
Citation: Raimundo, J.;

Lopez-Cuervo Medina, S.; Aguirre de

Mata, J.; Prieto, J.F. Multisensor Data

Fusion by Means of Voxelization:

Application to a Construction

Element of Historic Heritage. Remote

Sens. 2022, 14, 4172. https://doi.org/

10.3390/rs14174172

Academic Editor: Nicola Masini

Received: 13 July 2022

Accepted: 17 August 2022

Published: 25 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Multisensor Data Fusion by Means of Voxelization: Application
to a Construction Element of Historic Heritage
Javier Raimundo * , Serafin Lopez-Cuervo Medina , Julian Aguirre de Mata and Juan F. Prieto

Departamento de Ingeniería Topográfica y Cartográfica, Escuela Técnica Superior de Ingenieros en Topografía,
Geodesia y Cartografía, Universidad Politécnica de Madrid, Campus Sur, A-3, Km 7, 28031 Madrid, Spain
* Correspondence: ajraimundo@alumnos.upm.es

Abstract: Point clouds are very common tools used in the work of documenting historic heritage
buildings. These clouds usually comprise millions of unrelated points and are not presented in an
efficient data structure, making them complicated to use. Furthermore, point clouds do not contain
topological or semantic information on the elements they represent. Added to these difficulties is
the fact that a variety of different kinds of sensors and measurement methods are used in study and
documentation work: photogrammetry, LIDAR, etc. Each point cloud must be fused and integrated
so that decisions can be taken based on the total information supplied by all the sensors used.
A system must be devised to represent the discrete set of points in order to organise, structure and
fuse the point clouds. In this work we propose the concept of multispectral voxels to fuse the point
clouds, thus integrating multisensor information in an efficient data structure, and applied it to the
real case of a building element in an archaeological context. The use of multispectral voxels for the
fusion of point clouds integrates all the multisensor information in their structure. This allows the
use of very powerful algorithms such as automatic learning and machine learning to interpret the
elements studied.

Keywords: point cloud; voxel; voxelization; multispectral; multisensor

1. Introduction

Geometric data acquisition technologies are today an increasingly common tool in
several fields such as remote sensing, construction, quality control, and the documentation
and study of historic heritage. The use of both terrestrial (TLS) and aerial (ALS) laser scan-
ners and techniques such as photogrammetry make possible to discretise the environment
by means of a set of aggregated points which, taken as a whole, reproduce the shape of the
object, building and/or terrain.

However, one drawback is that the use of 3D point clouds requires processing vast
amounts of information. The Table 1 shows an example of the typical structure of a point
cloud, which can only be processed and visualised with the aid of major data-processing
infrastructures. Point clouds are also destructured, so there is a substantial problem locating
specific points in these clouds [1]. Another consequence of the lack of structure in this type
of data is that point clouds do not contain topological information, therefore making it
impossible to determine the neighbourhood relations between the points [2].

Non-homogeneous densities are present in the registration of the point clouds, and
the point density obtained is not always adequate for the intended application. Although
a data collection campaign is designed with a minimum necessary geometric resolution
(for example 5 points/dm2), this is only the minimum. For instance, in the case of mobile
laser scanners (MLS), the geometric resolution will be determined by the density parameter
chosen in the laser scanning equipment. Moreover, there will be zones with redundant
information, particularly in the overlapping area between takes, while other zones will
have lower point densities, even though the minimum resolution is guaranteed. This means
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that the point density and precision are heterogeneous within the cloud [1]. Other factors
to consider are added noise and points from objects outside the study (Figure 1).

Figure 1. Challenges in raw point clouds acquired from laser scanning and stereo vision (i.e.,
photogrammetry). (Source: Xu et al. (2021). [1]).

Point clouds are usually too dense and extensive for utilities such as rendering. Point
clouds of more than 10 million points become impractical for classical visualisation algo-
rithms [3]. Data structures must therefore be designed to allow the efficient and effective
management of the information contained in the 3D point clouds.

The methods for assessing geometric information (3D coordinates) include alternatives
to point clouds such as depth maps, tree models, and meshing and the use of voxels [1].

Voxels are the minimum abstract units in 3D, with predefined volumes, positions and
attributes. Their name derives from the term “volumetric element” [4]. Voxels are extremely
useful for representing point clouds in a topologically explicit way, thereby enriching the
information. Due to their structure, they are very efficient to process and classify by means
of 3D convolutional neural networks [2].

Previous research works on the analysis of point clouds using voxels describe the
extraction of vegetation parameters in forest stands [5–7], studies on structures in historic
heritage buildings [8], and the automatic extraction of buildings from point clouds by aerial
laser scanner [9].

Table 1. Typical structure of a point cloud (example).

Coordinates Colour Information
X (m) Y (m) Z (m) I R G B

532,238.001 4,274,986.273 5.923 −1319 29 22 16
532,238.342 4,274,986.295 5.910 −1252 36 27 20
532,238.348 4,274,986.297 5.912 −1359 40 27 19

[. . . ]
532,238.432 42,749,867.987 5.922 −1342 25 18 12

So far we have analysed the weaknesses and strengths of point clouds as data struc-
tures. However if we want to analyse several clouds from different sensors the problem
arises of how to process all this information as a whole.

Previous research has been done into multisensor point clouds—that is to say, point
clouds obtained with different sensors whose registered fields are unrelated with geometry—
representing information from different parts of the electromagnetic spectrum. The first
approaches were conducted with the aid of airborne laser scanners (ALS), using laser beams
with different wavelengths in the same take [10]. In subsequent works methodologies were
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designed to extract entities from these multispectral points in airborne laser sensors [11]
with the aid of specific instruments that contribute multispectrality in a single point cloud.

Other authors have used voxels for the fusion of different types of data:

• Fusion of medical data from imaging techniques [12] and magnetic resonance image
(MRI) data [13,14].

• Geological data from different sources [15].
• LIDAR data with RADAR data [16,17].
• LIDAR point clouds with images [18,19].
• Stereo-LIDAR fusion [20].
• Terrestrial laser scanner (TLS) with hyperspectral images [21].
• Texture Mapping and 3-D Scene-data Fusion with Radioactive Source [22].

No method has been developed to date for the integrated fusion of data from diverse
origins in a voxelized structure.

We therefore present a method to fuse data from different origins, specifically multi-
sensor data represented by point clouds. This method uses voxelization to improve and
resolve the difficulties inherent in the individual processing of point clouds by combining
them in a more powerful and effective structure. This enables their joint analysis, with all
the available information regardless of the amount or number of different sensors involved,
in an effective and efficient way.

After this introduction we outline the most commonly used technologies for acquiring
point clouds, and the data collection carried out to test our methodology. We define the
concept of multispectral voxel to combine heterogeneous information from different sensors
and/or different takes in an efficient data structure for subsequent processes. The results
obtained are then analysed, followed by a discussion of the use of voxels for the fusion of
multisensor data.

2. Materials and Methods

The most widely used geometric data acquisition technologies today are laser scanner
and photogrammetry. These data can also be captured by means of depth sensors or deep
learning algorithms through generative adversarial networks [23]. Although these are all
different techniques, the final product is similar: point clouds defined by their cartesian
coordinates in space (XYZ), along with additional registered properties (see Table 1).

Laser scanners function by means of the emission and return of an electromagnetic
wave, and register the intensity of the return of this beam. They can sometimes also record
information on the colour of the point if they have support from some visible spectrum
sensor (camera) [24].

The outputs of photogrammetry are point clouds from homologous entities identified
in photographs taken with digital image sensors. The information accompanying the
point geometry will depend on the type of sensor and the part of the electromagnetic
spectrum to which it is sensitive, registered by a digital value that usually corresponds
to its colour. Using visible spectrum cameras (conventional cameras), colour is obtained
in its green, red and blue components (bands). However, if multispectral, thermographic,
ultraviolet, etc., cameras are used, the information registered will correspond to the part of
the spectrum to which each sensor is sensitive [25]. Previous research work has been done
in the field of fusing infrared thermal data with visible spectrum images. The product of
this infrared-visible fusion is a thermal infrared point cloud with higher resolution than
could be obtained from the original thermal sensor [26].

In addition to the problems of data structure, heterogeneity, variable density etc.
described above, multisensor point clouds will have a different data source and express
different information. It is necessary to devise techniques to fuse both the geometric
and spectral information in order to facilitate processing and obtain conclusions from the
different information they contain.
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2.1. Data Collection

In order to demonstrate the potential of the use of voxels for processing multisensor
point clouds, a building element from a site containing a historic enclosure wall was
registered with a variety of sensors.

The element is located in the town of Humanes de Madrid (Madrid, Spain), with
geographic coordinates 40.250177◦N, 3.828382◦W. In Figure 2 its geographic location in
Spain is shown, as well as a photograph of the wall itself (Figure 3). The dimensions of the
chosen wall are approximately 20 × 3 m.

Figure 2. Location of the study object in Spain.

Figure 3. The historic wall object of the field study.

The selection of this site and this historical architectural element is justified by the
fact that in ancient history research works the main elements to be studied are walls. The
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fusion of point clouds by voxelization does not depend on the geometry (shape) of the
element. The fusion can be done by elements or by the whole building or environment
to be studied as a whole. The point cloud selected as the starting point for defining the
voxelised structure will determine the limits of the study area in each case.

The data were collected by means of photogrammetric techniques, with several sensors.
A series of photogrammetric data acquisition missions were designed to obtain different
point clouds of the same object. Thus, each point cloud, while representing the geometric
reality of this historic architectural element, adds the intrinsic spectral information of the
sensor used, or of the filter used in that capture. These data acquisition sessions were carried
out sequentially to ensure that the environmental conditions did not change significantly.
Special care was taken in the design of the data collection missions to ensure that the
weather and environmental conditions did not vary. When taking the photographs, no part
of the wall was directly illuminated by the sun, which would cause discrepancies in the
values acquired. Other variables such as humidity and wind remained constant throughout
the acquisition time. Two different cameras, equipping several filters depending on desired
spectral information, were used in this work:

• Sony digital image camera model Nex-7, with a 19 mm fixed-length optical lens. This
sensor records the spectral components corresponding to the red (590 nm), green
(520 nm) and blue (460 nm) bands. In Table 2 we show these used sensor parameters.

• Modified digital image camera model Sony Nex-5N (Table 3), equipped with a 16 mm
fixed-length lens, with near infrared filter and an ultraviolet filter.

Table 2. Sony NEX 7 camera sensor parameters.

Parameter Value

Sensor APS-C type CMOS sensor
Focal length (mm) 19
Sensor width (mm) 23.5
Sensor lenght (mm) 15.6

Effective pixels (megapixels) 24.3
Pixel size (microns) 3.92

ISO sensitivity range 100–1600
Image format RAW (Sony ARW 2.3 format),

Weight (g) 350

Table 3. Sony NEX 5N camera sensor parameters.

Parameter Value

Sensor APS-C type CMOS sensor
Focal length (mm) 16
Sensor width (mm) 23.5
Sensor length (mm) 15.6

Effective pixels (megapixels) 16.7
Pixel size (microns) 4.82

ISO sensitivity range 100–3200
Image format RAW (Sony ARW 2.2 format),

Weight (g) 269

Figure 4 shows the spectral response of the unmodified Sony NEX sensor. If we
removed the internal infrared filter, this Sony sensor will become sensitive to parts of the
electromagnetic spectrum such as the near infrared (820 nm) and the ultraviolet (390 nm).
In Figure 5 we shows the spectral response of the modified Sony sensor [27]. Combined
with different filters we can acquire different spectral information than the one we can
achieve with the unmodified sensor. Figures 6 and 7 show the transmission curves of the
these used filters during capture process.
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In this work, we have used consumer photographic cameras, one of them modified, to
demonstrate that multispectral point clouds can be obtained with low-cost sensors.

Figure 4. Spectral response for the unmodified Sony camera, normalised to the peak of the green
channel (Source: Berra et al. [27]).

Figure 5. Spectral response for the modified Sony camera, normalised to the peak of the red channel
(Source: Berra et al. [27]).

Figure 6. Midopt DB 660/850 Dual Bandpass filter light transmission curve (Source: Midwest Optical
Systems, Inc.).
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Figure 7. ZB2 filter light transmission curve. (Source: Shijiazhuang Tangsinuo Optoelectronic
Technology Co., Ltd.).

The use in this work of only two different photogrammetric sensors for point cloud
fusion does not imply that the voxelization fusion process can only be used with point
clouds originated from this technique. As mentioned in the introduction, there are several
tools and methods for obtaining point clouds, nowadays making great advances in this
research field. Each sensor involved, apart from the geometrical data, provides different
information inherent to its characteristics or the methodology used in the data acquisition.
Our research is independent of the number of sensors used or their technology. In this
case, we are going to fuse five point clouds by voxelization, analysing their advantages
and limitations.

The process of image capture for subsequent photogrammetric processing was de-
signed in such a way that the individual images were taken at a distance of approximately
3 m from the wall. The distance could not be greater due to the narrowness of the street
where this historic location is situated. The overlap was always greater than 90% between
consecutive images and two passes were made, each with a different camera orientation,
with each sensor and filter combination.

Figures 8–10 show examples of the images obtained with each sensor and filter com-
bination. Figure 8 shows an image taken by the unmodified Sony Nex7 visible spectrum
camera with no additional filter. Figure 9 corresponds to the modified Sony Nex5N camera
mounting a Midopt DB 660/850 Dual Bandpass filter. Finally, in Figure 10 we show a detail
of the image corresponding to the modified camera mounting a ZB2 ultraviolet filter.

Figure 8. Photograph taken by visible spectrum camera.
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Figure 9. Photograph by modified camera mounting NIR/blue dualband pass filter.

Figure 10. Picture of the wall with modified camera and ZB2 ultraviolet filter.

Before taking the photographs, a series of precision targets were marked on the wall
and their interdistances were measured with a fibreglass measuring tape with centimetre
precision. These marks define a set of control points and a common geometric reference
system for all the takes (Figure 11).

The set of photographs in the visible spectrum consists of 398 images, the near-infrared
set consists of 340 images, and the ultraviolet group of images comprises 309 photographs.

The photographs from the different sensors were processed with the photogrammetric
processing application Agisoft Metashape version 1.6.1 build 10,009 (64 bits). Figures 12 and 13
show the distribution of shots for the visible spectrum point cloud.

The precision targets were identified in all the photographs (Figure 14) in a way that
defined a local reference system, in which all the different point clouds were integrated.
Thus, we have several point clouds in a common reference system. In this particular case,
we did not consider georeferencing these targets, as we intend to demonstrate the feasibility
of the fusion of point clouds by voxelization. We consider that georeferencing of point
clouds should be carried out in any case where the precise marking can not be permanent,
which is common in the context of ancient history buildings. This georeferencing process
will help a lot in the event that new data acquisition has to be realised.
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The result of the photogrammetric process of the visible spectrum capture was a point
cloud whose RGB colour property corresponds to the spectral information in the red, green
and blue bands. On the other hand, the point clouds of the near infrared and ultraviolet set,
although the points present the colour fields structure, the same as the visible spectrum
point cloud, only the information corresponding to the desired spectral information has
been taken. For the near-infrared cloud, the information of the field corresponding to
“red” was taken, while for the cloud of points coming from the process with the ultraviolet
images set, only the colour property corresponding to “blue” field was used.

Figure 11. Example of the precision marks used.

Figure 12. Distribution of the shots taken during visible spectrum capture process (front view).

Five different point clouds were obtained as a final output of this data processing
phase, corresponding to different spectral bands: red, green, blue, infrared and ultraviolet.
To clarify, the geometry of the visible spectral point cloud, as all the points positions
coincide because they come from the same cloud, has been split into three different ones
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because they contain distinct spectral information, in single bands, such as the infrared and
ultraviolet point clouds.

Figure 13. Distribution of the shots taken during visible spectrum capture process (upper view).

Figure 14. Diagram with the location of all precision targets on the studied historic wall (NIR
point cloud).

2.2. Fusion of Point Clouds by Voxelization

We now have several point clouds (five, in this particular study) in a common ref-
erence system, but with different information. To be able to merge these point clouds
and subsequently analyse the information provided by each one in an integrated way, we
propose the concept of multispectral voxel. A multispectral voxel is defined not only by its
size and position, but by the characteristics of the points it contains (Figure 15).

When processing point clouds in their voxelization, one of the parameters that defines
the structure of voxels is the size of the elemental voxel. This parameter will determine the
resolution of the phenomena to be studied thanks to the data structure (finite elements [8],
structural studies [28,29], dynamic phenomena [30], etc.). For example, if the study or sim-
ulation requires a resolution of 5 cm, this will be the voxel size to be set in the voxelization
process. The size of the voxel will also establish the degree of reduction of the elements
compared to the number of points in the original clouds.

The voxelization process consists of dividing the point cloud into unique elements
defined by tetrahedrons (although other geometric figures can be defined such as spheres,
cylinders, etc.), all with a single uniform size. We first determine the defining framework
(bounding box) with the limits of the point cloud on each of the three axes XYZ. In this first
step of the voxelization, one of the point clouds representing the study object is taken as a
reference. The number of voxels in each direction is obtained by dividing the dimensions of
the bounding box by the dimension of the elemental voxel selected [31]. This voxelization
process is included in the Open3D open code library [32].
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Figure 15. Definition of a multispectral voxel.

Once the voxelized data structure has been defined, the data can be fused. Each voxel
is defined by its centroid, with its geometric coordinates XYZ, and by its contour. We
locate the centroid nearest to each point in the cloud, which is then assigned to the voxel
represented by this centroid. The centroid closest to each point can be searched using the
closest-pair or KDTree algorithms [33].

As the whole cloud has been covered, we will have identified the points that are
contained within each voxel. The property transmitted by the points to the voxel containing
them will be the mean of the values of the points in each individual spectral band. In
other words, if a voxel contains many points of the same point cloud, the corresponding
spectral information value of that voxel will be the mean of the spectral values of the points
contained in it. Other statistical measurements can be calculated in addition to the mean,
such as the maximum and minimum values, variance, skewness and kurtosis, which will
give a measure of the dispersion and variability of the spectral information transmitted by
these contained points. This process is then repeated for each point cloud to be fused.

Figure 16 shows the methodology designed for the fusion of point clouds from het-
erogeneous sensors by voxelization. The final output is a series of voxels integrating the
multispectral information contained in them. Given the heterogeneity of the point density,
there may be voxels that do not include points from any of the different clouds. A complete
voxel is considered to be one that contains at least one point from all the point clouds anal-
ysed. Incomplete voxels must be identified in order to handle them correctly in subsequent
processes.

The voxelization was done based on the cloud from the visible spectrum photographs
taken with the unmodified camera. This is because, in this particular case, it is the largest
point cloud. This does not imply that none of the other point clouds can be used as a
starting point for defining the voxelized structure. This original visible point cloud has
over 39 million points (RGB point cloud). The Table 4 shows the number of voxels obtained
by varying their size in regard to the original point cloud. Voxel size multiples such as ×2,
×5, ×10, etc. have been chosen. As can be seen, varying the voxel size by half does not
imply half the number of voxels are obtained, and vice versa.

Table 4. Number of voxels relative to their size.

Voxel Size (cm) Number of Voxels

0.5 4,621,255
1 1,193,994
5 46,532
10 11,292
15 4984
20 2658
30 1281
50 461
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Figure 16. Point clouds voxelization fusion flowchart.

Figures 17–19 show the voxelizations obtained at voxel size resolutions of 50, 15 and
0.5 cm, as an example.

The size of the set of elements to be analysed in subsequent processes has been
drastically reduced. It is no longer necessary to store millions of points; by performing the
voxelization, the geometry of the construction element is contained in a much smaller set
of voxels. In this study case, the original RGB cloud has 39,828,025 points, and the number
of elements resulting in the case of voxel resolutions of 0.5 cm is 11.60%. At a resolution of
1 cm, the voxels are 2.99% compared to the original.

Figure 17. Voxelization with a voxel size of 50 cm.
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Figure 18. Voxelization with a voxel size of 15 cm.

Figure 19. Voxelization with a voxel size of 0.5 cm.

3. Discussion

Up to this point, we have the multispectral voxel structure containing the geometry
and the spectral information of the whole used multisensor set. We first analyse the size in
memory of the new data structure generated by these multispectral voxels. The Table 5
shows the size of the point clouds analysed. In addition to the geometry, the RGB point
cloud contains the spectral information on the red, green and blue bands, since its points
provide this colour information. In the rest of the point clouds the points contain the
information corresponding to a single band (NIR and UV in each case). Each point in the
cloud is defined by its three XYZ coordinates plus its colour attribute (Table 1). This means
that in the case of the minimum information necessary, each point must be declared by
the four variables X, Y, Z + spectral information (“colour”), all represented by values in
double precision. Each point is four elements × 8 bytes = 32 bytes. Given that the geometric
description of the construction elements to be studied in architecture, engineering and
archeology rarely comprises fewer than several million points, even the simplest element
will require a large amount of memory to process. However, voxelization reduces the
memory size necessary for optimum handling and analysis. In our work case, the voxelized
geometry uses 7.48% memory with a voxel size of 5 mm, compared to the combined size of
the three clouds (Table 5).

Table 5. Variation of point cloud size in memory with respect to voxelization.

Point Cloud Number of Elements Memory Space Needed
(Mbytes)

RGB 1 39,828,025 1911.75
NIR 38,271,073 1224.67
UV 25,115,133 803.68

Total 103,214,231 3940.10
Voxel (0.5 cm size) 4,621,255 295.76

1 RGB point cloud comprises the spectral information for red, green and blue bands.

The geometric resolution in the study object is now homogeneous, and there are no
areas with a lower point density than others. Once the resolution of the voxel has been
established, any possible redundancy of information is eliminated in the areas with a
greater point density. The voxelization concept ensures that all elements are equal in their
geometric resolution. This means that they are perfectly located and do not overlap each
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other, avoiding redundancies and storage of useless information. The option of establishing
the working resolution means it is possible to work only with the information relevant to
the phenomenon to be studied.

Regarding multispectral voxel properties, voxels have topological properties such
as neighbourhood. Each voxel is identified by three indices (Vi,j,k) on each of the three
Cartesian axes in the space. Given a particular voxel, it is simple to find the adjacent voxels
with which to semantically classify the object or parts of the object.

The voxels defined as complete present all the information possible on the clouds inte-
grated in them. Incomplete voxels can be located in order to determine what information
needs to be added in subsequent takes, and the additional points can then be processed
again so that all the voxels are complete (in terms of their radiometric information).

All of the above therefore confirms that, in addition to producing a highly significant
reduction in the number of elements to be analysed, the use of voxels for the fusion of
point clouds offers a series of very interesting and necessary properties for the subsequent
analysis and interpretation of the results. Our methodology is independent of the number
and type of sensors used to obtain the point clouds and defines a highly efficient data
structure that integrates all the radiometric information in its interior.

4. Conclusions

The large volume of data supplied by data acquisition technologies through point
clouds allows a detailed analysis of the objects to be studied. However, this massive
amount of data raises the problem of how to process them, which may be impossible in
the cases researchers lack the necessary infrastructure for their handling and visualisation.
Solutions are required to overcome this challenge in the field of information generation
and management, particularly if the aim is to merge heterogeneous information. This work
proposes the concept of multispectral voxels for the fusion of point clouds from different
sensors. We have tested our methodology, demonstrating the potential of using voxels for
the study, processing and fusion of point clouds from multiple sensors, in a real case, as it
can be presented to researchers in the field.

We identify the advantages of using the voxelization method to fuse point clouds, and
quantify the reduction in the size of the information allowed by this technique. Although,
on certain occasions, geometric description of archaeological elements may be lost due to
the choice of a too large voxel size, the fusion of multisensor point clouds by voxelization
integrates in its structure all the information of the original point clouds without loss,
giving it an optimal data structure for processing and study.

In addition to the described problems presented by the use of raw point clouds, this
work presents voxelization for the fusion of multisensor point clouds as a solution that
provides a new tool in the study of ancient history elements from a new perspective. It is
no longer necessary to perform the analysis for each point cloud for each technology and
spectral information obtained, but from a global and integrated point of view. Multispectral
voxels, in addition to all the advantages they present as a data structure, allow us to obtain
conclusions that would have been impossible with single analyses, as synergies appear
through the multispectral information contained in them.

In future lines of work the aim is to combine point clouds from different origins:
photogrammetry, laser scanner, terrestrial and aerial sensors and additional parts of the
electromagnetic spectrum such as microwaves and thermal infrared, in order to study
the pathologies present in buildings, particularly ancient history buildings, with machine
learning algorithms. Although there is research that has already used point clouds for the
study of pathology in historic buildings based on point clouds [34], it only analyses one
point cloud at a time, without integrating the information that could be obtained from
other methods. This means that their individual analyses cannot be integrated together.
The potential of the method we have described here will help to integrate the information
from all these sensors in such a way that by combining the information from all of them,
it will be possible to identify the pathological areas of historical heritage buildings in a
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manageable structure. Multispectral voxels will be used as the keystone for automatic
detection and classification algorithms.

Our work in using multispectral voxels for multisensor point cloud fusion will lead the
study of these algorithms to a very significant advance due to the properties they present.
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