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Abstract: The Qinghai-Tibet Plateau (QTP), also known as the Third Pole of the Earth, is sensitive
to climate change, and it has become a hotspot area for research. As a typical natural ecosystem on
the QTP, alpine wetlands are particularly sensitive to climate change. The identification of different
types of alpine wetland and analysis of changes in their distributions and areas are the most direct
indicators for characterizing the impact of climate change on wetlands. To understand the dynamic
change process of the alpine wetlands in the QTP and their responses to climate change, the Maqu
wetlands, located at the source of the Three Rivers in the eastern part of the QTP, was taken as
an example; the Google Earth Engine (GEE) remote sensing cloud platform and long-term dense
Landsat time series data from 1990 to 2020 were used to map the annual wetland classification and to
analyze the evolution characteristics of the wetlands and their driving forces. The results revealed
that (1) based on dense Landsat time series data, different alpine wetland types can be effectively
distinguished, including swamp, swamp meadow, and wet meadow. (2) From 1990 to 2020, the
area of the Maqu wetlands exhibited an overall fluctuating decrease, with the total area decreasing
by about 23.35%, among which the swamp area decreased the most (by 27.15%). The overall type
of change was from wet to dry. All of the types of wetlands were concentrated between 3400 and
3600 m above sea level, and the reduction in the wetland area was concentrated on slopes < 3°, with
the greatest loss of wetland area occurring on shady slopes. (3) The driving forces of the changes in
the wetlands were predominantly temperature and precipitation, and the greatest correlation was
between the total wetland area and the growing season temperature. The results of this study provide
valuable information for the conservation of alpine wetlands.
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1. Introduction

Wetlands are one of the most biodiverse landscapes in nature, and as transitional
ecosystems between land and water, they are more sensitive to climate change [1,2]. Climate
change, such as temperature increases, precipitation changes, and sea level rise, affects
wetland hydrological processes and plant communities and leads to changes in wetland
ecosystems [3]. Alpine wetlands are situated at high latitudes and high altitudes, where
vegetation growth is slow and the growing season is short, and they are also more sensitive
to climate change than other regions [4,5]. The Qinghai-Tibet Plateau (QTP), also known as
the Third Pole of the Earth, is one of the hotspots for climate change research and one of
the main distribution areas of alpine wetlands in China, accounting for about 20% of the
country’s wetlands [6]. The alpine wetlands on the QTP are vulnerable to low temperature
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environments, strong evapotranspiration, direct radiation, and special ecological conditions,
and their response to climate change mainly depends on water recharge and discharge
patterns [7]. Thus far, research on the response of alpine wetlands to climate change has
mainly focused on topics, such as the spatial and temporal changes in the vegetation
distribution, carbon cycling, monitoring the dynamics of grassland phenology, and wetland
type transformation [8-12]. The information gained by studying the changes in the alpine
wetlands and their responses to climate change can help us understand the specific internal
causes of wetland degradation to effectively monitor ecological security and to formulate
reasonable protection policies.

The Maqu wetlands are a typical area of alpine wetlands on the QTP. They are an
important water source conservation pond and supply area in the upper reaches of the
Yellow River. Due to the impacts of climate change and human activities, the wetland area
has been shrinking and the ecological function has been gradually degrading [13]. The high
spatial heterogeneity of the highlands creates complex and diverse vegetation communities
that may respond differently to climate change [14]. The main types of wetlands in Maqu
include water, swamp, swamp meadow, and wet meadow. Regarding wetland changes
due to climate change and human activities, most studies have focused on wetland loss
and gain and on the conversions between wetland and non-wetland types [15]. However,
changes in wetland area also include conversion between wetland types, i.e., the conversion
of one wetland type to another wetland type, and the transition between wetland types
may be more sensitive to climate change; so, it is necessary to strengthen the monitoring
and analysis of changes between wetland types.

Currently, there is great uncertainty in the analysis of changes in alpine wetlands,
which is mainly due to the lack of long-term datasets on alpine wetlands in existing
studies. To obtain information about the long-term dynamic changes in alpine wetlands, it
is crucial to explore rapid and accurate methods for wetland change detection [16]. The
identification of wetland types and their changes is a challenge due to their complex surface
cover, seasonal dynamics, and limited field investigations [17]. Change detection methods
can be divided into two basic types: dual time phase change detection and time series
change detection [18]. The main idea of the dual-phase change detection method is to
detect changes by comparing the differences between two images in different time periods.
The time interval of the selected images is usually many years; it does not consider the
continuity of the time dimension and lacks investigation of the change process; thus, it
is likely to miss the critical and rapidly changing dynamic information [19]. However, to
obtain high-frequency continuous change information, the time series change detection
method can be used. Among them, the time series change detection method based on
post-classification data, that is, post-classification comparison (PCC), has been widely used
for various types of land use and land cover change and wetland change detection due to
its simplicity and directness [20-22]. A unique advantage of using time series PCC is to
use continuous information to improve the ability to describe changes in wetlands over
time [23,24]. Through dense long-term time series analysis, we can determine the time
point when the real changes occurred, avoiding the fixed time interval and the chance of
missing the year when the real changes occurred.

Research on wetland evolution relies on long-term data accumulation, and multi-
source remote sensing historical archived data are the basis for wetland change detection.
Landsat thematic mapper/enhanced thematic mapper plus (TM/ETM+) images have been
widely used for wetland mapping and monitoring due to their high spatial resolution
(30 m), their ability to provide continuous long time series image data (since the 1970s), and
their free access and availability [25]. Google Earth Engine (GEE), a cloud-based platform
for geospatial data analysis, provides an efficient solution for analyzing long-term and
large-area land use change [26]. The GEE is an integrated cloud computing platform for
remote sensing and earth science data processing, and it provides rich data resources and
various integrated algorithm tools [27,28].
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To explore the long-term change characteristics of alpine wetlands and their response
to climate change, we took the Maqu alpine wetlands on the eastern part of the QTP as
an example. The specific objectives were as follows: (1) classification and mapping of the
Maqu wetlands from 1990 to 2020 using the GEE platform and dense long-term Landsat
time series data; (2) analysis of the dynamic processes of wetland change, including area
change, type conversion, and spatial pattern changes; and (3) analysis of the driving forces
of wetland change, especially the response relationship between climate change and the
changes in the areas of swamp, swamp meadow, and wet meadow, to provide a basis
for the maintenance of wetland ecosystems in Maqu and the environmental protection of
fragile ecological zones on the QTP.

2. Materials and Methods
2.1. Study Area

Located on the eastern part of the QTP, southern part of Gansu Province, at the junction
of Gansu, Qinghai, and Sichuan provinces (33.03-34.23°N, 100.46-102.29°E), Maqu County
is an important national ecological function reserve in China (Figure 1). The Maqu wetlands
are an important water-conserving area in the upper reaches of the Yellow River. This area
contains a large number of swampy wetlands and alpine meadows, is rich in surface water,
and is the largest wetland in the source area of the Yellow River.
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Figure 1. Map showing the location of the study area.

The elevation of the region ranges from 3300 to 4806 m, and the terrain is high in
the west and low in the east. The study area has a dry and cold plateau continental
alpine humid climate, with long winters, extremely short summers [29], a mean annual
temperature of 1.2 °C, concentrated rainfall, and annual precipitation of 615.5 mm. Due to
its typical wetland types, geographic conditions, and ecological environment, this area is a
typical representative of the alpine wetland ecosystem on the QTP.
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2.2. Data

To compile a complete time series, we collected available Landsat image data from
1990 to 2020 for the study area (Table 1). Because of the special geographical location of
Magu County (high altitudes, cloudy conditions, and lack of high-quality winter images),
satellite image data acquired during the growing season (April-September) were selected
for synthesis. Finally, 570 Landsat TM images, 21 ETM+ images, and 285 Operational Land
Imager (OLI) images were selected for use in this study.

Table 1. Landsat image data for the study area used in this study.

Period Landsat Satellite Number of Images
1990-2011 Landsat 5 TM 570
2012 Landsat 7 ETM+ 21
2013-2020 Landsat 8 OLI 285

Digital elevation data were also obtained, and the topographic data were derived
from the Shuttle Radar Topography Mission (SRTM) digital elevation data. This SRTM V3
product (SRTM Plus) was provided by the National Aeronautics and Space Administration
(NASA, Washington, DC, USA) Jet Propulsion Laboratory, with a spatial resolution of
1 arc second (~30 m). The data were downloads from the SRTM data distribution website
(http:/ /srtm.csi.cgiar.org (accessed on 1 October 2021)). These data were mainly used to
calculate the terrain moisture index, slope, aspect, and terrain undulation.

Both the temperature and precipitation data were from the ERAS5, i.e., the fifth
generation of the atmospheric reanalysis of global climate information, and the ERA5
DAILY provides hourly estimates of atmospheric, terrestrial, and oceanic climate variables,
which are available at https://cds.climate.copernicus.eu/cdsapp#!/home (accessed on
12 November 2021). The temperature data used were the 2 m mean air temperature, the
precipitation data used were the daily total precipitation, and the daily data were combined
to obtain the annual data.

The evapotranspiration data and the Palmer index (drought index) were derived from
the TerraClimate global land surface monthly climate and climate water balance dataset [30].
The Palmer index was calculated by determining the amount of precipitation needed in
an area and comparing it with the actual amount of precipitation in order to analyze and
calculate the severity of drought in that area [31]. Both were gridded datasets with a
spatial resolution of approximately 4 km, and the data were obtained from the website
of the Climatology Lab (https:/ /www.climatologylab.org/terraclimate.html (accessed on
27 November 2020)).

2.3. Methods

The workflow of this study can be divided into three main parts (Figure 2). First, the
long-term Landsat time series image data for 1990-2020 were reconstructed and composited
by year. Second, based on the alpine wetland classification system, we used the random
forest algorithm to classify the long-term time series image data and to obtain classification
maps of the Maqu wetlands from 1990 to 2020. Then, we analyzed the changes in the
wetland area, type, and spatial distribution. Finally, we explored the relationship between
climate change and the changes in the area of the alpine wetlands.

2.3.1. Classification System and Training Samples

Based on the widely used wetland classification system and combined with the unique
characteristics of alpine wetlands [32,33], the Maqu wetland classification system was con-
structed. The wetland types include water body (river and lake), swamp wetland, swamp
meadow, and wet meadow, and the non-wetland types include grassland, shrubland, bare
land, and snow. The specific feature types and their interpreted characteristics are presented
in Table 2.
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Figure 2. Flowchart of the long-term time series wetland change detection and analysis of the driving

climate forces.

Table 2. Landsat image data for the study area used in this study.

Type Class

Description

Image Example

Water body

Swamp

Wetland

Swamp meadow

Wet meadow

Freshwater surfaces, including water course of a
plain river in the basin and some lakes

In a wet state for a long time, with special
vegetation and soil-forming processes, peat
accumulation in some areas

Distributed in wide valleys with medium-lower
altitudes, low-lying terrain, poor drainage, and
excessively wet soil, in the transition zone
between swamp and wet meadow

Distributed on the flood plain and island areas
with poorly drained soils, composed of Kobresia,
Carex, and Gramineae.

Grassland

Shrubland

Non-
wetland

Bare land

Snow

Distributed on plains and gently sloping areas,
mainly herbaceous plants grow

Distributed in alpine areas, alpine dwarf forests,
and other shrub lands that cannot be easily
converted to trees

Non-vegetated land, including built-up
areas and exposed rock.

Distributed in steep alpine areas, partly in the
shadow of mountains

i

L
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Due to the complexity of the composition and actual distribution of the different
types of wetlands, it is difficult to reach a consensus on the definition and boundaries of
wetlands [34]. In terms of the spatial distribution pattern, the geographic features exhibit a
succession from swamp to swamp meadows to wet meadows [35]. Ideally, as shown in
Figure 3, the swamp is the center from which the wetlands spread outward. However, the
actual distribution does not have such a clear boundary. The main differences between
these three types of wetlands are in their water contents and vegetation type [36]. From the
perspective of the water content, the swamp is characterized by saturated soil conditions
and soil moisture contents of 92-112%. The soil moisture content of the swamp meadow
is 89-97%, which is drier than the swamp, but there are still some places where water
accumulates throughout the year. Only a small part of the wet meadow is inundated
during the rainy season, with soil moisture contents of 34—43%.

Grassland

Wet meadow >

rd

Swamp meadow -~

=

Figure 3. Swamp-swamp meadow-wet meadow spatial successional gradient distribution pattern in
the ideal state.

Based on the GEE platform and Google Earth high-resolution satellite images, the
visual interpretation method was adopted, and a total of 2580 sample points were selected
with a Landsat image acquired in 2020 as the baseline image. To obtain sample points
for the last 30 years of historical years, we adopted a sample migration method based on
reclassification [37]. First, use the samples of the reference year (2020) to directly classify the
image data of the target year (1990-2019), compare the classification results with the sample
point types, remove the sample points whose initial classification results were inconsistent
with the sample types, and the remaining samples were used for reclassification to obtain
higher accuracy classification results. Since most of the land cover types do not change
greatly, the reclassification sample migration method is simple and straightforward, and
this selection strategy ensures the overall accuracy and stability of the sample set.

2.3.2. Classification Based on Random Forest and Accuracy Assessment

Firstly, all available Landsat image data from 1990 to 2020 were acquired on GEE,
and the annual data set was formed by using the data after cloud masking from April to
September each year. Then, the median function was used to calculate the median of the
image dataset year-by-year and finally to form a median image per year.

To classify the Maqu wetland year-by-year, this paper establishes a random forest (RF)
classifier based on the alpine wetland classification system and the features set. RF is an
integrated learning method with decision trees as the basic classifier [38]. Multiple sub-
sample sets are built by iteratively extracting samples from the original samples, decision
trees are built based on the sub-sample sets, respectively, and the generated decision trees
are formed into a classifier to classify the input data using voting. Two parameters need to
be set in the RF building step: the number of decision trees (N) and the number of features
per node of each tree (m) [39]. In this paper, the number of decision trees is set to 45, and
the number of features selected for each node is 5.

In addition to the spectral features of the image band, the classification features also
include the vegetation index, water index, and topographic features. All of the feature
variables are described in Table 3.
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The topographic wetness index (TWI) is a physical indicator of the influence of the
topography on the runoff flow and accumulation in the modeled runoff area. The TWI is a
function of the slope and upstream contributing area, and it quantifies the control of the
topography on the underlying hydrological processes [40]. It is calculated as follows:

«
TWI =In| — 1

(tan B ) @
where « is the sink area over the contour length, and § is the steepest outward slope of
each grid cell, which is measured as the drop/distance, i.e., the tangent value of the slope
angle. Larger TWI values indicate that the soil water content in the area is more likely to
reach saturation.

Table 3. Formulates and sources of feature variables.

Features Abbrev. Formula Reference
NDWI PGreen —PNIR [41]
PGreen TPNIR
MNDWI 72 g"“";z :xfi [42]
Water Body Index LSWI iR pemin [43]
o pmﬁi_ﬁfwg;wm
Green -
EWI OGreen TPNIRTPSWIR [44]
AWEI 4 X (0Green —Pswir1) — (0.25 X pNIR +2.75 X pswir2) [45]
PNIR —PRed
NDVI pmﬁ A}Z’f’“" [46]
Vegetation Index RVI ORed
PNIR —PRed
RDVI VPNIR+PRed [47]
Clre ENIR _ [48]
PRed
TWI TWI = In(g5) [40]
Terrain Slope
Features Aspect
Relief

To evaluate the accuracy of the classification maps from 19902020, a stratified random
sampling design was used to assess the classification accuracy, and 20% of the screened
sample data of each year were used as the validation data of that year. Confusion matrix
was used to evaluate the image classification results, and it was measured according to the
overall accuracy, kappa coefficient, producer accuracy, and user accuracy.

2.3.3. Post Classification Change Detection Analysis

The change detection method used in this study was PCC, which uses a direct compari-
son of the classification results to analyze the changes. Long-term time series analysis of the
wetland classification maps from 1990 to 2020 was conducted to analyze the changes in the
wetland area, types, and spatial distribution. The PCC method has the following advantages.
By classifying the images in each phase, it can avoid the radiation normalization problem
caused by multi-source sensors. It can provide information about the time period before
and after the change, and this method has no limit regarding the length of the time series.

3. Results
3.1. Annual Classification Results and Accuracy

Using long-term Landsat time series image data and the RF classification method, we
obtained annual classification maps of the Maqu wetlands from 1990 to 2020. The accuracy
indicators of the classification results include the overall accuracy (OA), kappa coefficient,
producer accuracy (PA), and user accuracy (UA). The statistical results are shown in Figure 4.
The average OA of the annual classification map from 1990 to 2020 is 84.63% (80.41-91.62%),
the kappa coefficient is 0.81 (0.77-0.89), the average PA is 81.43%, and the average UA is
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user accuracy{%)

84.72%. The classification accuracies of the grassland and shrubland are relatively stable,
with average classification accuracies of 86.62% and 83.73%, respectively. Among the four
wetland types, the highest average classification accuracy is 93.15% for water bodies; the
accuracies of the swamp, swamp meadow, and wet meadow are 74.26%, 81.42%, and
76.35%, respectively. These results show that the remote sensing classification results have
a high accuracy, meet the accuracy target, and satisfy our needs.
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Figure 4. User accuracy and producer accuracy for each class. (a) user accuracy, (b) producer accuracy.

The annual wetland classification maps for Maqu wetland from 1990 to 2020 based on
the RF method are shown in Figures 5 and 6. Figure 5 shows the classification map of the
Maqu wetlands for 2020. The enlarged map on the right shows the details of the wetland
classification in the Yellow River Shouqu wetland. Figure 6 shows the classification maps
of the Maqu wetlands from 1990 to 2019, which exhibit spatial consistency. These maps
illustrate the dynamic changes during the past 31 years.

0 5 40 20 30

40
Miles

[ water [ Swamp [ Swamp meadow [__] Wet meadow [ Grassland [ Bare land [__] Snow [JHIl Shrubland
(a) Maqu wetland classification map in 2020 (b) Yellow River Shouqu wetland enlarged map

Figure 5. Maqu wetland classification map and partially enlarged map for 2020.

In terms of the spatial distribution, the largest wetland area was located in the eastern-
central part of Maqu County, concentrated in the Yellow River Shouqu wetlands. The
distribution of the Maqu wetlands was controlled by the surface relief and shape, and most
of the rivers were distributed along the boundaries of Maqu County. The distribution of
the swamp was relatively concentrated, mainly in the southeastern part of Maqu County.
The swamp, swamp meadow, and wet meadow were distributed in close proximity to
each other, and their boundary lines are difficult to delineate, exhibiting a progressive
distribution in position. The grasslands were scattered, and the shrub land was mainly
located in the northwestern part of Maqu County.
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Figure 6. Maqu wetland classification maps from 1990 to 2019.

In terms of the wetland types, according to the interpretation of the remote sensing
images, the statistics (Figure 7) show that the total area of the Maqu wetlands in 2020
was 1021.48 km?. The wet meadow accounted for nearly one half of the wetlands (about
579.04 km?) and was the main component of the Maqu wetlands. Melting snow and glaciers
at high altitudes have refilled the downslope areas, creating vast areas of wet meadows.
The swamp meadow accounted for the second largest proportion of the total wetland area
(257.69 km?, and 25.23%). The swamp meadow was distributed at the periphery of the
swamp and was often recharged by downslope water flow, snowmelt, and rainfall. The
water bodies in the Maqu wetlands were mainly related to the Yellow River and its many
tributaries, covering an area of 143.94 km?. The distribution of the swamp was relatively
small, about 40.81 km?, accounting for 4% of the total wetland area.
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Figure 7. Proportions of the wetland types in Maqu in 2020.

3.2. Wetland Change Characteristics
3.2.1. Changes in Wetland Area

The statistical analysis of the overall change in the area of the Maqu wetlands was
conducted based on the remote sensing mapping results (Figure 8). From 1990 to 2020, the
overall changes in the areas of the various types of wetlands in Maqu exhibited decreasing
trends. The total wetland area decreased by about 261.19 km?, with an overall change
of 23.35%. Among them, the area of the water bodies decreased by about 31.92 km?,
accounting for 12.22% of the total reduction in the wetland area. The swamp area decreased
by 7.31%, i.e., by about 19.08 km?. The area of the swamp meadow decreased by about
41.12 km?, accounting for 15.74% of the total reduction. The change in the area of the wet
meadow was relatively large, with a decrease of 169 km?, accounting for 64.73% of the
total reduction in the wetland area. Regarding the overall rate of reduction over the past
31 years, the swamp had the highest reduction rate, and the areas of the swamp meadow
and wet meadow varied less (15.95% and 22.68%, respectively).

100% - 1
80% - 1
60% - 1

) —
0%

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

Bl Water B0 Swamp Swamp meadow Wet meadow

Figure 8. Overall changes in the Maqu wetland area from 1990 to 2020.

The four types of wetlands were combined into one category, and the changes in
the areas of the wetlands and grasslands were determined, and the detailed changes in
their areas were analyzed. The change process can be divided into three stages based on
the overall change curve (Figure 9): 1990-2003, 2003-2012, and 2012-2020. The specific
changes in wetland area are shown in Table 4. In the first stage, the wetland area fluctuated,
decreasing from 1247.67 km? to 957.56 km?. During this period, the area of the wetland
decreased at the fastest rate, with an average reduction of 96.71 km? per year. The wet
meadow area decreased the most, accounting for 55.64% of the total decrease in the wetland
area. The area of the grassland exhibited a fluctuating increasing trend, from 3141.05 km?
to 3682.57 km?. In the second stage, the area of the wetlands increased by 92.8 km?. All of
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the types of wetlands increased slightly. The area of the swamp increased the least, with an
increase of 4.64 km?. The grassland area increased by 12.31%. The implementation of the
Three-River Source Ecological Protection Project was the main reason for the restoration of
the wetland area and the ecological functions in Maqu between 2000 and 2010. In the third
stage, the fluctuations in the wetland area decreased by 16.46%, among which the area of
the swamp meadow decreased by 3.83 km?; the grassland area increased from 3279.06 km?
to 3432.41 km?.

1400

10 —=—Wetland

1200
1100 -

g
L R —u

1000 [ e

900

I
|
|
800 T
I
3800 - |
3600 -

3400 -

Area (km?)

3200

.\'

1 1
2004 2006

2010 2012 2014 2016 2018 2020

3000

1
1990 1992 1994 1996 1998 2000 2002 2008

100
50
[}
50

] ]

-100
150
200

-250

-300

[

19902003

2003 2012

20122020

[ water [ Swamp [___] Swamp meadow [ | Wet meadow [___] Total

Figure 9. Changes in the areas of the wetlands and grassland during the different periods.

Table 4. Areas changes (KM?) in the various types of wetlands during the different periods.

Wetland Type 1990 2003 2012 2020 1990-2003 2003-2012 2012-2020 1990-2020
Water 184.86 143.39 145.06 143.94 —41.47 +1.67 -1.12 —40.92
Swamp 65.89 44.61 43.25 40.81 —21.28 —1.36 —2.44 —25.08
Swamp meadow 298.81 232.89 258.52 257.69 —65.92 +25.63 —0.83 —41.12
Wet meadow 698.11 536.67 584.53 569.04 —161.44 +47.86 —15.49 —129.07
Total 1247.67 957.56 1031.36 10,111.484 —290.11 +73.80 —19.88 —236.19

Overall, the wetland area fluctuated and eventually decreased, while the grassland
area fluctuated and increased, which is consistent with the law of land class succession.
Among them, the area of the wet meadow changed the most. As the transition zone
between wetland and grassland, the area of the wet meadow will change more under
climate change.

3.2.2. Changes in Wetland Type

Due to the unique hydrological and morphological characteristics of wetlands, it is
not common for one type of wetland to be converted to another land type on a large scale.
During a sustained drought, it is possible for one type of wetland to convert to another. In
addition, some types of wetlands at the same or similar elevations can be interchanged due
to changes in water levels.

To more visually represent the direction and proportional area of wetland changes
during the past 31 years in Maqu, the Sankey diagram was used to quantify the changes in
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the wetland types during the different periods (Figure 10). In the first stage, from 1990 to
2003, the swamp was in a state of net loss and was mainly transformed into swamp meadow.
The wetland area fluctuated widely, the wet meadow was converted to grasslands, and
under natural conditions, many alpine meadows were severely degraded when the depth
of the water table exceeded the root depth. In the second stage, from 2003 to 2012, the
marsh area in the study area increased slightly, the transfer-in area was larger than the
transfer-out area, and part of it was transformed through conversion of swampy meadows.
In the third stage, from 2012 to 2020, the swamp meadow was mainly transformed into wet
meadow, and the total wetland area fluctuated less. The area of wet meadow transferred
out was larger than the area transferred in, which eventually caused a decrease in the area
of wet meadow, which was mainly transformed into grassland.

= i PO - ey m = e =

1990 2003 2012 2020

I W ater I Swamp [ Swamp meadow [ | Wet meadow [ Grassland

Figure 10. Maqu wetland type transitions from 1990 to 2020.

In terms of the type of wetland, the overall performance exhibited a change from
wet to dry. The decreasing trends of the areas of the swamp and swamp meadow were
serious, and among all of the reduced types of wetlands, the change in the type of wetlands
exhibited a gradual decrease in the proportion of conversion from wetland to non-wetland,
and when the area of the wetlands decreased, the area of the grasslands increased.

3.2.3. Changes in Wetland Spatial Distribution

To understand the distribution and topographic characteristics of the Maqu wetlands,
the commonly used topographic factors (elevation, slope, and aspect) were used to analyze
the distributions and change characteristics of the various types of wetlands (Figure 11).
Topographic features are closely related to wetland distribution [49]. From a hydrological
point of view, topography is an important factor affecting the spatial variations in wetlands.
It affects the distribution of the wetlands by affecting the spatial distribution of the soil
moisture and groundwater flow [50].
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Figure 11. Topographic features of the wetland distribution and changes. (a) Elevation, (b) Slope,
(c) Aspect.

The SRTM digital elevation model data were divided into five categories at equal
intervals of 200 m, and then they were spatially overlain with the 1990, 2003, 2012, and
2020 wetland map data. The analysis results show that the wetlands were concentrated
between 3400 and 3600 m above sea level, and there were almost no wetlands above
4000 m above sea level. Most of the reduced wetlands were also concentrated between 3400
and 3800 m, probably because the outflow from the wetlands was high, while the inflow
was low at these elevations.

The same elevation data were used for the slope analysis, and the data were divided
at equal intervals at 5°. About 83% of the wetlands were distributed on slopes < 3°, and
the various types of wetlands were mainly distributed on slopes of 0-5°. Regarding slopes
greater than 15°, a few wet meadows still existed on these unstable slopes. In general,
gentler slopes are more likely to lead to wetland loss, with wetland loss mainly occurring
at around 3° and little change in the wetland area on slopes steeper than 20°.

Wetlands exist on slopes with all aspects but were more prominent on slopes with
certain aspects. The same elevation data were used for the aspect analysis; the aspects were
divided into shady slopes (315-45°), semi-shady slopes (45-135°), sunny slopes (135-225°),
and semi-sunny slopes (225-315°); and the wetland mapping results were overlain on the
slope aspect data to analyze the distribution of the wetland area on slopes with different
aspects during the different periods. In general, the distribution of the wetlands with
different aspects was more uniform than the distributions of the altitude and slope. The
water bodies were more concentrated on the shady slopes, and the areas of the water
bodies distributed on the semi-shady and semi-sunny slopes were nearly equal. The
distribution of the swamp was similar to that of the water bodies. The area of the wet
meadows distributed on the shady, semi-shady, semi-sunny, and sunny slopes decreased
sequentially. The distribution of the swamp meadow was almost equal for all four aspects.
The relationship between the wetland loss and the slope aspect can be explained by the
differences in solar radiation due to the topography, with a greater reduction in wetland
area on shady slopes than on sunny slopes.

The aspect controls the energy balance and affects water evapotranspiration, which in
turn affects the variability of the different types of wetlands. The wet meadow was affected
by the increasing temperature, and the decreasing moisture represented a continuous
decrease in area. The wetland with water surfaces easily received melt water input, and the
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area increased. This indicates that the slope aspect affected the distribution of the wetlands
by controlling the input and expenditure of radiation, which in turn affected the input and
output of the wetland water.

3.3. Driving Forces of Wetland Change

The driving factors of the wetland changes included climatic factors and anthropogenic
factors. Since the intensity of human activities in Maqu County is relatively low, the impact
of human activities was very limited. Therefore, in this study, we mainly investigated the
impacts of climatic factors on the wetland changes. Six climatic variables were analyzed:
the annual precipitation, growing season precipitation (from April to September), annual
average temperature, average growing season temperature (from April to September),
Palmer Index (PI), and evapotranspiration (ET). To explore the impact of climate fluctua-
tions on wetland changes, we analyzed the changes in the various climatic factors and their
correlations with the wetland changes.

The climate change characteristics in Maqu County over the past 31 years are shown
in Figure 12, and the continuous data are linearly fitted. Based on the fitted trend line,
the annual precipitation and growing season precipitation exhibited weak decreasing
trends, with rates of change of —2.58 mm/10 a and —1.01 mm/10 a, respectively. The
annual average temperature and the average growing season temperature exhibited overall
increasing trends, with rates of change of 0.48 °C/10 a and 0.49 °C/10 a, respectively. The
PI exhibited a relatively stable trend, and the ET exhibited a weakly decreasing trend.
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Figure 12. Trends of the climate factors in the Maqu wetlands from 1990 to 2020.

To quantify the correlations between the different climatic factors and the changes
in the areas of the various types of wetland, six climatic factors were used to conduct
correlation analysis with each wetland type. Pearson correlation analysis was conducted,
with a statistical significance level of 0.05.

As can be seen from Table 5, the degrees of correlation between the different types
of wetlands and the different climatic factors were different. Among them, the total area
of the wetland exhibited the greatest correlation with the annual average temperature,
that is, its impact on the wetland was the most obvious, with a correlation coefficient of
—0.754; whereas the correlation coefficient with the average growing season temperature
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was —0.744. During the past 31 years, the average growing season temperature fluctuated
between 5.53 °C and 7.65 °C, and the correlations between the types of wetland and the
temperature had correlation coefficients greater than 0.6. The wet meadow exhibited
the most obvious response to temperature among the four types of wetlands, with a
correlation coefficient > 0.7. Temperature was the most important factor limiting the growth
of vegetation in the alpine wetlands. The temperature changes were negatively correlated
with the areas of the various types of wetlands. It can be seen that the temperature
increased and the evaporation from the wetlands increased sharply, which aggravated the
degradation of the wetlands to a certain extent. Contrary to the trend of the temperature
change, the precipitation exhibited a slightly decreasing trend, and the precipitation during
the growing season fluctuated between 450.895 mm and 892.769 mm. The wetland area was
positively correlated with the precipitation. The greater the amount of precipitation, the
more hydrological recharge the wetland can directly obtain, which can directly promote the
expansion of the wetland area. The correlations between the various types of wetlands and
the precipitation were low. The correlation coefficient between the water bodies and annual
precipitation was the highest (0.471), the correlation coefficient between the total wetland
area and annual precipitation was 0.357, and the correlation coefficient with the growing
season precipitation was 0.342, indicating that the precipitation accumulation effect had
little effect on the wetland area. Both the PI and ET were negatively correlated with the
wetland area. The drier the climate and the greater the ET, the more easily the wetland area
decreased. The PI and ET had a relatively small impact on the change in the wetland area.

Table 5. Correlation coefficients between the areas of the types of wetland and the climatic factors.

.. Swamp Wet
Driving Forces Water Swamp Meadow Meadow Total
Annual average ~0.629%  —0.695*  —0.656* —0.748 * —0.754*
temperature
Average growing —073*  —0.661*  —0.662* —0.717* —0.744 *
season temperature
Annual precipitation 0.471* 0.4* 0.298 0.319 0.357
Growing season 0469*  0.405* 0.288 0.299 0.342
precipitation
PI 0.163 0.084 0.319* 0.226 0.236
ET —0.482* —0.561 * —0.466 * —0.467 * —0.501 *

Notes: * denotes p < 0.05. Pl is the Palmer index, ET is evapotranspiration.

Based on the above analysis, the main characteristics of the climate changes in the
Maqu wetlands during the past 31 years were that the annual average temperature in-
creased significantly and the precipitation decreased slightly. The influence of temperature
on the wetland changes was the largest. The increase in temperature led to increased
evaporation, which accelerated the loss of wetland moisture and shrank the wetland area.
However, in basins with glaciers and years of snow, warmer temperatures can lead to in-
creased meltwater. Therefore, changes in temperature have different effects on wetlands in
different regions. The impact of the precipitation on the wetlands was slow and cumulative
over the years. Temperature was the decisive factor in the expansion and shrinkage of the
wetlands in this region.

4. Discussion
4.1. Long-Term Annual Wetland Mapping and Change Detection

Obtaining a long-term continuous annual dataset for wetlands and their changes is
a huge challenge. Wetland information is usually given in statistical yearbooks for many
years, and land surveys are not very detailed in terms of wetland classification. Analysis
based on satellite remote sensing images provides a cost-effective and convenient method
for continuous monitoring of wetland changes. In this study, a unified classification system
was applied to classify the Maqu wetlands from 1990 to 2020. The accuracy of the annual
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classification results largely depends on the number and quality of the sample points
used to train the classification model [51]. In time series wetland classification, how to
apply samples to images from different historical periods is a very important problem [37].
Obtaining samples through visual interpretation year-by-year is a time-consuming and
labor-intensive process. Making full use of existing sample sets can effectively save time
and reduce the workload. Therefore, in this study, a set of samples for 2020 was used as
the benchmark, and the sample migration method based on reclassification was used to
update and check the sample data of the first 30 years. The overall classification accuracy
of all of the classification maps was greater than 84%.

In this study, a long-term time series of Maqu classification maps was generated to
analyze the changes during the past 31 years, including changes in wetland area, wetland
type transformation, and wetland spatial distribution changes. According to the statistics
of the area changes year-by-year, it was found that the main area change points occurred in
2003 and 2012. The area decreased greatly from 1990 to 2003, and it changed steadily after
2003 with a slight increase. After 2012, the area exhibited a fluctuating decreasing trend.
A dense time series can help to identify the year when the transition actually occurred,
and studies have generally used integer intervals or only two images to analyze changes
over several years, times, or turning points, which can lead to some of the real changes
being obscured. Change detection using a dense time series can meet the requirements of
monitoring the dynamic changes in the entire wetland [52]. For example, Zhang et al. (2011)
used aerial photos acquired in 1967 and satellite images acquired in 1986, 2000, and 2004
to study the spatiotemporal changes in the extent and distribution of the alpine wetland
ecosystem on the QTP from 1967 to 2004. Studies have shown that more than 10% of alpine
wetlands on the QTP have disappeared, with nearly 96% of the loss occurring between
1986 and 2000. The time interval of the images of the study area was selected in advance,
but the actual year of transition could be any year from 1967 to 2004, and the time range of
the change may be selected with deviation.

4.2. Analysis of within Wetland Changes

The QTP is one of the areas that are most sensitive to climate change. At present, most
studies conducted on the alpine wetlands on the QTP have focused on the transformation
between wetland and non-wetland, and there is a lack of research on the transformation
between wetland types. In this study, the Maqu wetlands were divided into four types: wa-
ter bodies, swamp, swamp meadow, and wet meadow, among which the swamp meadow
and wet meadow are unique wetland types on the QTP. The classification accuracy of
the swamp, swamp meadow, and wet meadow was lower than the general level. This
confusion may be caused by the unclear boundary between adjacent types of wetland and
the fact that the spectral information for these three types is relatively similar, leading to
significant difficulty in classification.

Three representative regions were selected to illustrate the changes in the distribution
of the local wetlands in four periods (Figure 13). From the perspective of the entire space,
the swamp, swamp meadow, and wet meadow were distributed according to a continuous
gradient pattern, which conforms to the distribution law. The area variations in the
succession direction of water body—swamp-swamp meadow-wet meadow-grassland were
calculated by integrating the transfers between the different types of wetlands (Table 6).
From 1990 to 2003, the area of all of the types of wetlands changed the most, among
which 5.63 km? of marsh was converted to swamp meadow. The Maqu wetlands are
characterized by high vegetation coverage, moist air, and a high soil organic matter content,
which requires surface water and underground water to fill the soil pores for a long
time [53]. Local changes in the water table due to the silting of abandoned drainage
channels can result in meadow swamping [54]. From 2003 to 2012, 18.40 km? of swamp
meadow was converted to wet meadow; the increases in temperature and evaporation
were the main reasons for the transition from swamp meadow to wet meadow. Conversely,
when the precipitation increased, excess water flooded the wet landscape, encouraging
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the growth of peat plants. The dead plant residues could not be decomposed completely
under anaerobic conditions and gradually formed peat, transforming the meadow into a
swamp [55]. Therefore, studying the transitions between wetland types is more conducive
to exploring the succession process of wetlands.

0 04 08 16 2.4 3.2
[ = = =]

[ water ) Swamp [l Swamp meadow [___] Wet meadow [0 Grassland [___] Bare land [___] Snow [ Shrubland

Figure 13. Distribution and local enlarged details of wetlands in the four periods (A-C) represents
three different local enlarged details of wetlands in 1990, 2003, 2012 and 2020).
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Table 6. Areas of conversion within wetland types during the different periods.
Area Change (km?) 1990-2003 2003-2012 2012-2020
Water body-Swamp 7.59 4.62 5.18
Swamp-Swamp meadow 5.63 221 4.30
Swamp meadow-Wet meadow 38.73 18.40 7.86
Wet meadow—Grassland 101.35 63.15 85.53

4.3. Limitations of the Current Study and Future Improvements

In our research, the Landsat imagery with long-term time coverage was employed
to detect wetland changes. However, their medium spatial resolution (30 m) could lead
to relatively low precisions of those wetland subtypes, such as swamp (74.26%), swamp
meadow (81.42%), and wet meadow (76.35%). The high-resolution satellite images, such as
sentinel images and GF satellite images, could have good performances in the identification
of those above alpine wetland subtypes, which are potential agents for alpine wetland
mapping but need to be explored in a future study.

For the long-term climate analysis in the QTP, the solely available dataset for evapo-
transpiration and Palmer index (drought index) has 4 km spatial resolution. Compared
with the rapid elevation change in the study area and the finer resolution of wetland
mapping, the coarse resolution of climate data products would inevitably introduce some
uncertainties into the results, which could be improved when the high-resolution climate
data product in those areas was available in the future.

The imbalance in the Asian water tower caused by the accelerated transformation of
ice and snow into liquid water [6] was one of the focuses of global changes in the QTP. The
response of glaciers, frozen soil, lakes, and rivers to climate change was considered, yet
the alpine wetlands, which have important functions in water storage, were not taken into
account. The future of the Asian water tower remains highly uncertain. Understanding
and accurate predictions of future water supply require consideration of the role of alpine
wetlands in water management on the QTP. The research method used in this paper can
be extended to the entire QTP, which can contribute to the understanding of the spatial-
temporal distribution of alpine wetlands on the QTP and their responses to climate change,
facilitating regional water resources sustainable management, and support decision making.

5. Conclusions

In summary, using the GEE platform and long-term Landsat time series image data
in this study, the distribution and changes in the Maqu alpine wetland from 1990 to 2020
were analyzed, and the impact of climate change on these alpine wetlands was explored.
The results of this study provide research ideas and methods for the study of a wider range
of alpine wetlands. The main conclusions of this study are as follows.

(1) A long-term time series of annual wetland data for the Maqu alpine wetlands from
1990 to 2020 was created. The annual average overall accuracy of the classification results
was 84.63%, and the kappa coefficient was 0.81. The annual classification can accurately
reflect the local details and temporal changes in the land cover. PCC was used to detect the
changes in the wetland classification dataset, and the main years of transition were 2003
and 2012.

(2) The spatial distributions of the swamp, swamp meadow, and wet meadow formed
a continuous gradient, and the transformation between wetland types was mainly from
marsh wetland to swamp meadow and wet meadow, i.e., from wet to dry. During the past
31 years, the total wetland area decreased by 23.35%, and the total decrease in the swamp
area reached 27.15%. In terms of the relevant geographical characteristics, the decrease in
the wetland area was concentrated on slopes < 3°, and the wetland loss was the largest on
the shady slopes.

(3) From 1990 to 2020, the increases in temperature, precipitation, and evaporation in
the Maqu wetland area resulted in surface drought and decreased vegetation coverage. The
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driving factors of the wetland changes were mainly temperature and precipitation, which were
the main natural driving forces, causing the continuous degradation of the Maqu wetlands.
All types of wetlands usually slowly adapt to the changes in environmental conditions.
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