therefore,
the magnitude of the snowmelt rate is the paramount factor governing the above processes.
In this way, pronounced changes in the snowmelt rate across the three main snow cover
regions of China may threaten both their timing and amount of snowmelt, thereby further
influencing groundwater, runoff, and vegetation growth. Some studies suggested strong
relationships exist between the date of snowmelt and the onset of flowering for different
plant species. Snow mass loss and snowmelt change in winter and spring can also affect
plant performance (growth/survival) across space, the vulnerability of species, and the spa-
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tial heterogeneity of plant communities in alpine and subalpine ecosystems [30,31]. This is
because persistent snowmelt and soil warming might slightly, yet nonetheless importantly,
accelerate the onset of flowering in colder ecosystems [32]. Finally, snowmelt is among the
major factors that significantly affects the CO2 balance and enhances the springtime carbon
uptake in boreal biomes across high latitudes [33]. However, shifting to an earlier snow
phenology could augment risks faced by ecosystems via too-cold currents flowing in spring
and a greater probability of vegetation incurring frost damage. It is, therefore, imperative to
conduct large-scale research on changing snowmelt rates across China’s three main stable
snow cover regions to better understand how climate warming impacts snowmelt, and
how that affects hydrological cycles and the local ecological environment.

In this study, high-precision SWE datasets acquired via remote sensing were used to
investigate and analyze the changes in snowmelt rates across China’ three stable snow cover
regions. First, daily snow depletion was calculated to evaluate the changes in snowmelt
rates over the past 40 years in each of the three main stable snow cover regions. Second, the
spatiotemporal variability in snowmelt was analyzed for the 1981–2020 period, for which
the relationship between the snowmelt rate and snowpack volume was investigated to
explain likely causes for the trends found. Finally, the consequences of changing snowmelt
rates are discussed to reveal their dynamic impacts on hydrological cycles, water resources,
and ecosystems.

2. Materials and Methods

The long-term SWE dataset consisted of China’s daily product for 1980 through to
2020 at a spatial resolution of 25 km × 25 km, that is, the latest version released by National
Cryosphere Desert Data Center (http://www.ncdc.ac.cn; accessed on 5 August 2022) at the
beginning of 2021. This dataset covers the main land surface of China and was generated
from remote sensing data acquired by the Special Sensor Microwave Radiometer (SMMR)
(1980–1987), Special Sensor Microwave Imager (SSM/I) (1988–2008), and Special Sensor
Microwave Imager/Sounder (SSMI/S) (2009–2020) [34]. Firstly, two SMMR instruments
were operated in 1978, one aboard Nimbus-7 and one aboard SEASAT (Seafaring Satel-
lite) [35,36]. While only about 3 months of data from the SEASAT mission exist, the SMMR
on Nimbus-7 delivered a data record covering nearly 8 years from 25 October 1978 until
20 August 1987. The Nimbus-7 spacecraft operated in a sun-synchronous orbit with an
inclination of 99◦ and an average altitude of 955 km. This configuration results in an orbital
period of about 104 min and provided approximately 14 orbits per day. The SMMR is
a ten-channel radiometer, measuring microwave radiation from the Earth’s atmosphere
and surface in five frequencies at vertical and horizontal polarization. Six radiometers
were integrated in the instrument, fed by one multi-spectral feedhorn. While the four ra-
diometers at the lower frequencies (from 6.6 to 21 GHz) measured alternating polarization
each half-scan, the other two at 37 GHz measured continuously vertical and horizontal
polarization. SSM/I sensors have been operated aboard the DMSP satellites as part of
the global satellite observing system since 1987. Up to three satellites have been in orbit
simultaneously. An extensive description of the instrument and satellite characteristics
has been published by Hollinger et al. (1987) and Wentz (1991) [37,38]. The SSM/I is a
7-channel total power radiometer measuring emitted microwave radiation at 4 frequency
intervals centered at 19.35, 22.235, 37.0, and 85.5 GHz. All frequencies are sampled at
horizontal and vertical polarization, except for the 22.235 GHz channel, which measures
only vertically polarized radiation. The SSMI/S has been the successor to the SSM/I since
2008. The SSMI/S instruments are operated, as the SSM/I, aboard the DMSP satellites in
an early morning orbit, continuing the existing data record at the same overpass time. The
SSMI/S has a wider Earth viewing angular sector (144◦) than the SSM/I, resulting in a
1700-km-wide swath. A detailed description about SSMI/S and SSMI/I can be found in
Kunkee et al. (2008) [39].

To better obtain the spatial coverage of snow depth across China, the ascending and
descending overpass data were combined in this SWE product, but overpass data at night
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have priority. In order to improve the product and the dataset’s overall quality, the main
retrieved methods are as follows [34]: (i) cold overpass data (ascending for F08-SSM/I;
descending for others) are used if both ascending and descending data are available in
order to avoid the impact of wet snow on the snow depth estimation process; (ii) warm
overpass data are selected to fill gaps in the cold overpass orbits; (iii) after the above two
steps, the previous and next days’ data are selected to achieve full spatial coverage if
there are still existing gaps. Meanwhile, numerous studies have demonstrated that no
single standard algorithm can describe snow cover characteristics well everywhere. Thus,
regional algorithms that have been calibrated at a local scale might be capable of providing
a reasonable snow depth estimation. This SWE product was also divided by Chinese snow
cover into different regions based on the topography, land cover, and snow cover duration,
e.g., Xinjiang, Tibetan Plateau, Northeast, and others. The dry snow, wet snow, deep snow,
and shallow snow in different regions of China have been taken into consideration at a
certain extent when the SWE product was retrieved [40]. A linear unmixing method was
applied to the passive microwave data after using cross-calibration and bias-correction to
improve the SWE dataset’s overall quality [34,41]. The mixed pixels’ (farmland, grassland,
and forest) impact was fully considered in the dataset’s assembly process [41]. In terms of
data accuracy, the unbiased root-mean-square error of snow depth is about 5–7 cm. The
correlation coefficient is 0.84 (p < 0.01), representing the significant relationship between
ground-based measurements and snow depth estimates. This corresponds to 10–15 mm
for SWE, when compared with stations’ measurements and field data collected from snow
courses [34]. Therefore, this remote sensing data product may be used for climatic and
hydrological research. Next, daily SWE data from the remote sensing dataset over China in
the past 40 years (1981–2020) were processed by IDL programming language and ArcGIS
and classified into 5 categories: very shallow (<10 mm), shallow (10–20 mm), moderate
(20–30 mm), deep (30–40 mm), and very deep (>40 mm), based on the spatial distribution
of the 40-year mean annual maximum SWE.

Snowmelt is difficult to measure directly from remote sensing data, but it can be
reasonably derived from the daily depletion of measured SWE [42]. Snowmelt, as used
here, refers to the observed daily SWE depletion, which implicitly includes both the
melting of snow and snow surface sublimation and accretion. The snowmelt rates were
calculated as the daily loss of the SWE, with an upper limit of ≤1 mm/day, and expressed as
absolute values (i.e., losses). The 1 mm/day value is just a bulk estimation of the minimum
measurement uncertainty. Passive microwave data spanning 1979 to 1987 were acquired
from Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR) sensors, which
were used to derive the daily SWE time-series every other day. Actually, the loss value
of SWE should be negative due to snow melt day by day in spring. However, in order to
calculate the daily snowmelt rate conveniently, we defined the absolute value of SWE loss
as the ablation. So, the daily snowmelt rate was calculated as follows:

(SWEday-2 − SWEday)/2 = daily SWEloss (1)

Herein, daily SWEloss refers to the daily snowmelt value in spring, SWEday refers
to the snow water equivalent on a day in spring, and SWEday-2 refers to the snow water
equivalent two days earlier than the given day. The Special Sensor Microwave/Imager
(SSM/I) sensors have been operational in several DMSP-satellites since 1987; hence, daily
SWE data extracted from these date back to fall 1987. The daily snowmelt rate was calculated
as follows:

SWEday-1 − SWEday = daily SWEloss (2)

Herein, SWEday-1 refers to the snow water equivalent earlier one day than the given
day. Accumulation events (such as snowfall) were set to zero (no snowmelt happened
in the day). The redistribution of snow by wind across 25-km2 grid cells was presumed
negligible. The ensuing snowmelt rate values were classified into three categories: low
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(<10 mm/day), moderate (10–20 mm/day), and high (>20 mm/day). Snowmelt water
volumes were calculated from corresponding daily ablation values.

The spatiotemporal trends in SWE and the snowmelt rate were analyzed using quanti-
tative statistical techniques (using a “robust” least absolute deviation method and error
analysis). Slope values were obtained via least-squares fitting and their significance as-
sessed by a t-test using R language. The p-value (the probability value) is known as the
level of marginal significance within the hypothesis testing that represents the probability
of occurrence of the given event. The day of snowmelt onset per year was identified as the
date on which the SWE began to decrease once the SWEmax had been reached.

Normalized Difference Vegetation Index-3rd generation (NDVI) using the Global
Inventory Monitoring and Modeling System (GIMMS): vegetation indices are radiomet-
ric measures of photosynthetically active radiation absorbed by chlorophyll in the green
leaves of vegetation canopies and are therefore good surrogate measures of the phys-
iologically functioning surface greenness level of a region. The latest version of the
GIMMS NDVI data set spans the period July 1981 to December 2015 and is termed
NDVI3g (third-generation GIMMS NDVI from AVHRR sensors) and released by NASA
(http://glcf.umd.edu; accessed on 3 August 2022). The dataset is at a 1/12 degree spatial
resolution and a daily temporal resolution. Monthly data for the period of 1982–2015 were
retrieved for the study region from the KNMI climate explorer (http://climexp.knmi.nl;
accessed on 5 August 2022) and data for the spring (March to May) mean of 1982–2015 were
calculated directly from the AVHRR dataset. We resampled the NDVI data by referring
to the SWE dataset with a spatial resolution of 25 km × 25 km and conducted a spatial
correlation analysis between the NDVI and snowmelt rate in spring for their common
period 1982–2015.

3. Results
3.1. Spatiotemporal Dynamics and Tendencies of Annual Maximum SWE

Figure 1a shows a digital elevation map of China’s three main stable snow cover
regions. In northeast China, the elevation ranges from 0 to 2000 m, with higher-altitude
areas mainly distributed in the Da and Xiao Xing’an Mountains and Changbai Mountains.
In northern Xinjiang, the elevation is greater, spanning 0 to 4000 m, in which higher-altitude
areas are found to mainly be distributed in the Altay Mountains and Tianshan Mountains.
By comparison, the spatial heterogeneity in the elevation is relatively large for the Tibetan
Plateau, at 2000–8800 m, where the higher-altitude areas are distributed primarily in the
Himalayas, Kunlun Mountains, and other areas with bigger mountains.

Figure 1b shows the results for the classified SWE values over three main stable snow
cover regions. The proportions that designated very shallow, shallow, moderate, deep, and
very deep (binned according to the mean annual maximum SWE) were 2.7%, 31.3%, 15%,
25%, and 26.1%, respectively, in northeast China. The corresponding values in northern
Xinjiang were 5.1%, 31%, 23.5%, 23.5%, and 16.9%, and likewise, in the Tibetan Plateau,
they were 7.9%, 67.6%, 23%, 1.2%, and 0.2%. Evidently, the distribution of SWE in northern
Xinjiang featured latitudinal zonality but both latitudinal zonality and elevational zonality
in northeast China. In stark contrast, in Tibetan Plateau, the distribution of SWE depends
mostly on elevation only, with a prevailing SWE of 10–30 mm, which is less than that in
northern Xinjiang or northeast China. Many glaciers exist in the Tibetan Plateau, most of
which were not recorded in the remote-sensing-based SWE dataset because its ca. 25-km
spatial resolution exceeds the width of the majority of glaciers. This could explain why an
SWE value of 0 was observed in some areas (pixels).

Figure 2 depicts the trends in the annual maximum SWE change from 1981 to 2020,
which clearly revealed much spatial heterogeneity in the three main stable snow cover re-
gions of China. Four subregions were distinguished by an SWE reduction (−0.5~−1.0 mm
per year) (p < 0.001): the central and southern Altay Mountains (46–48◦N, 86–91◦E)
(No. 1 subregion), west Kunlun Mountains (35–39◦N, 75–85◦E) (No. 2 subregion) in the
Tibetan Plateau, southeastern Tibetan Plateau (28–35◦N, 93–103◦E) (No. 3 subregion),
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and the north Da and Xiao Xing’an Mountains (47–52◦N, 120–129◦E) (No. 4 subregion).
For other subregions within the three main snow cover regions, the variation in their
annual maximum SWE tended to increase or slightly increase. In other words, accord-
ing to the average annual maximum SWE over the last 40 years, significant decreasing
trends were found in the mountainous areas with a deeper SWE (between 40 and 60 mm)
over northeast China and northern Xinjiang, and with about 30 mm over southeastern
Tibetan Plateau. Specifically, for northern Xinjiang, the area proportion of its land with
an increasing vs. decreasing trend in SWE was 45% vs. 55%, and the mean change in the
rate of the annual maximum SWE was −0.1 mm/decade. For northeast China, more of
its land was characterized by an increasing trend in SWE (66%) than a decreasing one
(34%), for which the mean change in the rate of SWE was 0.6 mm/decade. Finally, for the
Tibetan Plateau, 43% of its land area featured an increasing trend in SWE with slightly
more distinguished by a decreasing trend (57%); the mean rate of change in SWE was
−0.4 mm/decade. In sum, snow water reserves in mountainous areas declined in two out
of the three main stable snow cover regions in China.
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3.2. Spatiotemporal Dynamics and Trends of Snowmelt Rate in Spring

Daily snowpack depletion was derived from long-term SWE observations across the
three main stable snow cover regions of China over the past 40 years. Figure 3a,b show
the distributions for the annual maximum and mean snowmelt rate in spring, respectively.
Evidently, high snowmelt rates were largely restricted to the Altay Mountains and Tianshan
Mountains and Da and Xiao Xing’an Mountains due to the heavy snowfall that occurred
there over winter. The maximum snowmelt rate was ~30 mm/day, 10-fold more than the
mean snowmelt rate of ~3 mm/day. In spring, the mean value of the maximum snowmelt
rate was 15 mm/day in northern Xinjiang, 13 mm/day in northeast China, and 9 mm/day
in the Tibetan Plateau during the past 40 years. The areas distinguished by a low snowmelt
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rate are mostly concentrated in the arid part of northwest China, likely because of low local
precipitation, and in Songnen Plain and Liaohe Plain in northeast China, likely because of
these subregions’ high air temperatures.
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In winter, the three stable snow cover regions have a low air temperature, with
little snowmelt occurring in any of them. In spring, however, northern Xinjiang and
northeast China are the main regions where snowmelt occurs in China. However, with
further warming driven by seasonality, the Tibetan Plateau becomes the main region of
snowmelt until May. In summer, snowfall is largely absent across most of China, with
snowmelt occurring only in the high-elevation mountains of the Tibetan Plateau (already
lying at a high altitude). The temporal trend for the snowmelt rate in spring from 1981
to 2020 varied across the three main stable snow cover regions (Figure 4). As seen in
Figure 4a,b, the maximum snowmelt rate declined significantly from 1981 to 2020 in the
eastern Tianshan Mountains, northern Da Xing’an Mountains, and southeastern Tibet, and
western Kunlun Mountains. The reduction in this rate (i.e., slope value) over time was
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as great as −5 mm/decade (p < 0.001). Yet, a slight increase in the maximum snowmelt
rate was discernible in the Tibetan Plateau’s center and the Songnen Plain of northeast
China (p < 0.01). Concerning the mean snowmelt rate, apart from the hinterland of the
Tibetan Plateau, the rates in several conspicuous alpine subregions usually covered in snow
were marked by a significant reduction trend from 1981 to 2020 (Figure 4c,d) (p < 0.001),
declining as fast as −0.5 mm/decade (p < 0.001) (Figure 4d). This might imply that climate
warming of these alpine subregions led to their earlier onset of snowmelt. Taken together,
the above results suggest probable consequences of global warming for snowmelt rates
over China’s three stable snow cover regions, marked by a tendency of slower snowmelt in
these mountainous regions with a warmer climate.
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Figure 4. Spatial variation in the changed snowmelt rate in spring across the three main stable snow
cover regions of China between 1981 and 2020. Distributions of the trends for the (a) maximum
snowmelt rate and (b) its corresponding significance levels (t-test), and for the (c) mean snowmelt
rate and (d) its corresponding significance levels (t-test).

Overall, the percentage of pixels that changed over time in the snowmelt rate was
similar across China’s three stable snow cover regions. Non-linear trends were fitted to the
remotely sensed data trend, and the polynomial regressions passed the 90% significance
level (Figure 5). In spring, its moderate and high snowmelt rates both showed increasing
trends before ca. 2000, after which they tended to decrease, and vice versa for low snowmelt
rates. This decline in the proportion of pixels with moderate and high snowmelt rates over
the last 20 years could have contributed to snowmelt slowing in the three stable snow cover
regions from above study result. Specifically, in northern Xinjiang, the low snowmelt rate
in spring was characterized by a general trend of irregular fluctuations from 1981 to 2010;
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nevertheless, it did exhibit an increasing trend over the last 10 years (2010–2020). In the
Tibetan Plateau, there were relatively less areas (pixels) with a high snowmelt rate than in
the other two regions; hence, its variation hardly changed from 1981 to 2020. From these
results of the spatiotemporal dynamics of the snowmelt rate in spring, two clear but related
findings emerged. First, for 1981 through to 2020, there is a similar tendency of slower
snowmelt in spring, especially declining high snowmelt rates over the three stable snow
cover regions in the last two decades; second, and by contrast, low snowmelt rates became
more common after 2000 in all three regions.
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China’s three stable snow cover regions, obtained from passive microwave remotely sensing datasets.
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shading is the 90% confidence interval for the fitted nonlinear regression (dotted blue line).

3.3. Shifts in Snowmelt Onset Day across the Three Stable Snow Cover Regions

Next, to uncover plausible causes for the declining snowmelt rates over the major
mountainous subregions in China’s three stable snow cover regions, the trends of their
day of snowmelt onset were examined over the past 40 years. This revealed that snowmelt
started sooner under a warming climate (Figure 6), now happening 2~6 days earlier per
year over most subregions of the three stable snow cover regions, excluding the central
parts of the Tibetan Plateau and Songnen Plain of northeast China. Earlier snowmelt
may explain the slower snowmelt rate in spring because snow rarely persists into the
beginning of summer. Specifically, the mean trend of the snowmelt onset day was −0.6,
−0.7, and −0.7 days/year for northern Xinjiang, northeast China, and the Tibetan Plateau,
respectively. The spatial heterogeneity in the shifting phenology of snowmelt was evidently
greatest in the Tibetan Plateau (Figure 6a), and, as shown in Figure 6b, highly significant
trends (p < 0.001) for a shifting day of snowmelt onset (earlier or later) were widespread in
all three regions but least so in the Tibetan Plateau.
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4. Discussion
4.1. The Relationship between Snow Depth and Snowmelt Rate

Spatial correlation analysis between the snowmelt rate and snow depth showed that
the ablation rates and snowpack magnitude were positively associated (Pearson’s cor-
relation coefficient = 0.35, p < 0.05). This suggests that the declining snowmelt rate in
spring over China’s three stable snow cover regions is related to the annual maximum SWE
in these mountainous areas; that is, high snowmelt rates occurred in subregions with a
greater SWE (i.e., depth > 40 mm). Accordingly, because the annual maximum SWE has
decreased over the past 40 years (1981–2020), especially in the mountainous areas, the re-
duced snowmelt rate in the three snow cover subregions also became significant. To further
illustrate how the snowpack depth and snowmelt rate are linked, the frequency percent-
ages of the meltwater volume produced by differing snowmelt rates (five categories) were
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derived from the datasets (Figure 7). Evidently, for high snowmelt rates (>20 mm/day), a
greater proportion of snowmelt volume originated in areas with a higher SWE; conversely,
for low snowmelt rates (<10 mm/day), more of the snowmelt volume came from areas
with a lower SWE. For medium snowmelt rates (10~20 mm/day), however, the proportions
were mostly similar across the five SWE categories, perhaps peaking at 20–30 mm. These
results confirm, again, that the faster snowmelt rates in spring depends on having deeper
snow present (i.e., higher SWE) while slower snowmelt rates arise where the snow cover is
shallow (i.e., lower SWE). These empirical relationships between the snowmelt rates and
snowpack depth, as inferred from remotely sensed datasets, are consistent with analyses
reported for the western United States [43] and northern hemisphere [44]. To explain the
involved mechanisms, it has been hypothesized that, given an equal energy input, a deeper
snowpack may melt more slowly than a shallower snowpack due to the increased energy
needed to overcome the cold content and initiate snowmelt runoff [42]. Still, a deeper
snowpack is more likely to persist into late spring or early summer, during which time
it can readily receive more energy that is then available for faster melting. However, we
found that, alongside climate warming, the snowmelt onset advanced by 2~6 days per year
over the important regions of the three stable snow cover regions, thus precluding more
energy for their faster melt.
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Figure 7. Proportions of meltwater volume produced at different snowmelt rates derived from the
passive microwave remote sensing datasets. The percentage contribution to total snowmelt arising
from low (<10 mm/day), moderate (10–20 mm/day), and high (>20 mm/day) melting rates was
classified according to the historical snowpack depth (color coded; see legend inset). Boxplots show
the minimum (lower whisker), quarter (bottom of the box), median (line), three-quarter (top of the
box), and maximum (upper whisker) values for each SWE group. Circles are outliers.

Therefore, we may reasonably conclude that the trends of declining moderate and
high snowmelt rates in spring from 1981 to 2020 were, to some extent, influenced by SWE
reductions in mountainous areas whose snow cover is usually deep. This finding runs
counter to the previous intuitive notion that snowmelt rates would likely hasten in response
to a warmer climate. Rather, our study suggests that, under a warmer climate, the snowmelt
rate could actually be slower over those mountainous areas characterized by a reduced
SWE, an earlier onset of snowmelt, and less spring snow cover extent across the three main
snow cover regions of China.

4.2. Possible Ecological and Other Environmental Impacts from a Changing SWE and
Snowmelt Rate

An earlier and slower snowmelt process coupled with a reduction of SWE may influ-
ence ecological processes by altering soil moisture and evapotranspiration regimes [30,31].
However, such ecological implications under climate warming are apt to vary in tandem
with the spatial heterogeneity in terms of the soil properties, vegetation types, and evapo-
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transpiration. Figure 8a depicts the changes in the interannual NDVI in the spring season
between 1982 and 2015. We detected an improvement in the vegetation in the Da and
Xiao Xing’an Mountains, eastern Changbai Mountains, and southern Tibet, and these
subregions correspond well to those where the snowmelt rate has decreased in China.
These mountainous areas are little or negligibly disturbed by human activity due to their
locations and inaccessibility. Our finding demonstrates how snowmelt can prominently
drive vegetation improvement in those mountainous areas, whereas elsewhere, in most
of China, rising temperatures and increased radiation are the main drivers of vegetation
improvement. Meanwhile, the spatial correlation between the NDVI and snowmelt rate
in spring in the three stable snow cover regions of China shows that there is a significant
negative relationship between them (Figure 8b). A major consequence of slower snowmelt
in spring over such mountains may be beneficial to vegetation for available water to be
stored in the soil and used by vegetation in spring.
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According to a previous study [29], changes in snowmelt’s timing (onset) are capable
of altering streamflow production via two opposing mechanisms. (i) A greater proportion
of the melting snow is partitioned to evapotranspiration (ET) than streamflow because of
atmospheric warming-induced increases in the vapor pressure deficit [45]. Alternatively,
(ii) an earlier occurring snowmelt can also disrupt the synchrony between the availability
of water and vegetation’s demand for it, generating greater streamflow because water is
delivered when vegetation is still less active or dormant. Arguably, the winter snowpack
provides an efficient storage of accumulated precipitation for spring, but a site’s hydro-
logical status depends more on the one-dimensional flux of water in or out of its soil than
upon precipitation per se [46]. So, the spring snowmelt (March–April) drives a peak in the
bedrock flow, in which the rate of water input to soil increases substantially, initiating its
switch to a ‘wet state’ featuring widespread, fully connected lateral hillslope flow. During
the snowmelt period, the soil receives more water per day than it loses to evapotranspi-
ration, enabling the deepest soil profiles to attain field capacity [46]. Once the snowmelt
event ends, the soil’s moisture content undergoes a rapid decline as evapotranspiration
greatly exceeds any water it receives in the late-spring drying period. It follows that a
changed snowmelt rate would alter, accordingly, the timing and rate of water input to soil
in the late-spring period [47], thereby diminishing the amount of storage water available
for vegetation to use in both spring and summer. Considered further, an earlier and slower
snowmelt rate could threaten both the timing and the amount of snowmelt able to infiltrate
into aquifers beneath soil, especially where vegetation is sparse or where there is less
run-off, consequently impacting regional groundwater storage levels and dynamics [48,49].

5. Conclusions

This study investigated changes in the snowmelt rates across China’s three main stable
snow cover regions over the past 40 years (1981–2020) by examining SWE datasets obtained
via passive remote sensing. Firstly, the annual maximum SWE has decreased in two out of
the three stable snow cover regions. Secondly, in these mountainous areas, the snowmelt
rate has declined, which is a pivotal finding as it disputes the commonly held hypothesis
that snowmelt rates would instead accelerate in a warmer climate and increase. Thirdly,
there is now an earlier onset of snowmelt in spring across key mountain chains in the
three main regions. Snowmelt rates are associated with differing depths of SWE, and the
latter’s reduction in areas with a deep snowpack (i.e., mountains) likely drove the trend
of moderate and high snowmelt rates decreasing after 2000. This is because snow melt
rates are high in late spring and early summer where the snowpack is deeper: once it starts
thawing it is quickly diminished, leading to snowmelt rate decreasing (since little if any
of it persists into summer). Earlier and slower snowmelt under climate warming may
risk severely degrading local vegetation and disrupting when and how much meltwater
arrives downstream in a snow basin for human use. This study provides new and timely
insight into the changing dynamics of the snowmelt rate change across snow-rich China,
augmenting our ability to predict meltwater availability in the face of climate change.
Future efforts should focus on assessing further shifts in snowmelt rates and anticipating
how they impact the hydrological cycle and ecological processes in spring and how to
better manage threatened snow water resources in China.
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