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Abstract: In the context of urban warming associated with rapid urbanization, the relationship
between urban landscape patterns and land surface temperature (LST) has been paid much attention.
However, few studies have comprehensively explored the effects of two/three-dimensional (2D/3D)
building patterns on LST, particularly by comparing their relative contribution to the spatial variety
of LST. This study adopted the ordinary least squares regression, spatial autoregression and variance
partitioning methods to investigate the relationship between 2D/3D building patterns and summer-
time LST across 2016–2017 in Shanghai. The 2D and 3D building patterns in this study were quantified
by four 2D and six 3D metrics. The results showed that: (1) During the daytime, 2D/3D building
metrics had significant correlation with LST. However, 3D building patterns played a significant
role in predicting LST. They explained 51.0% and 10.2% of the variance in LST, respectively. (2) The
building coverage ratio, building density, mean building projection area, the standard deviation
of building height, and mean building height highly correlated with LST. Specifically, the building
coverage ratio was the main predictor, which was obviously positively correlated with LST. The
correlation of building density and average projected area with LST was positive and significant,
while the correlation of building height standard deviation and average building height with LST
was negative. The increase in average height and standard deviation of buildings and the decrease in
building coverage ratio, average projected area, and density of buildings, can effectively improve
the urban thermal environment at the census tract level. (3) Spatial autocorrelation analysis can
elaborate the spatial relationship between building patterns and LST. The findings from our research
will provide important insights for urban planners and decision makers to mitigate urban heat island
problems through urban planning and building design.

Keywords: land surface temperature; 2D/3D building patterns; landscape metrics; spatial
autoregression; variance partitioning

1. Introduction

Nowadays, China has become the most urbanized country globally, with an urban-
ization rate rising from 17.8% in 1978 to 64.72% in 2021 (NBSC, 2022). Along with rapid
urbanization, the natural ecosystem has transformed into a human and nature coupled
ecosystem [1,2], resulting in the commonly known urban heat island (UHI) effect. UHI is
a phenomenon in which the temperature of a city is higher than that of its adjacent sub-
urbs [3–5]. Previous studies reported the adverse consequences of the UHI effect, including
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urban air pollution [6–8], increasing urban energy consumption and water use during hot
days [9–11], altering species distribution and composition [12,13], decreasing the human
thermal comfort and causing more significant health risks [14,15], and increasing human
risks of violence and mortality in cities. Thus, the linkage between the UHI effect and urban
environmental sustainability has attracted attention worldwide [16,17].

Two approaches usually characterize the quantitative measurement of the UHI effect.
The first is to compare the urban–rural air temperature using data from meteorological sta-
tions [18,19]. This approach has been traditionally used to study UHI [20,21]. However, the
dispersed nature and low-density of meteorological stations means that this approach can-
not generate spatially sufficient accuracy and thus limit its applicability in big cities [22,23].
The second is to measure the difference in urban–rural land surface temperature (LST) by
using satellite and unmanned aerial vehicle remote sensing data [24–26]. As the most direct
manifestation of surface urban heat island (SUHI) [1], LST is a good proxy for indicating
energy balance in surface physical processes [27,28]. Due to its advantages of sizable spatial
coverage [18,29–31], LST products retrieved from satellite-borne thermal infrared (TIR)
bands have been widely applied to study the correlation between urban landscape patterns
and SUHI effects.

Many studies have concentrated on the factors influencing the UHI effect associated
with urban 2D or 3D patterns [19,32]. A considerable amount of research has demonstrated
the significant effects of urban 2D patterns on LST and air temperature [33–35]. In contrast,
very few studies have explored the relationship between urban 3D patterns and LST or
air temperature [19,36], although vertical expansion is an essential feature of urbanization.
Buildings are a key part of the 3D urban structure and are an important factor influencing
the UHI effect [36,37]. Buildings will doubtless modify the reflection and absorption of
radiation and thermal diffusion in urban areas [38]. Although 3D building patterns are
of obvious importance to UHI, only a few studies have explored the impact of 3D urban
structures such as street canyons, building height, and building volume on LST [36,38,39].
However, these studies only provide a binary association between 3D pattern factors and
LST [37], while a comprehensive explanation of these factors in relation to LST and the
relative importance of 2D/3D building patterns to UHI is still lacking. Therefore, in the
sense of urban climate adaptation, the association between urban 3D building structure
and UHI effect has to be further explored.

For the improvement of the urban thermal environment, the key issue is to identify
the main influencing factors. Shanghai, the largest city in China, has undergone dramatic
urbanization and its UHI intensity is particularly high [33,40,41], as of 1 August this year,
Shanghai had 28 high-temperature days above 35 ◦C in 2022. This study concentrated on
the summer daytime, because both the intensity and footprint of UHI are strongest during
the summer daytime. In addition, its adverse impacts on the surrounding environment and
the health of residents are most evident during the summer daytime [42,43]. Taking the
large city of Shanghai as the study area, this study aims to answer two questions: (1) how
do building patterns, particularly 3D building patterns, influence the distribution pattern of
LST? (2) what is the relative importance of 2D/3D building patterns in explaining the spatial
variability of LST? The findings of this study can deepen our insights into the impacts of
2D/3D building patterns on UHI and provide urban planners and policymakers with some
enlightenment on how to alleviate the UHI effect through rational urban planning and
architectural design.

2. Materials and Methods
2.1. Study Area

Shanghai is situated on the eastern coast of China (30◦40′–31◦53′N, 120◦52′–122◦12′E).
Excluding the offshore sea area, its administrative boundary approximately covers an
area of 6340.5 km2. The city has a subtropical monsoon climate, with an annual average
temperature between 15.2 to 15.7 ◦C, annual rainfall of 1097.3 mm and an average altitude of
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about 4 m. Since its reform and opening up, Shanghai has undergone dramatic urbanization
in both extent and intensity [33].

This study mainly focused on the central urban area within the outer ring road of
Shanghai (Figure 1), as it is the most developed area in Shanghai and the most densely
populated area in the world [44], with numerous skyscrapers and intensive UHI [26,33].
Therefore, it is an optimal area for exploring the correlation between building patterns and
LST. The study area consists of 113 census tracts. The census tract was either all inside
the outer ring or its centroid of mass was inside the outer ring (Figure 1). In the study, we
selected census tracts as the analysis units because they were the smallest administrative
divisions and the basic units of design and implementation in local urban planning and
management [22].
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Figure 1. Location of the study area and spatial distribution of the selected census tracts.

2.2. Methods
2.2.1. Retrieving LST

Data for two LSTs were retrieved from Landsat-8 images acquired during summer
dates across 2016 and 2017 in order to coincide with the year of the building data. We first
performed a comprehensive screening of all suitable images during the summer periods of
2016–2017 to remove images with cloud cover, and finally used two cloud-free Landsat-8
images from 20 July 2016 and 24 August 2017 for the LST retrieval. Thermal infrared sensor
(TIRS) bands have been officially released in the form of 30-m resolution, using the cubic
convolution algorithm [45]. In this research, band 10 was applied for the LST retrieval. The
LST was evaluated by applying the radiative transfer equation (RTF) method by correcting
atmospheric effects [46,47] and land surface emissivity [48]:

Lλ =
⌊

εB(Ts) + (1− ε)L↓d
⌋

τ + L↑µ (1)

where Lλ is the top of atmosphere (TOA) radiance in W/(M2sr µm). ε is the land surface
emissivity estimated from the NDVI-based method [33,48,49]. B(Ts) is the emitted radiance
from the Earth’s surface, also as known as surface-leaving radiance, which can be derived
by inversion of Planck’s law [48,50], and Ts refers to the LST. L↓d and L↑µ are the downwelling
and upwelling atmospheric radiance, respectively. τ is the atmospheric transmission. The
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atmospheric parameters such as L↓d, L↑µ and τ were acquired from NASA’s atmospheric
correction parameter calculator [51].

LT =
Lλ − L↑µ − τ(1− ε)L↓d

τε
(2)

where LT is the surface-leaving radiance, which was transformed to at-satellite brightness
temperature (TB) with the assumption that the earth’s surface is a black body.

TB =
K2

ln(K1/LT + 1)
(3)

for TIRS band 10, K1 is 774.89 W/(m2 sr µm) and K2 is 1321.08 K.
Finally, the land surface emissivity was calibrated and used to calculate the LST:

LST =
TB

1 + (λTB/ρ) ln ε
(4)

where λ is the wavelength of emitted radiance (10.9 µm for TIRS band 10),
ρ = 1.438 × 10−2 mK. More details about LST retrieval are described in Weng (2009) [18]
and Huang and Wang (2019) [37].

2.2.2. Measuring 2D/3D Building Patterns

The building data from 2017, including building footprint and total number of stories,
were used to map 2D/3D building patterns. They can approximately represent the real
building shape, since eccentric and unusual buildings are very few [52]. The building
data were acquired from Baidu Map (map.baidu.com/ accessed on 8 July 2017) and the
Shanghai Municipal Bureau of planning and natural resources. The building footprint was
verified by a comparison of the building map and a historical high-resolution Google Earth
image, which showed that the building boundary exactly matched the actual buildings
(Figure 2). The building height was obtained from the number of floors multiplied by 3 m,
then, using Baidu Quanjing Maps and the Lianjia real estate APP to compare and verify it,
the results obtained were satisfactory.
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showing the details.

Many landscape metrics were applied to quantify building patterns [36,41,53]. Here,
ten landscape metrics were selected to measure the building patterns (Table 1), including
four 2D building metrics: (1) Building coverage ratio (BCR), (2) Mean building projection
area (MBPA), (3) Mean patch shape index (MPSI), (4) Building density (BD), and six 3D
building metrics: (1) Floor area ratio (FAR), (2) Mean building height (MBH), (3) Building
height standard deviation (BHSD), (4) High-rise building density (HBD), (5) High-rise
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building ratio (HBR), (6) Building volume ratio (BVR). These building metrics reflect the
primary characteristics of the 3D and 2D building patterns, including the size, density,
roughness, complexity and fragmentation [53]. These metrics were selected using the
following principles [25,54–56]: (1) they have important theory and practice, (2) they are
easily interpreted and calculated, and (3) they have minimal redundancy. These metrics
were calculated for each census tract using ArcGIS 10.6 (Environment System Research
Institute, RedLands, CA, USA) and Fragstats 4.2 (University of Massachusetts, Amherst,
MA, USA) [57].

Table 1. Description of 2D and 3D building metrics.

Type Name Abbreviation Formula Description (Unit)

2D metrics

Building coverage ratio BCR
BCR =

∑n
i=1 ai
A × 100

ai: base area of building i; A: area of
analysis unit

Proportion of total building base
area in a census tract (%)

Mean building projection area MBPA MBPA =
∑n

i=1 ai
N

N: number of total buildings

The average area of building
projected vertically to floor (m2)

Mean patch shape index MPSI
MPSI = 1

n ×∑n
i=1

ei
min ei

ei: length of edge of building i
The mean value of building

shape complexity

Building density BD
BD = NB

A

NB: number of building
The total number of buildings per

ha in a study area (n/ha)

3D metrics

Floor area ratio FAR
FAR =

∑n
i=1(ai× fi)

A

fi: number of floors of building i
The ratio of the total building area

to a census tract

Mean building height MBH MBH =
∑n

i=1 Hi
N

Hi: height of building i
The average height of the whole
buildings in a analysis unit (m)

Standard deviation of
building height BHSD BHSD =

√
∑n

i=1(Hi−MBH)2

N
The extent of buildings change

within the study area (m)

High-rise building density HBD
HBD = NHB

A

NHB: number of buildings over 24 m
The total number of buildings over
24 m per ha in a study area (n/ha)

High-rise building ratio HBR HBR = NHB
N × 100

The proportion of buildings
above 24 m

Building volume ratio BVR BVR =
∑n

i=1(ai×Hi)
A

The ratio of buildings volume to a
census tract (m3/m2)

2.2.3. Statistics Analysis

The mean LST of each unit was calculated as the response variable, and 2D/3D metrics
were used as the predictive variables. There are many statistical analysis methods available
to determine the correlation between LST and its influencing factors [22].

Firstly, the effects of building patterns on LST variation were analyzed using the
ordinary least squares (OLS) multiple linear regression. A multiple stepwise selection
procedure was used to decide which building metric was to be added or removed, and
to calculate the comprehensive explanation efficiency of each stratification factor for LST
variation, considering that there may be collinearity between the variables. The OLS
regression is the most commonly applied statistical analysis methodology. It assumes that
the error terms are independent. Nevertheless, spatial data usually has the characteristics of
spatial autocorrelation, which may lead to the coefficient estimation bias of OLS regression
variables [58,59]. The preliminary analyses showed that the residuals of the OLS model
in this study have important significant spatial autocorrelation (p < 0.01). Therefore, the
spatial autoregression (SAR) models integrating spatial autocorrelation are more suitable
to explore the relationships between 2D/3D building metrics and LST [25].

Secondly, the SAR was performed, and the analysis results were compared with those
of the OLS. SAR can measure the neighborhood relationship of response variables through
an (n× n) spatial weight matrix, and integrate it into the standard multiple linear regression
considering spatial autocorrelation [60]. SAR is usually modeled using the spatial lag model
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(SLM) and spatial error model (SEM) [25,59], which are the two main SAR models. The
SLM assumes that spatial autocorrelation only exists in the response variable. The SLM is
expressed in the form:

Y = ρWy + βX + ε (5)

where Y is the response variable, ρ is a spatial autoregressive coefficient, Wy is a (n × 1)
vector of the spatially lagged response variable, β is a (k× 1) vector of regression coefficients,
X is a (n × k) matrix of explanatory variables, and ε is a (n × 1) matrix of independently
distributed errors.

By contrast, the SEM assumes that the error term is spatially autocorrelated when the
spatial effect is not completely interpreted by the explanatory variables involved. This
model was written as:

y = βX + λWµ + ε (6)

where Wµ is a (n × 1) vector of spatially lagged errors, and λ is a spatial autoregres-
sive coefficient.

Lagrange multiplier statistics were applied to make a comparison between the two
models and determine which one was more appropriate for the data in this study [60]. The
spatial regression was used with a maximum likelihood method, and the R2 calculated is
comparable to that obtained from the OLS model [58].

The OLS model was performed using SPSS 16.0, and the SAR model was performed
using Geoda 1.14.0 (Anselin, Chicago, IL, USA) [60].

Finally, we used the standardized coefficient (beta weights) to assess the relative
importance of building metrics for predicting LST [61–63], and variance partitioning [25,64]
was applied to analyze the relative contribution (the degree of LST change being explained)
of 2D and 3D building metrics on the total LST variation. The LST variation was divided
into four components: (1) unique effect of 2D building metrics, (2) unique effect of 3D
building metrics, (3) joint effect of 2D and 3D building metrics, (4) unexplained change. The
variance classification is detailed in Legendre (2008) [65], using Canoco software version
4.5 (ter Braak & Smilauer, Ithaca, NY, USA).

3. Results
3.1. The Spatial Pattern of Buildings and LST

The spatial distribution patterns of the buildings and LST are displayed in Figure 3.
There exists a large spatial variability of LST, obviously. The average LST was 45.16 ◦C
(ranging from 29.69 ◦C to 60.84 ◦C), and the standard deviation was 3.23 ◦C. The urban
core area and the dock area at the northeast corner have relatively high LST, and the LST
spatial pattern has a good spatial consistency with the distribution of buildings. The LST
was higher where the building coverage is high. The average LST at the census tract level
was 46.63 ◦C (ranging from 43.07 ◦C to 50.52 ◦C), and the standard deviation was 1.30 ◦C.
LST showed significant positive spatial autocorrelation (Moran’s I = 0.48, p < 0.01) (Table 2).

The 2D and 3D building metrics varied greatly in space for the research area. Buildings
covered approximately 19.72% of the study area. BCR across census tracts ranged from
9.49% to 42.09%, with an average value of 24.52% and a standard deviation of 6.63%. FAR,
MBH, BHSD, BVR, BD, and MBPA also had relatively large spatial heterogeneity among
different units (Table 2). The average value of MBH was 17.75 m (ranging from 10.91 to
30.60 m), while the mean value of BHSD was 13.88 m (ranging from 2.77 to 36.88 m).
MBPA varied from 306.45 m2 to 1398.84 m2, with a mean value of 24.52%. BD ranged from
1.23 to 10.19, and the maximum values of FAR and BVR were 3.06 and 9.18, respectively.
In contrast, the ranges of HBD, HBR and MPSI were relatively small and the degree of
variability was low. All 2D/3D building metrics presented a significant positive spatial
autocorrelation (p < 0.01) (Table 2).
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Table 2. Descriptive statistics of 2D/3D building metrics and LST.

Pattern Type Predictors Min Max Mean SD Moran’s I

2D

BCR 9.49 42.09 24.52 6.63 0.56
MBPA 306.45 1398.84 649.45 143.11 0.17
MPSI 1.28 1.50 1.38 0.04 0.19

BD 1.23 10.19 3.98 1.52 0.48

3D

FAR 0.44 3.06 1.63 0.54 0.61
MBH 10.91 30.60 17.75 3.38 0.27
BHSD 2.77 36.88 13.88 5.16 0.41
HBD 0.00 1.03 0.45 0.23 0.45
HBR 0.00 0.30 0.12 0.06 0.18
BVR 1.31 9.18 4.93 1.62 0.61
LST 43.07 50.53 47.63 1.30 0.49

3.2. Relative Importance of 2D/3D Building Metrics in Determining the Variability of LST

The OLS multiple linear regressions results illustrated that BCR, BD, MBPA, BHSD,
and MBH had significant effects on LST (Table 3). These metrics put together explained
65.8% of the full variance in LST. Judged by the standard coefficients, BCR was the foremost
vital predictor of LST, and it played a greater role in predicting LST than the other 2D/3D
building metrics. Among the five building metrics, three 2D metrics (BCR, BD, MBPA) had
a relatively stronger prediction effect on LST and had a positive impact, while the two 3D
metrics (BHSD, MBH) had a negative effect on LST.
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Table 3. Statistics of the OLS regression models.

Pattern Type Predictors Coefficients Standardized
Coefficients p

2D

Constant 42.502 0.000
BCR 19.108 0.979 0.000
BD 0.192 0.225 0.039

MBPA 0.0022 0.244 0.026

3D

BHSD −0.089 −0.355 0.000
MBH −0.057 −0.148 0.026

R2 0.658
AIC 262.08

The residuals of the OLS model had significant spatial autocorrelation (Moran’s
I = 0.255, p < 0.01), suggesting a potential bias within the results of the OLS model (Table 4).
The Lagrange Multiplier statistics indicated that LM Lag, Robust LM Lag, LM Error,
and Robust LM Error were all significant. However, the SEM was more significant than
the SLM, which suggested that the SEM was more appropriate for our data. The SEM
results were significantly improved compared with the OLS model after considering the
spatial autocorrelation, with the R2 value increasing from 65.8% to 78.5% and the AIC
value decreasing from 262.08 to 216.34. At the same time, it should be noted that when
spatial autocorrelation was considered, only three building metrics (BCR, MBPA, and
BHSD) remained significant (Table 5). Whether OLS or SAR, the results of the standard
coefficients recommended that BCR was the most important predictor of LST among the
building metrics.

Table 4. The diagnostics for spatial dependence of the OLS regression model.

Test Value p

Moran’s I of the residuals 0.255 0.000
Lagrange Multiplier (lag) 7.524 0.006

Robust LM (lag) 5.321 0.021
Lagrange Multiplier (error) 17.413 0.000

Robust LM (error) 15.21 0.000

Table 5. The results of the spatial error models.

Pattern Type Predictors Coefficients Standardized Coefficients p

Constant 41.962 0.000

2D
BCR 13.370 0.688 0.000
BD 0.0769 0.091 0.554

MBPA 0.0019 0.207 0.020

3D
BHSD −0.042 −0.168 0.041
MBH −0.0018 −0.0046 0.945

R2 0.785
AIC 216.34

The variance partitioning results indicated that the two groups of variables together
explained 65.8% of the whole variance of LST, while 34.2% were unexplained (Figure 4).
2D building metrics had taken on a more significant role than 3D building metrics. The 2D
building metrics alone explained 51.0% of LST’s total variance while the unique effects of
3D building metrics and the joint effects 2D and 3D building metrics explained 10.2% and
4.6%, respectively.
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4. Discussion
4.1. On the Associations between 2D/3D Building Spatial Patterns and LST

The building patterns will influence the distribution of energy balance. Thus, it
will change the urban thermal environment [37], and a considerable amount of research
has shown that 2D building patterns have an important impact on urban LST and air
temperature [19,33,66,67]. However, few studies have examined the effects of 3D building
patterns on LST [36,40,41] or compared the relative contribution rate of 2D and 3D building
patterns to the variation of LST.

Among the 2D building metrics, BCR was the most critical predictor of LST and
had a positive impact, which is similar to the findings of previous studies [26,33]. Our
results showed that increasing the BCR can significantly increase LST. This reveals that
extensive and contiguous building layout will significantly increase the LST at the census
tract level. This phenomenon may be mainly due to the higher heat capacity, lower albedos,
and evapotranspiration efficiency of building materials and impervious surfaces [68,69].
Besides, continuous building layouts impede ventilation and exacerbate the urban heat
island effect [26,70] leading to broader use of air-conditioning systems and further deterio-
ration of the urban thermal environment [37,71]. MBPA was another 2D metric exhibiting a
significantly positive correlation with LST. Sun et al. and Li et al. also reached similar con-
clusions in their research [26,33]. An increase in MBPA may increase LST because greater
and continuous buildings can generate stronger heat island effects [19,72,73]. Additionally,
an increase in the average building base area will increase the total buildings’ boundaries,
enhancing the energy flow and exchange between buildings and surrounding surfaces,
thus leading to an increase in LST. We also discovered that there is a significant positive
correlation between BD and LST, which indicated that with the increase of building density,
LST would increase. The finding is consistent with previous studies that found that BD
strongly affects urban LST [37,39]. In the same region, the average distance between adja-
cent buildings decreases as the building density increases. Previous studies have indicated
that the shading effects of buildings increase when buildings are close to each other because
of the shading facades supplied by adjacent buildings [19,36]. Moreover, dense buildings
can obstruct wind and ventilation, which induces heat-trapping [39,41,74].

The relationship between 3D landscape patterns and the urban thermal environment
has attracted more and more attention in urban ecology and landscape ecology. Our
study indicated that the contribution rate of 3D building patterns is not as good as that
of 2D building patterns in explaining LST variation. However, 3D building patterns also
take on an important role in influencing LST during summer daytime. Among them,
BHSD and MBH are the most significant 3D building metrics contributing to the LST.
We found that there was a significant negative correlation between MBH and LST in
summer daytime, and the LST decreases correspondingly with the increase of MBH, which
is similar to the research results of previous studies [19,33,39,52,75], but diverges from
others [36,70,76]. The different results may be due to the fact that some studies neglected
other building metrics that have an impact on LST [39]. In fact, BD and BCR often changed
with building height, and both have significant effects on LST. Considering the other
building metrics, we discovered that there was a significant negative correlation between
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MBH and LST. First, high-rise buildings can effectively reduce the net solar radiation
that reaches the land surfaces and cast more shadows, which reduces the LST of shaded
areas [28,77,78]. Second, there is a significant difference in aerodynamics between low-
rise and high-rise buildings in the lower boundary layer. In comparison with low-rise
buildings, high-rise buildings have higher aerodynamic conductivity to take heat away
from the surface [33]. BHSD was the most significant predictor of LST in the 3D building
metrics and there is a significant negative correlation between BHSD and LST. This finding
is consistent with the results of previous studies [19,26,70]. First, the uniform building
height traps heat in a compact space and impedes the flow of wind [74,79]. Second,
building height heterogeneity increases the surface roughness, which generates mechanical
turbulence, thereby enhancing the convective heat dissipation [33]. However, the result
differs from a similar study conducted in Wuhan, which discovered that BHSD explained
LST variation inconspicuously in summer daytime [37]. This contradiction may be because
the importance of BHSD on LST varies with the analysis scale [80,81] and across cities with
different climatic conditions [19,25,82]. This deserves further study.

In addition, it should be pointed out that factors such as the sky view factor (SVF),
street height–width ratio (H/W), and street orientation also affect local microclimate and
air flow, and have an important impact on the urban thermal environment. The relationship
between SVF and LST is mainly negative, but Scarano and Mancini found that the larger the
SVF, the higher the LST [39], and their relationship may be affected by the spatiotemporal
scale. H/W is negatively correlated with daytime air temperature in different climate
regions. Whether it is a hot-dry climate or humid-hot climate, researchers have found that
the smaller the H/W, the higher the temperature value [83,84]. Street orientation also has a
certain impact on the urban thermal environment as east–west streets are exposed to solar
radiation for a longer time, their daytime temperature is higher than those of north–south
streets [85,86]. However, this study focuses on the impact of building patterns on LST at
the census tract level, and the aforementioned factors are not particularly closely related
to building characteristics. In addition, SVF and H/W are comprehensive indicators, and
the basic building indicators such as building height and floor area ratio considered in this
study can be directly applied to urban planning and architectural design, and it is more
instructive to discuss their impact on the thermal environment. Therefore, these factors
were not included in the establishment of the index system in this study.

4.2. The Methodical Implications

Our findings indicated that spatial autocorrelation analysis can elaborate the spatial
relationship between building patterns and LST. In this research, the SAR model was more
suitable for quantifying the effect of building patterns on LST than the OLS regression
model. The OLS model residuals had significant spatial autocorrelation, which violated
the assumption that the OLS error terms were independent. Such violation may cause
the standard errors of OLS coefficient estimates to be underestimated and generate mis-
leading results. Therefore, the selection of appropriate statistical methods is crucial. Other
statistical approaches, such as the extreme gradient boosting regression model, boosted
regression tree and hierarchical partitioning analysis have been increasingly applied to
quantify the complex relationships between landscape patterns and the urban thermal
environment [1,26,41], which potentially improve the quantitative study about the impacts
of building structure on LST.

Furthermore, the statistical methods considering spatial autocorrelation could provide
insights into understanding the relationship between building patterns and LST. The
findings indicated that both LST and building metrics were spatially autocorrelated at
the census tract scale, suggesting that LST in adjacent analysis units might interact with
each other, and the building metrics values of adjacent units tend to be similar. This was
probably the result of the regulation of unified planning and management of adjacent
census tracts, and the building metrics (like building control height, floor area ratio and
building density, etc.) in the controlled detailed plan of adjacent plots are similar.
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4.3. Implications of Urban Planning and Management

The research showed that 2D and 3D building patterns significantly influence the
summer daytime LST. The building patterns can influence the urban thermal environment
by altering the absorption of solar radiation, the formation of airflow, and the generation of
anthropogenic heat [37,85]. The relationships between building patterns and LST are of
great significance for urban planning and management to improve the urban thermal envi-
ronment. Previous studies [26,68,69] and ours suggest that building coverage contributes
greatly to LST. But it is not realistic to decrease the urban building coverage ratio where
the land source is scarce and valuable, such as in Shanghai. However, results from our
study revealed that the 2D and 3D spatial configuration of buildings could also affect LST
at the census tract level. Therefore, we can alleviate the UHI problem by optimizing 2D/3D
building spatial configuration. However, it should be pointed out that in the study of the
relationship between building patterns and the urban thermal environment, the selection
of indicators mainly depends on the impact on the thermal environment, and less attention
is paid to the guiding role of design. Many indicators have little relationship to planning
and designing, so the research results cannot be directly applied to urban planning and
architectural design. Therefore, when establishing the index system, its guiding significance
for practice should be considered, and some basic architectural indicators commonly used
in design, such as building height, density and floor area ratio, should be actively selected.
The results of this study showed that more attention should be paid to the building density,
mean building projection area, building height standard deviation, and mean building
height during urban planning and management in highly urbanized areas. In addition
to the building pattern, roof greening and vertical greening of buildings and the use of
external wall materials with high albedo can also effectively alleviate the urban heat island
effect [87–89].

5. Conclusions

This research quantified the association between building patterns and LST, particu-
larly by measuring the relative importance of 2D/3D building metrics in determining the
spatial variability of LST. We found that 2D and 3D building patterns have an important
effect on LST. The 2D building patterns explained a more significant amount of variation in
LST. However, the 3D building patterns also acted as a key player in predicting LST. Specif-
ically, the building coverage ratio was the most critical predictor and had a significantly
positive relationship with LST. The BD, MBPA, BHSD, and MBH also played dominant
roles in predicting LST. In addition, spatial autocorrelation may influence the relationship
between 2D/3D building metrics and LST. These results can extend our comprehension of
the relationship between 2D/3D building patterns and LST at the census tract level and
provide essential insights for urban planners and decision makers on alleviating the UHI
problem through urban planning and architectural design.

It is widely recognized that decreasing building coverage can effectively alleviate UHI
effects. However, with the massive influx of people into cities and dramatic urbanization,
the increase in buildings has become an inevitable trend to meet urban living and working
needs. Therefore, how to optimize the 2D and 3D building patterns to mitigate the UHI
effect becomes particularly important. Our results indicate that an increase in the average
height and standard deviation of buildings and a decrease in the average base area and
density of buildings can also improve the urban thermal environment. However, it should
be noted that the relationship between building patterns and LST may be scale-dependent
and climate-dependent. This study was only carried out in the Shanghai metropolitan
region at the census tract level, and whether these conclusions are applicable to other
metropolitan areas with different scales or climate zone needs to be further explored. There-
fore, comparative multi-scale and multi-city studies that take into account different climatic
conditions are required for future research to deepen our insight into the relationship
between building patterns and LST.
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