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Abstract: The rapid, accurate extraction of water body information is critical for water resource
management and disaster assessment. Its data foundation was mostly provided by remote sensing
images through deep learning methods. However, the methods still require the improvement
of recognition accuracy and reduction of model size. As a solution, this paper proposed a new
high-precision convolutional neural network for water body extraction. This network’s structural
design is based on the assumption that the extraction effect of a convolutional neural network is
independent from its parameters number, thus the recognition effect could be effectively improved
through reasonable adjustment of the network structure according to characteristics of water bodies
on high-resolution remote sensing images. It brings two critical improvements. Firstly, the number
of downsampling layers was reduced to adapt to the low resolution of remote sensing imagery.
Secondly, the bottleneck structure has also been updated to fit the decoder–encoder framework.
The improved bottleneck structures were nested to ensure the transmission of water characteristics
information in the model. In comparison with the other five commonly used networks, the new
network has achieved the best results (average overall accuracy: 98.31%, parameter benefit value:
0.2625), indicating the extremely high practical value of this approach.

Keywords: water body extraction; GF-2; convolutional neural networks; deep learning

1. Introduction

As the most widely distributed substance in nature, water comprises an essential part
of terrestrial ecosystems. As the dynamic changes of water bodies can exert a significant
impact on human life [1], the rapid and accurate extraction of water body information
has been a constant research hotspot. In this context, the development of satellite remote
sensing technology has made large-scale dynamic monitoring of water bodies possible,
and the inherent rapidity and efficiency of this approach have made water body extraction
based on remote sensing images the mainstream method of water body monitoring.

At present, both domestic and foreign scholars have proposed many methods to
extract water body information using remote sensing technology [2], such as single-band
thresholding [3–5], a multi-band spectral relationship method [6], water indexes [7–10],
and remote sensing image classification [11–13], among others. Furthermore, researchers
have widely studied and applied the water index since the 1990s because of its simplicity
and ability to suppress the background features effectively and highlight the characteristics
of water bodies [10]. Inspired by the normalized difference vegetation index (NDVI),
McFeeters proposed the normalized difference water index (NDWI) [7]. Unfortunately,
although NDWI enhances water area contrast, the method also amplifies the effects of soil
and buildings. In response, Xu largely solved this problem with the modified normalized
difference water index (MNDWI), which replaced the NIR band with the MIR band [8].
However, because MNDWI uses the mid-infrared band, the range of application for Xu’s
method is greatly limited, as some remote sensing satellites, such as SPOT6, IKONOS, GF-1
and GF-2, do not carry sensors in the mid-infrared band. Generally, traditional water body
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extraction methods rely heavily on hand-selected features, requiring users to have a large
amount of professional knowledge. Furthermore, their applicability to different images is
very low [14].

In the 2012 ImageNet competition, Krizhevskv’s AlexNet significantly reduced the
error rate of image recognition from 25.8% to 15.3% [15]. Since that time, deep learning
can automatically obtain the feature information of objects from massive training data
and provide analysis through these weight coefficients [16]. Such characteristics also
make this approach a key technology for the automatic semantic segmentation of remote
sensing images. In recent years, deep learning has provided an effective framework
for the classification and identification of massive remote sensing image data, and has
promoted the gradual development of remote sensing image processing. In 2017, Isikdogan
applied deep learning technology to water body identification in remote sensing images,
and the accuracy of the DeepWaterMap network that he constructed far exceeded the
performance of the MNDWI and Multi-Layer Perceptron (MLP) [17]. In 2018, Li presented
the DeepUNet, which was based on the U-Net, and further improved the accuracy of the
convolutional neural networks for water body recognition in remote sensing images [18].
Chen explored a water body extraction method that combined an adaptive clustering
algorithm and a convolutional neural network. The researcher then applied the method to
the classification of high-resolution remote sensing images, obtaining an overall accuracy
of up to 99.14% [1]. In 2020, Wang built a system that could automatically acquire and
train model data using Google Earth Engine (GEE) and a multiscale convolutional neural
network (MSCNN), which greatly improved the automation of water body extraction [19].
In 2021, Li constructed the dense-local-feature-compression (DLFC) network that could
adapt to various remote sensing image data [14], which fully demonstrated that the features
extracted by convolutional neural networks are universal. According to the focus of these
previous studies, the core of using deep learning technology to solve water body recognition
in remote sensing images reflects various efforts to build a suitable network structure.

Our analysis of the existing literature shows that most scholars currently focus their
research on improving the accuracy of remote sensing imagery water extraction networks.
By increasing the model parameters, the deep learning model can obtain more subtle
extraction capabilities and it is also a widely used method to improve the accuracy of
network extraction. The increase of model parameters means that it takes more space and a
longer time to configure the model, which is a problem that has been ignored by scholars
who pursue high precision. However, the question arises as to whether high precision
and few parameters can never coexist. Zhou, the creator of UNet++ [20], believes that this
is not the case, citing such examples as PSPNet [21] and FC-DenseNets [22] to prove the
point. While the number of layers for downsampling in the two networks mentioned is one
and three, the results surpass those of other deeper networks. In addition, networks with
complex structures often require larger storage space and training samples, and network
transmission consumes much bandwidth and time, which greatly limits the application of
these algorithms on smart terminals. Finally, compared with other images, remote sensing
images offer unique characteristics, including lower resolution and much bigger size. As
a result, the effect obtained by directly applying the existing network structure model to
remote sensing image semantic segmentation is not necessarily optimal.

With these thoughts in mind, we aim to build a network model that would be both
lightweight and suitable for remote sensing imagery. Five networks that currently enjoy
wide use in image recognition experiments were chosen, including SegNet [23], U-Net [24],
ResNet [25], DenseNet [26], and PSPNet [21]. Although SegNet achieved relatively good
classification results, an interesting phenomenon was found: though its structure was
quite similar to SegNet, U-Net performed poorly in this experiment. These results sparked
questions regarding why a network with more convolutional layers than SegNet did
not perform as well in terms of classification effect. A contemplation of Zhou et al.’s
investigation provided some insight into this apparent contradiction [20]. In order to test
the performance of U-Net at various depths, they trained U-Net L1, U-Net L2, U-Net L3
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and U-Net L4 with the same medical image sample set and tested their classification effects.
According to the test results, U-Net L3 and U-Net L4 demonstrated a very close performance
in classification, but U-Net L3 surpassed U-Net L4 in the prediction accuracy of some organs
and tissues. Notably, medical imaging and remote sensing imagery share the similarity of
fewer data samples. Thus, using a network with many parameters when training the model
can preclude the ability to apply some structural effects normally because the number of
samples provided by the training does not provide sufficient support to the network to
solve the optimal parameters. In addition, the pixel resolution of remote sensing images is
much smaller than that of general photographed images. Consequently, the most suitable
four-layer downsampling structure in general photographed images is not suited to remote
sensing images. In our investigation, U-Net L3 was tested on the same remote sensing
dataset. According to our findings, the classification effect of U-Net L3 was far better
than that of U-Net L4, which was very consistent with our assumptions. Thus, it could
be seen that the traditional image semantic segmentation framework was not necessarily
suitable for remote sensing images. To this end, the long-standing four-layer downsampling
structure in U-Net was abandoned, switching to a three-layer downsampling structure,
and cutting some difficult-to-train parameters. In ResNet50, the author uses the bottleneck
structure to replace the two convolutional layers in ResNet34. Some of our ideas come from
ResNet50. Compared with convolution kernels of other sizes, this structure can greatly
reduce the computational complexity and use more space to expand the depth of networks.
From another point of view, if the bottleneck structure simplifies those parameters that
are difficult to train, then a model structure with a very good prediction effect can be
constructed while ensuring that the computational complexity is small enough. Based on
this assumption, the convolutional layer in U-Net L3 was replaced with the bottleneck
structure. Reflecting the critical role of the bottleneck and U-Net modules in this network,
we named this network BU-Net. For our dataset, GID was used. This is a remote sensing
image dataset [27] produced by the State Key Laboratory at Wuhan University. After simple
processing, 20,000 training samples were generated for experimental use.

The rest of this article is organized as follows. The second section provides details
about the proposed method. Related data, data processing and related experimental results
can be found in the third section. Finally, the fourth section offers related discussions,
followed by the fifth section, which contains our conclusions.

2. Materials and Methods
2.1. Improved Network Structure
2.1.1. Architecture of the Proposed Network

Since encoder–decoder represents the most widely used architecture in the field of
image semantic segmentation, this classical architecture was used in our network. In the
encoder part, we designed three downsampling processes that combined DownBottleneck
and max pooling operations to ensure the receptive field and the richness of feature
information in different dimensions. In the decoder part, we designed three upsampling
processes that combined UpBottleneck and upsampling operations to gradually restore
the spatial dimension and detail information. Subsequently, shortcut connections were
included between the encoder part and the decoder part for channel connection to facilitate
obtaining more feature information in the original image during prediction, which greatly
improved the accuracy of the decoder module during decoding. Finally, we used a 1 × 1
convolution layer with two filters and a softmax activation function for prediction to obtain
a binary image of the same size as the original remote sensing image. Figure 1 displays an
illustration of the overall framework.
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Figure 1. Overall framework of BU-Net.

2.1.2. Architecture of the Proposed Network

For the processing of the convolution layer, we adopted the construction idea of
Resnet50: replace the frequently occurring 3 × 3 convolution operation with the bottleneck
structure. Taking 64-dimensional input data as an example, the number of parameters
required for two consecutive 3 × 3 convolution operations with 64 filters was:

(3 × 3 × 64 × 64) × 2 = 73,728. (1)

If it was a bottleneck structure, it only needed:

1 × 1 × 64 × 64 + 3 × 3 × 64 × 64 + 1 × 1 × 64 × 256 = 57,344, (2)

which directly simplified the calculation amount to 78% of the original.
Since the original application field of ResNet was image classification, when building

the model, the authors of ResNet paid attention to more deep semantic information, always
using a 1 × 1 convolution layer with a large number of filters (in most cases, four times
the base number) at the end of the bottleneck structure to recombine these high-level
dimensional features. However, shallow semantic information was also important in
semantic segmentation. When 64-dimensional information data were directly transformed
into 256-dimensional deep semantic information after passing through the bottleneck
structure, the intermediate process was ignored, leading to some degree of a semantic
gap. Therefore, the number of filters in the 1 × 1 convolution layer at the end of the
bottleneck structure was changed. This alteration allowed images to be processed from
low-dimensional information reorganization to high-dimensional information extraction to
high-dimensional information integration. We also compared and tested the classification
effect of the bottleneck structure under four parameter settings. The result analysis is
detailed below.
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2.1.3. DownBottleneck and UpBottleneck

Since the bottleneck structure was not originally designed for semantic segmentation,
only the flow of low-semantic information to high-semantic information was considered
in the data extraction. In the decoder part of the encoder–decoder process, it decodes and
restores low-semantic information according to high-semantic information. However, it
was not feasible to use the bottleneck structure directly. To this end, a module corresponding
to the bottleneck structure was designed to realize the flow of high-semantic information
to low-semantic information in the decoder part, naming it UpBottleneck (see Figure 2). In
order to correspond to the UpBottleneck structure, we also renamed the bottleneck structure
in the encoder part to DownBottleneck. The two structures were designed to work together
to provide the entire process of remote sensing images, from encoding to decoding.
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2.1.4. Implementation Details of the Network

With the purpose of ensuring the best extraction effect, setting the correct parameters
are necessary. Among them, the activation function used by the network was Linear
rectification function (ReLU). Furthermore, a BatchNormalization operation was performed
after each convolution operation. In light of the correspondence of the encoder–decoder
architecture, the size of upsampling and pooling were both 2 × 2, and the stride was 1,
in which the pooling operation adopted max pooling. We used cross-entropy as the loss
function, with a softmax activation function for result prediction. Additionally, the epoch
was set to 100, and the learning rate was set to 1 × 10−4. Finally, regarding the optimizer,
the Adam optimizer was chosen to speed up the network training process.
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2.2. Comparison Method

The effect of BU-Net could be verified by being compared with five deep learning
networks (U-Net, SegNet, ResNet, DenseNet and PSPNet) in terms of prediction accuracy
and model size. Among them, U-Net was originally proposed to solve the problem of
medical image segmentation. With its simple and rapid characteristics, it has become one
of the most widely used networks in the field of image semantic segmentation. SegNet
is an intelligent semantic pixel-wise segmentation project developed by the University
of Cambridge, which performs very well in the object recognition task of driverless cars.
ResNet has remained an enduring network structure since it was first proposed. Many
image classification models are based on this approach, and it is a well-recognized cor-
nerstone structure in the field of computer vision. DenseNet is another genius work that
followed ResNet. Compared with ResNet’s shortcuts, DenseNet uses more continuous
dense connections, from which its name was derived. PSPNet is a lightweight network
based on the pyramid pooling module. By employing pooling layers of different sizes,
the network can obtain receptive fields of various sizes as a whole and improve overall
prediction accuracy with only a few parameters.

2.3. Evaluation Metrics

Aiming at the quantification of the prediction accuracy, some commonly applied
accuracy metrics were used to evaluate the results. Before introducing the indicators, we
first introduced four basic concepts in the binary classification: True Positive (TP), the
positive class with accurate classification; False Positive (FP), a negative class misclassified
as a positive class; True Negative (TN), the negative class with accurate classification and
False Negative (FN), a positive class misclassified as a negative class. Accuracy is used
to represent the ratio of the number of correctly classified pixels to the number of all
pixels. Accuracy can satisfactorily reflect the classification accuracy. However, when the
positive and negative distribution of the sample is extremely unbalanced, its value is greatly
affected by more categories of pixels, meaning that it cannot effectively characterize overall
recognition accuracy. Precision refers to the ratio of the number of samples accurately
classified as positive to all samples classified as positive, while recall signifies the ratio of
the number of samples classified as positive to the number of samples in the test dataset.
Overall accuracy (OA) represents the overall accuracy, it does not consider the category, only
shows the classification of all samples. It is wanted that precision and recall be very high at
the same time, but these two metrics could not be raised at the same time, which drove the
strategy to pursue a balance between the two: the F1-score. Lastly, Intersection-over-Union
(IoU) denotes the ratio of the intersection and union of actual class samples and predicted
class samples. The above indicators were calculated according to the following formulas:

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

IoU =
TP

TP + FN + FP
(6)

OA =
TP + TN

TP + TN + FP + FN
(7)

F1 − score = 2 × Precision × Recall
Precision + Recall

(8)
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In order to better reflect the benefits of using parameters in each network model, we
also defined a new evaluation index: parameter benefit (PB). This index was calculated
as follows:

PB =
Accuracy − Accuracy Threshold

number of parameters
(9)

Since the parameter benefit was derived from the high-precision network analysis, a
PB value of less than zero meant that the network did not have high prediction accuracy.
Therefore, it was necessary to decide whether to include the network with a PB value
of less than zero (according to the actual situation) in the evaluation system. Thus, we
would recommend that readers flexibly adjust the accuracy threshold (89.57% in this article)
according to their own needs.

3. Data and Experiments
3.1. Dataset

Considering the accuracy and efficiency of label production, we used the GID dataset
produced by the Wuhan University team in this experiment. This dataset consists of 150 GF-
2 remote sensing images with five-category label maps. The size of each image is unified
to 6800 × 7200. The images are distributed among 60 cities in China, covering an area
of over 50,000 km2. More detailed information on remote sensing imagery can be found
in Table 1. Its large number of samples makes the dataset highly representative, and it is
anticipated that the weight coefficients trained using the data set would be more adaptive.
We screened out 50 remote sensing images with a uniform distribution of water systems
and obtained a two-class label map of water system distribution after color-changing the
label images. Subsequently, 40 of the images were used for training to achieve a ratio
of 4:1. The remaining 10 sheets were used for prediction. Since the computer’s memory
could not accommodate the input of an entire remote sensing image at one time, it is also
needed to randomly crop the 40 remote sensing images used for training, resulting in
20,000 256 × 256 small-sized images that were sent to the network for training. We also set
the judgement conditions during random cropping to ensure that the proportion of water
systems in each cropped image was not less than 10%. This step is aimed at alleviating the
impact of uneven sample distribution on training to a certain extent while strengthening
the network’s learning of water systems at different scales.

Table 1. Detailed information of GF-2 multispectral imagery.

Satellite Parameters GF-2 Multispectral Imagery

Product level 1A
Number of bands 4

Wavelength (µm)

Blue (0.42–0.52)
Green (0.52–0.59)
Red (0.63–0.69)

Near-infrared (0.77–0.89)
Size 6800 × 7200

Spatial resolution (m) 0.8 m pan/3.24 m MS

3.2. Implementation Details

For the experimental platform, we used a graphics card with Nvidia GeForce RTX 2080
Ti 11 GB video memory. The software environment used was the Windows10 Professional
64-bit operating system. Additionally, the programming language used was Python, while
the deep learning framework used was Keras, and the TensorFlow framework as the
backend was selected as the tool to build the model. Lastly, the GPU computing platforms
CUDA10.0 and cuDNN7.4 were used as the deep learning GPU acceleration library.
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3.3. Extraction Results of BU-Net

The visualization results are shown in Figure 3. It can be seen that the BU-Net
performed very well on the 10 test images; such water bodies as a slender river, a large
area of continuous lakes or even islands, reefs and boat branches in the water body were
accurately identified and distinguished. Accuracy ranged from as high as 99.52% to as low
as 96.78%. The F1-score ranged between as high as 99.73% and as low as 97.91%. IoU was
as high as 99.54% and as low as 95.90%. In terms of overall average values, Accuracy was
98.31% on average, while the F1-score averaged 98.89%, and the average IoU was 97.81%;
see Table 2 for more detailed evaluation data of BU-Net. Of course, a comparison with
the label map reveals the persistence of many problems, such as many isolated pixels that
are misclassified as a whole in the image. In addition, the model tended to confuse the
three pixels in the area near buildings and vegetation and water, and some slender rivers
were identified as discontinuous and disconnected (see Figure 4). Nevertheless, overall,
the BU-Net network structure offered high prediction accuracy.
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Table 2. Results of OA, F1-score and IoU on the validation images.

Test Images OA (%) F1-Score (%) IoU (%)

All images 98.31 98.89 97.81
Image1 99.52 99.73 99.46
Image2 97.89 98.71 97.45
Image3 97.51 98.39 96.83
Image4 98.00 97.91 95.90
Image5 98.93 98.93 97.89
Image6 99.62 99.77 99.54
Image7 97.72 98.56 97.15
Image8 99.23 99.59 99.17
Image9 97.93 98.69 97.42

Image10 96.78 98.00 96.07
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Figure 4. Remote sensing images misclassified by BU-Net: (a) Slender rivers that are identified
as discontinuous; (b) paddy fields that are misclassified as water bodies; and (c) industrial and
residential land that are misclassified as water bodies.

3.4. Comparative Experiment Using Different Parameters

For the verification of the semantic gap discussed above and to determine the most
appropriate magnification and number of base convolution kernels for water extraction,
eight combinations of the magnification and base convolution kernel number were tested.
Combining the prediction indicators (see Table 3 and Figure 5), the prediction effect of
BU-Net with a magnification of 2 was better than that of BU-Net with a magnification of
4, indicating that the semantic gap posed a notable problem, affecting the accuracy of the
entire network structure for classification tasks. However, under the same magnification,
the prediction effect of BU-Net with a small number of basic convolution kernels was
better than that of BU-Net with a large number of basic convolution kernels, proving to a
certain extent that increasing the number of network parameters could not necessarily yield
better results. Through comparative analysis, we determined a satisfactory combination of
magnification and the number of basic convolution kernels where the magnification was 2
and the number of basic convolution kernels was 32. Hence, in all experiments conducted
in this paper, all unspecified BU-Nets were structures with a magnification of 2 and number
of basic convolution kernels of 32.

Table 3. Results of different parameters.

Methods OA (%) F1-Score (%) IoU (%)

BU-Net (2.16) 90.21 93.92 88.54
BU-Net (2.32) 98.31 98.89 97.81
BU-Net (2.64) 96.14 97.46 95.05
BU-Net (2.128) 93.55 95.91 92.14
BU-Net (4.16) 92.71 95.40 91.21
BU-Net (4.32) 98.18 98.81 97.64
BU-Net (4.64) 96.10 97.48 95.09
BU-Net (4.128) 96.38 97.67 95.45
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3.5. Comparative Experiment of Different Networks

In order to more comprehensively analyze and evaluate the performance of BU-Net in
water body recognition, five network structures (U-Net, SegNet, ResNet, DenseNet and
PSPNet) and NDWI method were built to compare their classification effects (see Figure 6
and Table 4). U-Net and DenseNet showed the poorest performance of all of the networks.
They could only identify some obvious water bodies and lacked the ability to identify water
bodies having a dark color, turbid water quality or low contrast with adjacent areas. In
comparison, while PSPNet and SegNet could identify the general outline of the water body
in the image, finer details, such as small rivers and water body outlines, were still relatively
vague. ResNet and BU-Net performed very well in terms of water body recognition. There
was almost no difference between the predicted image and the label image, but some
buildings and vegetation pixels similar to water bodies were still misclassified, resulting
in many isolated pixels. Furthermore, this phenomenon was more obvious on BU-Net. In
the future, we hope to solve this problem from the perspective of image morphology and
further improve the prediction accuracy of BU-Net.

Then, the new metric: PB, defined above, together with prediction time, was applied
as the evaluation criterion, in order to uncover useful information that can facilitate the
continuous improvement and optimization of the network. As can be seen from Table 5,
although ResNet and SegNet displayed high prediction accuracy, the huge number of
parameters led to their low parameter utilization rate. In practical terms, the cost of training
such a model with such a large number of parameters in a real-world setting is difficult to
estimate. Meanwhile, DenseNet controlled the size of the model very well due to its unique
cross-channel connection operation, which reduced a huge amount of parameter cost while
increasing the computational space. Therefore, for a user who wants to train a deep-level
DenseNet model, the hardware investment will be considerable, which limits the popular
application of DenseNet. Although BU-Net fell short of ResNet in terms of prediction effect
and was not as good as DenseNet Mini concerning model size, it effectively solves the
defects of both in real-world applications and its extremely high parameter benefits tend to
make up for the impact of insufficient parameters on prediction accuracy. In sum, BU-Net
offers high practical value and significance.



Remote Sens. 2022, 14, 4127 11 of 14
Remote Sens. 2022, 14, x FOR PEER REVIEW 11 of 14 
 

 

Im
ag

es
 

       

La
be

ls
 

       

BU
-N

et
 

       

U
-N

et
 

       

Se
gN

et
 

       

R
es

N
et

 

       

D
en

se
N

et
 

       

PS
PN

et
 

       

N
D

W
I 

       

Figure 6. Prediction results of different networks. 

  

Figure 6. Prediction results of different networks.



Remote Sens. 2022, 14, 4127 12 of 14

Table 4. OA, F1-score and IoU of different networks.

Methods OA (%) F1-Score (%) IoU (%)

BU-Net 98.31 98.89 97.81
U-Net 91.00 94.40 89.39
SegNet 95.69 97.24 94.63
ResNet 98.29 98.88 97.78

DenseNet 89.57 93.58 87.93
PSPNet 94.01 96.19 92.67
NDWI 89.04 92.44 85.94

Table 5. PB values of different networks.

Methods OA (%)
Number of
Parameters

(MB)
PB * Prediction Time

(s)

BU-Net 98.31 33.3 0.2625 41
U-Net 91.00 355.0 0.0040 67
SegNet 95.69 364.0 0.0168 65
ResNet 98.29 377.0 0.0231 64

DenseNet 89.57 15.9 0.0000 934
PSPNet 94.01 45.9 0.0967 53

* The accuracy threshold is 89.57% in this article.

4. Discussion

In this article, the BU-Net method for water extraction was proposed. Compared
with the traditional water body extraction method, this method demonstrated higher
accuracy and a smaller model proportion, improving the application of automatic water
body extraction from remote sensing images.

Although the BU-Net can basically meet the accuracy needs of current water extraction
tasks, some questions remain about its structure. The residual structure features the
bottleneck structure, which was originally designed to solve the problem of gradient
disappearance and explosion during the training process of the network while increasing
the amount of computation and the use of parameters. Although the effect of this structure
is significant in terms of using deep networks for multi-classification problems, it is still a
matter of debate whether the existence of lightweight networks for binary classification
tasks features more advantages than disadvantages or more disadvantages. That said,
readers can choose according to the needs of classification tasks.

In addition, it can be seen from BU-Net’s identification results that the network is
more inclined to identify water bodies from the perspective of the spectrum and does
not effectively use the image’s contour information. This factor highlights the need to
further improve the network structure of BU-Net. In the future, we will consider alternative
networks related to image recognition.

5. Conclusions

This paper addressed the problems of how to further improve the extraction effect
of water bodies in high-resolution remote sensing imagery and the potentially oversized
structure of deep convolutional networks. Accordingly, we proposed a fully convolutional
neural network, BU-Net, for water body extraction, based on encoder–decoder architecture,
and tested it using the GID dataset. The experimental results revealed that the model
obtained water body extraction results with higher OA, F1-score and IoU values and
greatly reduced the size of the model and prediction time while ensuring the extraction
effect. The effectiveness of the BU-Net means that it is helpful for the rapid acquisition of
water body information. This investigation also provides a new way of thinking for the
architecture of water body extraction networks for remote sensing imagery.
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