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Abstract: Overhead transmission line corridor detection is important to ensure the safety of power
facilities. Frequent and uncertain changes in the transmission line corridor environment requires
an efficient and autonomous UAV inspection system, whereas the existing UAV-based inspection
systems has some shortcomings in control model and ground clearance measurement. For one
thing, the existing manual control model has the risk of striking power lines because it is difficult
for manipulators to judge the distance between the UAV fuselage and power lines accurately. For
another, the ground clearance methods based on UAV usually depend on LiDAR (Light Detection
and Ranging) or single-view visual repeat scanning, with which it is difficult to balance efficiency
and accuracy. Aiming at addressing the challenging issues above, a novel UAV inspection system is
developed, which can sense 3D information of transmission line corridor by the cooperation of the
dual-view stereovision module and an advanced embedded NVIDIA platform. In addition, a series
of advanced algorithms are embedded in the system to realize autonomous control of UAVs and
ground clearance measurement. Firstly, an edge-assisted power line detection method is proposed
to locate the power line accurately. Then, 3D reconstruction of the power line is achieved based on
binocular vision, and the target flight points are generated in the world coordinate system one-by-one
to guide the UAVs movement along power lines autonomously. In order to correctly detect whether
the ground clearances are in the range of safety, we propose an aerial image classification based on a
light-weight semantic segmentation network to provide auxiliary information categories of ground
objects. Then, the 3D points of ground objects are reconstructed according to the matching points
set obtained by an efficient feature matching method, and concatenated with 3D points of power
lines. Finally, the ground clearance can be measured and detected according to the generated 3D
points of the transmission line corridor. Tests on both corresponding datasets and practical 220-kV
transmission line corridors are conducted. The experimental results of different modules reveal that
our proposed system can be applied in practical inspection environments and has good performance.

Keywords: automatic transmission line corridor inspection system; dual-view stereovision; power line
detection and tracking; 3D reconstruction; aerial image classification; ground clearance measurement
and detection

1. Introduction

Overhead transmission lines are an important part of power delivery
infrastructure [1–3]. The area of land and space occupied by the path of an overhead
transmission line is defined as the line corridor. Within the line corridor, too close a distance
between transmission lines and objects on the ground may cause arcs or short circuits,
which seriously threaten the safety of power equipment and people [4,5]. A large number of
electrical accidents are caused by growing plants, changing topography, large engineering
machinery, and so on. In order to avoid these electrical accidents, transmission lines in
the corridor area must be kept at a safe distance from objects on the ground. Therefore,
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regular inspection of the overhead transmission line corridor is critical to a power system’s
safe operation.

As can be seen in Figure 1, ground clearance refers to the vertical distance between
transmission line conductors and the corresponding objects on the ground, which is a key
indicator to judge the security of the transmission line corridor. In addition, the safety of
ground clearance should be judged by the voltage of the transmission line and the category
of the ground object. Taking the 220 kV transmission line as an example, according to the
relevant regulations in China, the minimum safe vertical clearance between power lines
and buildings is 6 m, while that between power lines and trees is 3.5 m. Therefore, effective
transmission line corridor detection requires three steps. Firstly, accurate spatial location of
power lines and ground objects should be achieved. Secondly, the type of ground objects
under the power lines should be determined accurately. Finally, the ground clearances
between power lines and corresponding ground objects are measured to diagnose the
safety of the transmission line corridor. It can be seen that inspection of the transmission
line corridor is a very important but challenging job.

Too close ground clearanceGround crossing point Ground clearance

Too close ground 
clearanceGround 

clearance

Figure 1. Schematic diagram of ground clearance of transmission corridors.

In the early stages, transmission line corridor inspection mainly relies on the fact that
the staff directly carry out ground clearance measurement by some professional measuring
tools such as altimeters or theodolites. However, manual inspection is time-consuming,
inefficient, and dangerous because it requires the staff to stand near the underside of the
transmission line and perform inspection tasks of power line locations, crossing object
selection, and ground clearance measurement by visual observation [6]. With the continu-
ous expansion of the grid scale, it is an inevitable trend to replace manual inspection with
intelligent means [7]. In this paper, ’Intelligent means‘ refers to the use of advanced artificial
intelligence technologies such as unmanned aerial technology, image processing, machine
learning, deep learning, 3D reconstruction, and so on to carry out transmission line corridor
inspection. By using intelligent means, some tasks can be performed by computers. For
example, through ’intelligent means‘, staff can observe transmission lines from a distance
with the cameras carried by the drones. Besides, power lines can be distinguished from
the images by some algorithms rather than human eye observation. Intelligent means can,
therefore, significantly improve the efficiency and quality of transmission line inspections.

At present, unmanned aerial vehicles (UAVs) have become one of the main tools for
inspection of transmission lines due to their efficiency and flexibility [8,9]. The UAVs are
equipped with aerial cameras or LiDARs and controlled by professional staff to collect
information of the transmission line corridor for inspection. Though the UAV-based
inspection method has significantly improved the efficiency of UAV transmission line
inspection, it still has some shortcomings in both control mode and ground measurement
in practical application.
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In terms of the control model. UAV-based inspection technology is highly dependent
on manual control. The common UAV-based inspection method needs manual control,
which may threaten the safety of the equipment due to operational mistakes. It is quite
a challenging task to control the UAV and successfully complete the transmission line
detection. UAV operators should be fully familiar with transmission line environments
to determine the correct flight path [10,11]. Besides, they also should have good enough
operational skill to maintain a safe distance between the UAV and power lines; the long
distance between the operator and transmission lines makes it difficult to gauge accurately
by human vision. The misjudgment of distance may lead to the UAV colliding with power
lines, threatening the safety of electrical equipment. As a result, the control model of UAV-
based inspection needs to be further improved to replace manual operation. Introducing
a vision-based autonomous inspection system is a potential approach to realize UAV
automatic control [3]. Therefore, many studies of power line detection have been proposed
for the auxiliary positioning of power lines [12,13]. For example, Zhang et al. [14] detected
power lines by gray-level operator and prior knowledge from power line images with fixed
orientation. Abdelfattah and Srikanth et al. [15,16] attempted to detect power lines and
transmission towers by adopting the You Only Look At CoefficienTs (YOLACT) method.
In spite of power line detection being extensively studied, they usually work well in
preprocessed datasets, while they may perform poorly in real-world situations. Besides,
few studies of power line 3D reconstruction and tracking have been conducted, where the
latter is the important operation for automatic control. There is still no effective vision-based
solution to achieve UAV automatic inspection for the transmission line corridor.

In terms of the ground clearance measurement. At present, UAV-based methods
usually perform ground clearance measurement of transmission line corridors by using
LiDAR. LiDAR has high accuracy but requires special offline software to process the
large amount of original 3D point cloud data [17]. Inefficient offline processing and
expensive cost seriously restrict its application and popularization. In addition, some
researchers attempted to recover 3D information of the transmission line corridor by the
UAV equipped with a monocular camera [14,18]. However, this is also time-consuming and
difficult to implement because it requires a large number of repeatedly taken aerial images
of the transmission line corridor. In conclusion, frequent and uncertain changes in the
transmission line corridor environment requires a kind of real-time and low-cost inspection
method. The existing means of ground clearance measurement for the UAV-based method
do not satisfy the above conditions.

As the spatial distribution of different transmission lines and ground objects is very
different, a single-binocular camera is difficult to meet the needs of multiple tasks in trans-
mission line detection. Vision systems with multiple cameras have wide application in
video-surveillance and autonomous navigation, which has attracted the attention of re-
searchers. Therefore, adopting multiple stereo cameras with different views is the potential
solution. Caron G. et al. [19] presented an intrinsic and extrinsic calibration approach for a
hybrid stereo rig involving multiple central camera types. Strauß T. et al. [20] used binary
patterns that surround each checkerboard to solve the association problem of checker-
board corners over time and between different cameras. Then, they adopted a sparse
nonlinear least squares solver to estimate the optimal parameter set of multiple cameras
with nonoverlapping fields of view. Figueiredo, R. et al. [21] adopted a reconfigurable
multistereo camera system for Next-Best-View (NBV) planning and demonstrated advan-
tages of multiple stereovision camera designs for autonomous drone navigation. In our
previous work, we constructed a perpendicular double-baseline trinocular vision module
by three cameras, and conducted theoretical exploration and verification of the power
line 3D reconstruction and ground clearance measurement based on stereovision [22]. To
further address the practical issues in transmission line corridor inspection analyzed above,
a dual-view stereovision-guided automatic inspection system for the transmission line
corridor is developed, inspired by these previous works above. Two stereo cameras of
the proposed system have different views and subtasks. One set of stereo cameras is used
to track power lines in the air and realize autonomous drone navigation. Another set of
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stereo cameras is used to observe the ground objects under the power lines and assist in the
ground clearance measurement. Besides, corresponding novel algorithms are proposed and
applied to perform power line detection and tracking, automatic flight strategy formulation,
and ground clearance measurement. The main contributions of this paper are presented
as follows.

• A novel automatic inspection system for the transmission line corridor is devel-
oped. In this system, a dual-view stereovision module and an embedded NVIDIA
platform are mounted on the UAV to perceive the surrounding environment. The
dual-view stereovision module consists of two binocular cameras. One binocular cam-
era is used to acquire the images of power lines and provide information for automatic
flight. Another binocular camera is used to identify and locate the ground objects
under power lines. The embedded NVIDIA platform is used to process information
acquired by the dual-view stereovision module and achieve power line detection
and reconstruction, aerial image classification, and ground clearance measurement.
Different images from two views can be acquired and processed synchronously by
the collaboration of the embedded NVIDIA platform and the dual-view stereovision
module. Then, automatic inspection and real-time ground clearance measurement can
be achieved simultaneously.

• A real-time automatic flight strategy formulation method based on power line
tracking is proposed. We firstly propose an edge-assisted dual-refinement power
line detection network, which can detect more high-level semantic cues and extract
power lines from binocular images more accurately. Then, the detection results are
utilized to locate power lines and calculate the distance between the UAV and power
lines by binocular-vision-based 3D reconstruction processing. According to the calcu-
lated distance, the following flight points will be formulated one by one and used to
control the automatic movement of the UAV along the power lines.

• We present a ground clearance measurement strategy with ground object identifi-
cation to accurately detect the safety of transmission line corridors. In the proposed
strategy, an aerial image classification method based on light-weight semantic segmen-
tation network is proposed, which can classify ground objects effectively. After that,
3D points of ground objects are reconstructed by the advanced feature point matching
method and concatenated with 3D points of corresponding power lines. Based on
3D points of the transmission line corridor, a plumb line between power lines and
corresponding ground objects could be determined; then, the ground clearance could
be calculated and detected without difficulty.

The rest of this paper is organized as follows. In Section 2, the architecture and in-
formation processing pipeline of the proposed dual-view stereovision-guided automatic
transmission line corridor inspection system is elaborated in detail. Section 3 presents algo-
rithms embedded the system, including power line detection, power line 3D reconstruction,
automatic flight strategy formulation, ground object classification, and ground clearance
measurement and detection. Section 4 demonstrates the proposed inspection system and
experimental results. Section 5 briefly concludes this paper.

2. Automatic Transmission Line Corridor Inspection System Overview
2.1. Hardware Platform and System Architecture

As can be seen in Figure 2, the proposed automatic inspection system employs a refit-
ted DJI Matrice 300 RTK (M300) https://www.dji.com/cn/matrice-300/specs/, (accessed
on 17 August 2022) quadrotor as the platform. The detailed specifications of the proposed
inspection platform are shown in Table 1. With the DJI guidance visual positioning system,
the flight state of the UAV could be accurately estimated. The definition of visual position-
ing system can be seen in [23]. The DJI guidance visual positioning system can estimate
positioning information by fusing the information of IMU, magnetic compass, cameras, and
other sensors in the DJI UAV. The official positioning accuracy of the UAV is supplied in
Table 1, including horizontal positioning accuracy—1 cm + 1 ppm, and vertical positioning

https://www.dji.com/cn/matrice-300/specs/
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accuracy—1.5 cm + 1 ppm. It can be seen that the DJI M300 RTK UAV has high positioning
accuracy. In this work, we focus on estimating the relative position relationship between
the UAV and the power lines. Therefore, the UAV positioning information we used in the
system is generated by the guidance visual positioning system of DJI UAV directly.
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Lower Stereo Camera

Upper Stereo Camera

Motion Planning & Ground Monitoing

Python

Python

C++

Ground Clearance
Measurement and Detection

Python

Power Line 

Detection

Power Line 

Detection

Aerial Image 

Classification

Sparse Matching

3D Points of 

Ground

3D Points of 

Power Line 

Point Cloud 

Concatnate

Power Line 3D 

Reconstruction

3D Points of Ground

DJI PSDK

DJI OSDK
Build Connection 

with Drone

UAV State Estimation

Autonomous Flight

Ground Monitoring

World Coordinate System

Camera Coordinate System

3D Points of 
Power Lines

Transpose

Way-Point Generation

DJI Flight Control 

Module 

Embedded 

Platform
All Processing 

Results

Automonous

Inspection

Right Image

Left Image

Left Image

Right 
Image

Power Line 

Corresponding Point 

Matching 

3D Model

3D Model

3
D

 M
o

d
e
l

Scene of UAV Inspection 

Typical Flight Route

NVIDIA Jetson 

AGX Xavier

2kM

Changzhou, Jiangsu Province, China

2kM Semantic

Information

Plumb

Lines

Suspected

Obstacles

Key frame

Key frameUpper Stereo 

Camera

Lower Stereo 

Camera

Internal IMU

J
o

in
t 

C
a

li
b

ra
ti

o
n

Figure 2. Overall framework of the proposed UAV-based inspection platform.

Table 1. Details of the proposed inspection platform.

Hardware
Device Hardware Model Specification

UAV DJI M300 RTK

Dimensions: 810(L) × 670(W) × 430(H) mm
Max Takeoff Weight: 9 kg

Max Wind Resistance: 15 m/s
Max Flight Time: 55 min

Max Speed: 17 m/s
Hovering Accuracy: ±0.1 m

Horizontal Positioning Accuracy: 1 cm + 1 ppm
Vertical Positioning Accuracy: 1.5 cm + 1 ppm

Embedded Platform Nvidia Jetson AGX
Xavier developer kit

GPU: 512 Cores and 64 Tensor-Cores
AI Performance: 32 Tops

Memory: 32 GB 256-bit LPDDR4x 136.5 GB/s
Power: 10 W | 15 W | 30 W

Mechanical: 100 mm × 87 mm (L × W)

Dual-View Stereo
Vision Module

LenaCV® CAM-AR0135-3T16
Lena Computer Vision Company

Upper binocular camera

Resolution: 1280 × 960 pixels
Frame Rate: 30 fps

Focal Length: 25 mm
Baseline Distance: 104.49 mm

Lower binocular camera

Resolution: 1280 × 960 pixels
Frame Rate: 30 fps

Focal Length: 16 mm
Baseline Distance: 101.45 mm

The self-designed, dual-view stereovision module is composed of two binocular cam-
eras. In detail, one binocular camera is mounted on the top of the UAV at an upward angle
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to locate and track the power lines, which is named the upper binocular camera in this paper.
Moreover, in order to improve the accuracy of power line detection, the upper binocular
camera is set with dip angles in both the upward and horizontal directions. Specifically, the
upper binocular camera has an elevation angle of 5 degrees. Besides, the angle between the
baseline of the upper binocular camera and the horizontal line is 10 degrees. Another binoc-
ular camera is hung under the UAV with a downward inclination of about 60 degrees for
aerial image classification and ground objects discrimination; this is called the lower binoc-
ular camera. The NVIDIA Jetson AGX Xavier is a kind of AI computer for autonomous
machines, delivering the performance of a GPU workstation in an embedded module
under 30 W (https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit,
accessed on 17 August 2022)). It is adopted as an embedded platform to process upper and
lower binocular images to achieve 3D environment perception and power line tracking in
real-time. Meanwhile, the Universal Asynchronous Receiver/Transmitter (UART) connects
the embedded NVIDIA platform and UAV, and enables communication between them.
By developing the DJI onboard SDK (OSDK) (https://developer.dji.com/onboard-sdk/,
accessed on 17 August 2022). and DJI payload SDK (PSDK) (https://developer.dji.com/
payload-sdk/, accessed on 17 August 2022), the binocular images and position of the UAV
could be processed in the embedded NVIDIA platform and calculate the next target flight
point in real-time; then, the automatic inspection can be achieved.

2.2. Pipeline of Dual-View Stereovision-Guided Automatic Inspection Strategy

The long-distance transmission line corridor inspection can be divided into several
short inspection tasks between adjacent transmission towers. The detailed processing steps
within each short inspection task are shown in Figure 2. During the automatic inspection,
the flight height of the UAV is similar to the power lines and the head direction of the UAV
is controlled to keep perpendicular to the power lines. The upper binocular images are
processed to detect and reconstruct the 3D power lines, and the lower binocular images
are adopted for the reconstruction of the ground scene. The body-origin world coordinate
of the UAV adopts the IMU as the coordinate origin. Therefore, the IMU coordinates can
be used as the positioning coordinates of the UAV. Through the joint calibration results of
the binocular cameras and internal IMU, the 3D points of power lines and ground scene
are concatenated in the body-origin world coordinate system. Thus, in this way, the 3D
information around transmission line corridors are acquired for automatic navigation
and ground clearance measurement. In general, the IMU is just used as the reference of
UAV positioning coordinates. The positioning information for navigation is estimated by
fusing the information of the IMU, magnetic compass, and other sensors in the UAV. The
positioning accuracy of the DJI UAV is shown in Table 1.

In order to synchronize the upper and downward cameras with the IMU, we per-
formed two steps. The first step is to synchronize the local time of the embedded NVIDIA
platform to the system times of the DJI UAV by utilizing the OSDK and PSDK. The UAV
will send positioning data packets at a frequency of 1 Hz. The binocular image acquisition
frequencies of the upper and downward cameras are both 5 Hz. It is obvious that the data
acquisition frequencies of the UAV positioning module and binocular cameras are different.
Therefore, in the second step, we designed a multisensor synchronous capture strategy to
achieve the data synchronization. As shown in the Figure 3, the images obtained by the
upper binocular camera are used as trigger information to grab other data within the same
time interval. When we capture an image from the upper binocular camera, we will capture
the first image from the lower binocular image and the first positioning data from the UAV
to form a set of synchronous data. In the figure, the area with a light-yellow background
represents a set of synchronized data. For example, {U0, L0, P0} is a set of synchronized
data, so are {U6, L6, P1} and {U9, L9, P2}.

https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit
https://developer.dji.com/onboard-sdk/
https://developer.dji.com/payload-sdk/
https://developer.dji.com/payload-sdk/
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Figure 3. Schematic diagram of multisensor data synchronous capture strategy.

In order to achieve automatic flight, we need enough aerial binocular images to
satisfy the training requirements of power line detection and the aerial image classification
network. Thus, before performing automatic flight, we controlled the UAV with the help
of the pilot to capture sufficient aerial binocular images in advance along the 10 km-long
transmission line in Jiangsu Province, China. Details of the datasets will be described in
the experimental part. Then, we chose a part of the route to test our system on site. The
location and photos of the typical flight route are shown in Figure 2.

3. Methods
3.1. Real-Time Automatic Flight Strategy Formulation Based on Power Line Tracking

Since the pixels of power lines only occupy a small part of the whole image, the
feature points on power lines are difficult to detect and match. Thus, we propose an
edge-assisted dual-refinement power line detection network to locate power lines. Then,
the 3D power lines are reconstructed based on the epipolar constraint of binocular vision.
Finally, according to the structure of the 3D power lines, the target flight point of the UAV
is generated in the world coordinate system and the motion planning is achieved with the
continuous target points.

3.1.1. Edge-Assisted Power Line Detection

Since power lines may possess different numbers, angles, and thicknesses in aerial
images, it is difficult to extract enough semantic cues from aerial images to achieve accurate
power line detection. By integrating the idea of multitask learning, we propose an edge-
assisted dual-refinement power line detection network. As shown in Figure 4, the proposed
network consists of two important modules. The U-Net-like encoder–decoder module is
adopted to predict the coarse detection results. Two layers are added behind the ResNet
18 backbone to detect more high-level semantic cues. Then, high-level features are further
enhanced with the proposed spatial attention module. The framework of decoder is nearly
symmetrical to the encoder except for the shortcut with lower layers.

By fusing high-level global contexts and low-level details, the coarse detection result
is achieved and supervised. Furthermore, the coarse result is reconstructed to generate the
edge map and refined result. By the generation and supervision of the edge information,
the coarse result is further refined and the high-precision detection of the power lines
is realized.
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Figure 4. Overall framework of the proposed power line detection network.

(1) Spatial attention module

Although the modified encoder module is deeper than the original ResNet 18, the
overall receptive field is still restricted within the fully convolutional network. Thus, the
spatial attention module is proposed to handle this problem. The details of the proposed
spatial attention module are shown in Figure 4. The input feature X ∈ RC×H×W is firstly
aggregated along the second and third dimension to encode positional information. Two
attention maps X̃h ∈ RC×H×1 and X̃w ∈ RC×1×W are obtained to model the long-range
dependence with different spatial direction. This kind of long-range information could
enhance the location capability of the proposed network. The encoded output X̃w at width
w and the output X̃h at height h could be formulated as

X̃w =
1
H

H

∑
i=1

X(i, w), X̃h =
1

W

W

∑
i=1

X(h, i). (1)

These two attention maps are further concatenated to fuse the different coordinate
attention together as

X̃ f = Conv1×1

(
Cat[X̃h, trans(X̃w)]

)
, (2)

in which Conv1×1 denotes the convolutional layers with size 1×1, Cat[∗, ∗] denotes concate-
nation operator, and trans(∗) denotes the transpose operation.

Then, the fused attention map X̃ f is further squeezed to X̃ f ∈ RC×(H+W). Multi-
layer Perceptron (MLP) is adopted to enhance the attention vectors via the relationship
with others. The enhanced attention vectors S f ∈ RC×(H+W) could be calculated as
S f = δ

(
MLP(X̃ f )

)
, where δ denotes the nonlinear activation function. We then split the

S f along the second dimension into Sw ∈ RC×W and Sh ∈ RC×H . Another two convolution
layers with size 1×1 are adopted to handle the unsqueezed Sw ∈ RC×W and Sh ∈ RC×H as

S′h = δ(Conv1×1(Sh)), S′w = δ(Conv1×1(Sw)). (3)

Finally, S′h and S′w are expanded to the same size with X and used as weight maps to
generate the output in a residual way as Xout = X⊗ S′h ⊗ S′w + X, in which ‘⊗’ denotes the
pixelwise multiplication.

(2) Dual-refinement module

To segment power lines from aerial images more accurately, the dual-refinement
module is proposed to optimize power line detection results. Specifically, the pyramid
refinement module (PRM) is proposed for different tasks in two paths, respectively. One-
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path PRM of the dual-refinement module is adopted to extract the edges of power lines
from the coarse results. Another PRM is adopted to refine both the boundary and region
of the coarse results. The structure of PRM likes U-Net [24], which is composed of an
encoder–decoder network with multiple residual paths. Different from the structure of
traditional U-Net, the layers of PRM are shallow to maintain efficiency. The PRM of the
edge detection is removed in the inference stage. The outputs of PRMs could be considered
as residual maps, which are added with the coarse result to obtain the refined edge map
Pe and refined detection results Pd, respectively. Finally, the coarse detection results Pc are
supervised with the binary cross-entropy (BCE) loss function as

Ltotal = Lbce(GTpl , Pc) + Lbce(GTpl , Pd) + β×Lbce(GTedge, Pe)

Lbce(GT, P) =
N
∑

i=1
{GT(i)× log(P(i)) + (1− GT(i)× log(P(i)))} , (4)

in which N denotes the total number of the pixels; β denotes the weight of edge supervision
and is set as 0.5 by default.

3.1.2. Binocular-Vision-Based Power Line 3D Reconstruction

The texture feature of power lines is too similar to distinguish, which makes it hard
for stereo matching algorithms to define matching cost and search for correct matching
point pairs. Thus, it is difficult to reconstruct the power lines. To solve the above problem,
we firstly detect the power lines in the rectified binocular images. The power line detection
results are refined and thinned to single-pixel width. For a certain point on the power
line, its Y coordinate values in the binocular images are the same. Based on this epipolar
constraint, all point pairs with the same Y values on power lines are matched. For the
matching points of the first power line in stereo images, (xl

i , yl
i) and (xr

i , yr
i ), the disparity

of the matching points could be calculated as d =
∣∣∣xl

i−xr
i

∣∣∣. Then, the first power line could
be converted into the 3D coordinate as P = {p1, p2, . . . , pi, . . . pN}, pi = (xi, yi, zi), where
pi denotes the 3D power line points and P denotes the 3D point sets of power lines. N
represents the total number of 3D power line points.

3.1.3. Power Line Tracking Guided Automatic Flight Strategy Formulation

In this way, power lines of current stereo images are reconstructed in the camera
coordinate system oc − xcyczc. To control the DJI M300 UAV, the target flight path point
in the world-coordinate system ow − xwywzw needs to be calculated. The origin of world
coordinate system is generally a fixed point in the real world, just as the takeoff point. It is
difficult to calculate the offset between the UAV and this point.

Thus, as shown in Figure 5, the body-origin world coordinate system o′w − x′wy′wz′w is
built, which adopts the IMU as the coordinate origin. The transformation relationships
between o′w − x′wy′wz′w with oc − xcyczc have only rotation and translation operations. Con-
sidering the mounting angle of the binocular camera, the rotation operations could be
represented as

q =


qw
qx
qy
qw

 =


cos(θ/2) cos(ε/2) cos(α/2) + sin(θ/2) sin(ε/2) sin(α/2)
cos(θ/2) cos(ε/2) sin(α/2)− sin(θ/2) sin(ε/2) cos(α/2)
sin(θ/2) cos(ε/2) cos(α/2) + cos(θ/2) sin(ε/2) sin(α/2)
cos(θ/2) sin(ε/2) cos(α/2)− sin(θ/2) cos(ε/2) sin(α/2)

, (5)
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in which α, θ, and ε are the rotation angles along xc-axis, yc-axis, and zc-axis, respectively.
In this way, all power line points (Xc, Yc, Zc) in the camera coordinate system could be
converted with the quaternion as

0
X′w
Y′w
Z′w

 = q


0

Xc
Yc
Zc

q−1+


0
tx
ty
tz

, (6)

where (X′w, Y′w, Z′w) is the coordinate of power line points in o′w − x′wy′wz′w; tx, ty, and tz are
the distances between the origins and two coordinate systems; and θ is the declination angle
between the UAV heading and North, which could be obtained by the magnetic compass
on the DJI UAV. Other parameters in the rotation and translation operators are calculated by
the open-source camera/IMU calibration toolbox Kalibr [25], which could jointly calibrate
the camera and internal IMU with millimeter precision. After all power line points are
converted into o′w − x′wy′wz′w, the target flight point with the yaw value (x, y, z, yaw) in
o′w − x′wy′wz′w is calculated for motion planning. Power line points are projected into the
horizontal x′wo′wy′w and vertical y′wo′wz′w planes. Then, the average slopes of the projected
power lines on these two planes are calculated as s1 and s2, respectively. For a predefined
flight distance L of each movement, the y value of target point could be calculated as

y =

√
L/
(
(s1)

2 + (s2)
2
)

. (7)

Thus, the coordinate value of the target point Pf could be calculated as

Pf = (y× s1, y, y× s2, arctan(s1)), (8)
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Figure 5. Details of the proposed power line tracking algorithm and the transformation of different
coordinate systems.

The target point is generated in o′w − x′wy′wz′w, which represents the offset in the world
coordinate system. With the connection of the UAV and embedded NVIDIA platform, the
UAV flies to this point immediately when receiving the command. When the UAV reaches
the target point of current stereo images, the binocular images are reselected as the next
key frame when the UAV hovering, and the next target point is recalculated to complete
the automatic flight and inspection.
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3.2. Ground Clearance Measurement and Detection of Transmission Corridors
3.2.1. Ground Object Classification Based on Light-Weight Semantic
Segmentation Network

In the actual environment of transmission line corridors, buildings and plants on the
ground may pose a threat to the safe operation of the power lines. Different types of ground
objects require different safe distances from power lines. In order to judge the safety of
ground clearance correctly, an aerial image classification method based on light-weight
semantic segmentation network is proposed to classify ground objects.

The overall framework of this method is shown in Figure 6, the global and local con-
texts are extracted to assist semantic segmentation, which could improve the performance
of aerial image classification. The ResNet 18 is adopted as the encoder module within the
light-weight semantic segmentation network. Multilevel features are extracted within the
encoding process, which are denoted as Fi, i ∈ {1, 2, 3, 4, 5}. F5 is enhanced by the proposed
global–local attention module. In the decoding stage, low-level CNN features F2, F3, and F4
are gradually fused with high-level features to recover more spatial information and refine
the contour of instances.

Figure 6. Overall framework of the proposed aerial image classification method based on light-weight
semantic segmentation network.

Global–local attention module is proposed to enhance the high-level features of the
aerial images [26]. Specifically, for the multiscale features F ∈ RH×W×C extracted with
the atrous spatial pyramid pooling (ASPP) module, the group nonlocal (G-NL) module
is proposed to enlarge the receptive field. The features F are first embedded into the key,
value, and query spaces as

Fθ = F×Wθ , Fφ = F×Wφ, Fg = F×Wg, (9)

in which ‘×’ denotes the matrix multiplication operator. Wθ , Wφ, and Wg ∈ RC×C′ denote the
embedding vectors, which could decrease the feature dimensions to reduce computation.

Suppose that δ denotes the SoftMax activation operator and Y ∈ RH×W×C′ denotes
the output features; traditional nonlocal block generally calculates the similarity matrix
and achieves the final output as Y = δ

(
Fθ × Fφ

)
× Fg. Thus, by calculating the relationship

between each pixel and the global information, the features are enhanced via the long-
range dependence. However, due to the large number of feature points, the ability of
nonlocal module for long-distance information is restricted. Thus, the concept of grouping
is introduced into the nonlocal module to improve the ability to capture global clues. The Fθ ,
Fφ, and Fg are first grouped along the channel dimension into Fk

θ
, Fk

φ
, and Fk

g ∈ RH×W×t with
t = C′/num_group. The embedding spaces with the same group number are processed as
the original nonlocal module.
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Assume that Yi ∈ RH×W×t is the output of the i-th group. Then, Y is obtained by
integrating the attentional outputs of all groups together.{

Yi = δ
(

Fi
θ
× Fi

φ

)
× Fi

g , i ∈ {1, 2, . . . , t}
Y = Cat[Y1, Y2, . . . Yi . . . , Yt], i ∈ {1, 2, . . . , t}

. (10)

The output of G-NL is calculated as Fglobal = F + YWc, in which Wc is adopted to
recover the channel information. However, when too much attention is paid to global
information, some small areas may be ignored. Local Distribution is desired to be learned
in each channel. The local context information of Fglobal is adopted to calculate the weight
map of each channel. The weight map M ∈ RH×W×C is multiplied with the global feature
to generate the final output as Fout = Fglobal +

(
M⊗ Fglobal

)
.{

M = δ(Upsample(M′))
M′ = Convblock

(
max_pool

(
Convblock

(
Fglobal

))) . (11)

After the high-level features are extracted and enhanced, the decoder module is
proposed to gradually recover spatial information with the shortcut of low-level features.
As shown in Figure 6, the decoding process is divided into three stages. For stage 1 of the
decoder module, it could be formulated as

FD
1 = Convblock×2(Upsample(Fout)⊗ Convblock(F4)). (12)

The other two stages of decoder module are the same as stage 1 except for different
inputs and the change in channel numbers. Finally, the feature FD

3 is obtained with a
channel size of 32 and the same spatial size as a quarter of the input image. FD

3 is further
sent to the classifier module to generate the features with a channel of the class number.
Given the prediction map and the corresponding ground truth, the cross-entropy loss is
adopted to supervise the training process.

3.2.2. Ground Clearance Measurement and Detection

As shown in Figure 7, in order to calculate the ground clearance between power lines
and the ground objects, we reconstruct the local 3D model of the transmission corridor
according to upper and lower binocular images. Then, the ground points corresponding to
the power line points are calculated with the plumb lines in the real world. Finally, ground
clearance suspected obstacles are calculated combined with the aerial image classification
results. The details of processes mentioned above are described in the following.

(1) 3D point reconstruction of ground objects based on feature point matching

In order to obtain the 3D information of the ground, we need to calculate the dis-
placement between corresponding pixels. However, as the objects of binocular images
are acquired at long distances and the scenes are complex, it is difficult for dense stereo
matching methods to achieve satisfactory performance. Traditional sparse feature matching
methods such as SIFT and ORB could only extract few corresponding points, which may
lose some information within key positions. Thus, we adopt the advanced feature point
detector SuperPoint [27] and feature matching method SuperGlue [28] to achieve accurate
feature point matching. The framework of these two deep-learning methods are shown in
Figure 7 and the detailed steps are described in the following.
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Figure 7. The process of the proposed clearance distance measurement and suspect obstacles
detection methods.

As shown in Figure 7, an encoder–decoder network is adopted in SuperPoint to extract
high-level features for two decoder modules. In the interest point decoder, the features are
first compressed into 64 channels with the 64-kernel convolutional layers. To minimize
the checkerboard artifacts introduced by deconvolutional layers or upsampling layers,
the subpixel convolution layers are applied on the SoftMax results to generate the one-
channel response map. Meanwhile, inspired by the Universal Correspondence Network,
the semidense grid of descriptor with size H/8 ×W/8 is generated by the proposed
descriptor decoder. Then, the semidense grid is upsampled with the bicubic interpolation
and L2-normalizes operators to generate the descriptors with dimension D. The left and
right images are both sent into the same SuperPoint. The key point PA

i with descriptors dA
i

of the left image and the key point PB
j with descriptors dB

j of the right image are obtained
by the SuperPoint algorithm in an end-to-end manner, in which i = {1, 2, ..., M} and
j = {1, 2, ..., N}.

Traditional matching methods generally adopt Nearest Neighbor (NN) to search cor-
responding points and filter incorrect matches. These methods may ignore the assignment
structure of feature points and discard visual information, which may result in unsatisfied
and inaccurate matching performance. The SuperGlue adopts a deep neural network to
solve the optimization problem and calculate the final target to obtain the soft partial as-
signment matrix P ∈ [0, 1]M×N . As shown in Figure 7, the attentional graph neural network
is designed to enhance the local feature descriptor with long-range and global information.
The Multilayer Perceptron(MLP) is adopted to couple the visual appearance d∗j and the
position of feature points p∗j , thereby increasing the dimension of low-dimensional features.
Then, a single multiplex graph is constructed, in which the nodes are the key points of both
images. Through the message passing with interimage edges and cross-image edges, the
receptive field is enlarged and the specificity of features is boosted with global information
to achieve the feature aggregation. Then, the optimal matching layer is constructed to learn
the score matrix S ∈ RM×N and the Sinkhorn algorithm is adopted to maximize the total
score ∑ i,jSi,jPi,j to obtain the soft partial assignment matrix.
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In this way, the accuracy matching point pairs [(xi
l , yi

l), (xi
r, yi

r)]
i=1
β are obtained by the

SuperPoint–SuperGlue algorithm, in which β denotes the total number of matched points.
The 3D information of these points in the lower camera coordinate could be calculated as

Zi =
blow ∗ flow

xi
l − xi

r
, Xi =

(
xi

l − x0
l
)

flow
Zi, Yi =

(
yi

l − y0
l
)

flow
Zi, (13)

in which
(
Xi, Yi, Zi) denotes the 3D coordinates of the matched points and (x0

l , y0
l ) denotes

the primary point; blow and flow denote the baseline distance and focal length, respectively.

(2) Ground clearance measurement and detection based on local 3D points of the corridor

As described in Section 3.1.3 and Figure 5, the translation and rotation between the
lower camera coordinates with the body-origin world coordinate system are calibrated
by Kalibr toolbox. In this way, 3D points calculated from the lower binocular camera are
transformed into the body-origin world coordinate system. Thus, the local 3D model of the
transmission corridor can be generated by concatenating the 3D points of the upper and
lower binocular cameras in the same coordinate system.

Since the power line points and ground points are both converted into the world
coordinate system, the vertical line in the real-world is parallel to the z-axis of the world
coordinate system. The power line and ground points are all projected to the x′wo′wy′w plane.
Thus, through the bird’s-eye view, the corresponding points of power lines on the ground
could be located. However, since the matched ground points are sparse, there may be no
corresponding ground points for some power line points. Thus, the 24-pixel neighborhood
of the corresponding points is averaged as the height of the central point if the central point
is unmatched. Finally, combined with the classification results of aerial image and the safe
clearance distance of different ground objects, the security of the power line for the current
frame is recorded.

Finally, the system can detect the safety of ground clearance easily according to rules.
Combined with the classification results of aerial image and clearances of different ground
objects, the security of the power line for the current frame is recorded and the suspected
obstacles are detected.

4. Results

In this section, extensive experiments are conducted to evaluate the proposed power
line detection, 3D reconstruction, and tracking methods. The effectiveness and robustness
of the proposed ground clearance measurement are indicated in the following.

4.1. Experiments of Power Line Detection
4.1.1. Datasets and Implementation Details

The proposed power line detection network is built with the commonly used deep-
learning library PyTorch [29]. For the training process, the batch size and initial learning
rate are set as 4 and 0.01, respectively. The learning rate becomes one tenth of the preset
value every ten epochs. The Adam optimizer is adopted for training process. The proposed
network is trained in an end-to-end manner on the NVIDIA RTX 3090 GPU. For the
verification of the proposed power line detection network, the publicly available dataset
and the self-build dataset are adopted for the fair experiment.
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(1) Transmission Towers and Power Lines Aerial-image Dataset (TTPLA)

Abdelfattah et al. [15] proposed the Transmission Towers and Power Lines Aerial-
image (TTPLA) dataset, which labeled the transmission towers and power lines for the
instance segmentation. The UAV does not follow a fixed flight pattern for power line aerial
images acquisition. Thus, there are great differences in the shape and distribution of power
lines. There is a total of 1242 images in this dataset, in which 1000 images are selected as
the training dataset and the others are used for testing.

(2) Power Line Image Dataset (PLID)

The proposed inspection platform is used to acquire aerial images along the power
lines. The distance and the shooting angle between power lines and the UAV change within
a certain range. Thus, the orientations, pixel widths, and radius curvatures of power lines
in all images are similar. We adopted 1000 images to build the dataset named Power Line
Image Dataset (PLID), in which 600 images are selected as the training dataset and the
others are used for testing.

We compare the proposed power line detection method with four edge detection meth-
ods including Canny, LSD [30], HED [31], and RCF [32]. Saliency detection could detect
and segment salient objects into single-channel grayscale images, which are consistent with
power line detection results. Therefore, three state-of-the-art saliency detection methods
including PiCANet [33], EGNet [34], and PFANet [35] are also selected for comparison.
Note that the annotations of all datasets are converted into the binary form, and all these
deep-learning-based methods are produced by training on the four datasets, respectively.
The power line detection task could be considered as a kind of binary segmentation task
such as salient object detection and edge detection. We adopt three commonly used metrics
to quantitatively evaluate the proposed method including Max F-measure, MAE, and
S-measure, which could evaluate the detection results at the pixel and structure levels.

As can be seen in Figure 8, we set β = {0.4, 0.5, 0.6,0.7,0.8,0.9,1} and test the metric
values on TTPLA dataset and PLID dataset. It can be seen that the network has better
performance when we set β = 0.5.

Figure 8. Analysis of the power line detection method performance effected by different values of β.

4.1.2. Visual Comparison

As shown in Figure 9, the directions of power lines are quite different, which increases
the difficulty of power line detection. The traditional methods based on edge and line
detection all have unsatisfactory performance. Although HED and RCFNet could detect
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the power lines with high accuracy, the pixel widths of the power lines are wider than the
ground truth. Inaccurate power line widths may generate more errors in the thinning and
refinement process. The detection results on the proposed PLAD are shown in Figure 10.
Although the shooting distance and shooting angle between power lines and the UAV are
fixed, the detection results of many methods are noisy. Meanwhile, power lines are broken
in the detection results of many algorithms, which may result in inaccurate power line
counting. Due to the introduction of edge features, power lines are segmented with fine
boundary and accurate pixel widths in the proposed method. The proposed power line
detection network has better performance on these two datasets.

Image GT Canny LSD  HED PFANet PICANet  RCFNet EGNet Our

Figure 9. Comparison of power line detection results on the TTPLA dataset.

Image GT Canny LSD  HED PFANet PiCANet  RCFNet EGNet Our

Figure 10. Comparison of power line detection results on the PLAD dataset.
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4.1.3. Quantitative Evaluation

The quantitative performance comparisons between our method and seven methods
on the adopted datasets are shown in Table 2. The proposed method achieves better
performance under different datasets and metrics. Since the training set of TTPLA has
more images, the power line detection network could be trained better and achieve higher
numerical results. Though the max F-measure of RCF is higher than that of other methods,
the detection results are noisy when the background is complex. The max F-measure and
S-measure are improved by about 1.5% and 1.8% compared with the second-best methods
RCFNet and PiCANet on these two datasets. The quantitative experimental results show
that the proposed method could realize the real-time detection of power lines with high
accuracy, which could be adopted for 3D reconstruction.

Table 2. Comparison of power line detection results with other methods on two datasets.

Dataset Metries Canny LSD HED PFANet PiCANet RCFNet EGNet Ours

TTPLA
MaxF 0.1537 0.2506 0.6034 0.5109 0.7242 0.8730 0.7972 0.9012
MAE 0.1944 0.0715 0.0526 0.0390 0.0405 0.0227 0.0314 0.0209
S-M 0.4660 0.5235 0.6997 0.5690 0.6659 0.8460 0.7322 0.8618

PLID
MaxF 0.5331 0.4300 0.4819 0.6967 0.7992 0.8002 0.7320 0.8021
MAE 0.0415 0.0422 0.0620 0.0266 0.0271 0.0377 0.0270 0.0204
S-M 0.5716 0.6030 0.6236 0.6959 0.8338 0.7719 0.7738 0.8549

4.2. Experiments of Power Line Tracking
4.2.1. Performance of Power Line 3D Reconstruction

To evaluate the performance of the proposed power line tracking and autonomous
inspection algorithms, we conduct several flight experiments in the actual environment.
Taking the selected 220-kV transmission line as an example, the transmission tower contains
a total of 14 power lines within the low, medium, and high phases of transmission lines
and the uppermost layer of ground wires. Power lines are distributed on both sides of the
power tower. The width of the transmission channel is 8 m. When inspecting and shooting
from the horizontal side, power lines on both sides are acquired in the same image. It is
difficult for human eyes to judge the distance between power lines and the UAV.

Figures 11 and 12 shows the stereo images acquired by the upper binocular camera
in the real inspection process. The short power lines are not reconstructed according to
the preset parameters. Meanwhile, the power line points are all constructed and fitted
with the proposed methods. The 3D reconstruction results of power lines are presented in
the body-origin world coordinate system. The y-axis of the body-origin world coordinate
system denotes the distances between power lines and the UAV.

Stereo Images

Power Line

Detection

Power Line 3D

Reconstruction

Figure 11. Power lines 3D reconstruction results of different scenes.
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Figure 12. Power lines 3D reconstruction results of several continuous frames.(Discrete points indicate
the corresponding LiDAR points).

Figure 11 shows power line detection and 3D reconstruction results in different scenes.
In other binocular images, power lines are distributed on both sides of transmission towers.
It can be seen that the distances between two sides of power lines are about 8 m, which
also coincides with the reality.

Figure 12 shows some power line detection and 3D reconstruction results of several
continuous frames. It can be seen that the power lines can be detected accurately in the
binocular images. The power lines are almost parallel to each other in each frame, which
coincides with the reality. We map the sparse point clouds of the Livox Avia LiDAR to the
body-origin world coordinate system as a reference for accuracy evaluation. The point cloud
reconstructed by our algorithm is relatively consistent with the point cloud distribution
of Livox Avia LiDAR. It illustrates that our 3D reconstruction results of power lines are
relatively accurate even in the binocular images with obvious interference. Therefore, our
localization method is encouraging from the perspective of scenario adaptability.

In order to decrease the magnetic-field interference and maintain the safety of the
inspection system, we kept the distance between the UAV and power lines above 20 m. As
shown in Figure 11, power lines in the first column of binocular image are on the same
side of the transmission tower. It can be seen from the y-axes that the distance between
the UAV and the nearest power line is about 24 m. Besides, the distances of other results
in Figures 11 and 12 are all maintained above 20 m, which shows that our method can
effectively control the distance between the UAV and the power lines.

4.2.2. Experiments of Autonomous Flight

We conduct several experiments in the real-world around the transmission lines to
evaluate the performance of the proposed power line tracking and autonomous flight
strategies. The experimental position has a strong RTK signal, which could improve the
accuracy of recorded trajectories. The calculation points of key frames are drawn in blue
circles in Figure 13. The distances between each calculation key point are about 4 m. The
trajectory of the UAV is relatively smooth, which could reflect the stability and robustness
of the power line tracking.
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Figure 13. The detailed trajectory of a flight. (a) Altitude view; (b,c) are different planar views.

In order to further show the effectiveness and robustness of the proposed autonomous
flight strategy, we use the UAV to track different power lines. As shown in Figure 14,
the developed inspection platform could fly along the power lines with different heights.
Although the pendulous traits of power lines mean the shapes of power lines are not
straight, the trajectories of the inspection platform all have a similar shape with the curve
of power lines.

Inspection Direction

(a) (b) (c)

Figure 14. Trajectories of several flight tests. (a) Altitude view; (b,c) are different planar views.

4.3. Experiments of Ground Clearance Measurement and Detection

In this section, we carry out experiments on the ground clearance measurement and
detection function of the system. Since the voltage level of the tested transmission line is
220 kV, the detection rule set of ground clearance in the system is shown in Table 3. In the
following content, we will test the performance of the system in terms of the ground object
classification function and ground clearance detection function, respectively.

Table 3. Min safety ground clearances between different ground objects of 220 kV transmission lines.

Ground Objects Buildings Trees Roads Rivers

The min safety ground clearance 6.0 m 3.5 m 8.0 m 7.0 m

4.3.1. Performance of the Proposed Aerial Image Classification Network

(1) Datasets and implementation details

In order to acquire enough scene styles, we collect aerial images by controlling the
UAVs flight for about 10 km. A total 200 images are selected for the training and testing of
the proposed semantic segmentation. Five classes are annotated including buildings, trees,
roads, rivers, and others. The original resolution of the images is 2448× 2048. As can be
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seen in Figure 15, we divide 200 images into five parts according to the typical background
objects in them. We randomly sample 3/4 of the five groups of data for training. Before the
system test on site, about 1/3 of the remaining data are used for inference and verifying
the effectiveness of the classification algorithm. The input images resolution of the network
should be resized to 512× 512. The details of the aerial image classification dataset are
listed in Table 4.

Figure 15. Samples of the aerial image classification dataset.

Table 4. Details of the aerial image classification dataset.

Part Typical
Background Objects

Total
Number

Original Image
Resolution

Number for
Training

Number for
Inference

Input Image
Resolution

1 Buildings, Roads 35 27 8
2 Roads, Trees 42 32 10
3 Rivers, Trees 32 24 8
4 Buildings, Trees 44 33 11
5 Trees 47

2448× 2048

35 12

512× 512

The numbers of pixels in all classes are extremely unbalanced, which increases the
difficulty of semantic segmentation for aerial images. A total 11 state-of-the-art semantic
segmentation networks are adopted for a fair comparison. The proposed semantic segmen-
tation network is also built with the PyTorch framework. The batch size and initial learning
rate are set as 4 and 0.01, respectively. The learning rate of the global–local attention and
decoder module are set as ten times of backbone network. Other training settings and
parameter settings are consistent with the training of power line detection.

(2) Visual comparison

To qualitatively validate the effectiveness of the proposed semantic segmentation
network, we firstly visualize the segmentation results generated by our method and
11 comparative methods in Figure 16. As shown in Figure 16, introduced by the class-
aware edge, the proposed method could segment the image with fine boundary. Compared
with the segmentation results of other methods, the proposed method could segment the
ground objects more completely. The boundaries of big objects such as roads or rivers in
the segmentation results are continuous and accurate. Meanwhile, due to the huge scale
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differences of categories in the proposed dataset, comparison methods generally have poor
classification and segmentation performance for small areas.

Buildings

Others

Roads

Trees

Rivers

Image         GT        PSPNet   Deeplabv3 PSANet    UNet++  BiSeNetv1 DFANet   SwiftNet   ShelfNet BiSeNetv2  ABCNet     CGNet       Our

Figure 16. Aerial image classification results of the proposed and the state-of-the-art networks.

(3) Quantitative evaluation

The evaluation results of the proposed semantic segmentation network and the com-
parison with other state-of-the-art methods on the proposed dataset are shown in Table 5.
The proposed method obtains 73.90% in terms of mean IoU and achieves the best per-
formance among the 11 state-of-the-art methods. The mIoU of the proposed method is
increased by about 3% compared with the second-best method. Due to the adoption of
the shallow backbone network, the model size of the proposed method is about 12.9 M
parameters. In terms of inference speed, the proposed network is tested on the embedded
NVIDIA platform and the runtime is only 0.18 s, which could satisfy the requirement of
real-time calculation.

Table 5. Comparison of segmentation results with state-of-the-art methods on the proposed dataset.

Model Year and Ref.
Class IoU (%)

mIoU (%) Param (M)
Trees Buildings Rivers Roads Others

PSPNet 2017 [36] 68.11 61.66 81.16 62.47 75.74 68.35 46.7
DeepLab 2017 [37] 60.10 61.56 78.16 56.00 73.29 63.96 39.0
PSANet 2018 [38] 65.72 60.20 79.83 57.87 75.07 65.91 48.3
UNet++ 2018 [39] 66.86 69.55 79.84 61.02 76.97 69.32 9.2

BiSeNetv1 2018 [40] 64.34 61.17 78.43 56.05 73.62 65.00 13.3
DFANet 2019 [41] 62.72 24.07 37.55 0.01 62.94 31.44 2.2
SwiftNet 2019 [42] 66.32 72.62 84.43 60.18 76.34 70.89 11.8
ShelfNet 2019 [43] 62.98 66.72 80.78 59.13 74.19 67.40 14.5

BiSeNetv2 2020 [44] 65.41 60.01 70.82 57.11 73.47 63.33 3.3
ABCNet 2021 [45] 61.73 61.02 71.81 47.63 71.98 60.55 13.4
CGNet 2021 [46] 65.85 61.82 79.63 55.07 74.47 65.59 0.5
Ours - - 69.71 74.40 86.59 64.91 78.50 73.90 12.9

4.3.2. Performance of the Clearance Distance Measure Method

(1) Visualization of generated local 3D points of the transmission line corridor

Through the concatenation of the 3D point clouds of the upper and lower binocular
cameras, the spatial distribution relationship between power lines and the ground can be
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displayed directly and visually. As shown in Figure 17, because of the long focal length
of the cameras, the field-of-view of the cameras are relatively narrow. With the adopted
SuperPoint and SuperGlue feature matching methods, many points of the ground are
matched and the ground point cloud are reconstructed with high accuracy.

Figure 17. 3D reconstruction results of the inspection scenes.

Combined with the joint calibration results of lower camera, upper camera, and IMU
inside the UAV, the 3D power line points and ground points are converted into the body-
origin world coordinate system. The black point in Figure 17 is the position of the UAV.
It can be seen from Figure 17 that the 3D information near the transmission line corridor
is obtained. Due to the fixed shooting distances between the UAV and power lines, the
power lines in each image are generally about 5 m-long and the clearances are about 15 m.
In addition, Table 6 shows the time of different information processing stages required to
reconstruct the six scenes in Figure 17. It can be seen that the total processing time of each
set of data is about 1.6 s.

Table 6. The time of different information processing stages required to reconstruct the six scenes in
Figure 17.

Time Consuming Scene 1 Scene 2 Scene 3 Scene 4 Scene 5 Scene 6

Power line detection time 0.212s 0.208 s 0.214 s 0.205 s 0.201 s 0.205 s
Power line 3D reconstruction time 0.525 s 0.568 s 0.498 s 0.475 s 0.535 s 0.528 s
Ground object classification time 0.196 s 0.213 s 0.199 s 0.203 s 0.204 s 0.205 s

Ground object 3D reconstruction time 0.314 s 0.303 s 0.315 s 0.318 s 0.314 s 0.317 s
Ground clearance measurement time 0.256 s 0.244 s 0.252 s 0.238 s 0.248 s 0.251 s

The next target point recalculation time 0.105 s 0.107 s 0.111 s 0.105 s 0.108 s 0.105 s
Total time consuming 1.608 s 1.643 s 1.589 s 1.544 s 1.610 s 1.611 s

(2) Quantitative evaluation of ground clearance measurement results

To quantitatively evaluate the accurateness of the proposed ground clearance measure-
ment algorithm, we use the UAV with Livox Avia LiDAR to scan around the transmission
lines, and reconstruct the 3D point cloud in conjunction with professional offline software
named ’Dajiang Zhitu(Power Version)‘. Besides, the Livox Avia LiDAR has high ranging
accuracy, and its maximum detection range and random error of distance measurement
are about 450 m and 2 cm, respectively. Figure 18a exhibits local 3D point clouds of
transmission lines acquired by Livox Avia LiDAR and its professional software.
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Figure 18. Experiments of ground clearance measurement. (a) Local 3D point clouds of transmission
line acquired by Livox Avia LiDAR and its professional software. (b,c) Two different scenes for
evaluation. (d) The clearance distances of power line points calculated by the LiDAR data and the
proposed method.

Figure 18b,c show two typical scenes of transmission line, which are reconstructed by
the Livox Avia LiDAR and our system, respectively. Specifically, the red box marked in
the LiDAR point cloud shown in the upper part overlaps with the reconstruction result
of our dual-view stereovision-guided system shown in the lower part. Subsequently, the
clearance distances between the power lines and objects below in the two overlapping
scenes measured by two means are shown in Figure 18d.

As the laser of LiDAR has certain penetration, some LiDAR rays can cross the gaps
of the trees, hit the ground, and then reflect back to the receiving module of the LiDAR.
Therefore, these data points with much longer LiDAR distances shown in Figure 18d are
normal, which show the distance between the power lines and the ground under the
trees. Our image-based clearance distance method is unable to penetrate the trees for
measurement. Therefore, our system can only measure the clearance distance between
the power lines and tree crowns. Since the points calculated by the proposed methods
are relatively sparse, the number of calculated distance points are less than that of LiDAR.
Except the penetrating points of the LiDAR, our clearance distance measurement points are
close to other corresponding points of LiDAR. This shows that the proposed system in this
paper has good performance close to LiDAR, which benefits from the advanced proposed
algorithms and effective cooperation between various modules.

Meanwhile, it can be seen in Table 7 that the clearances calculated by the proposed
method are similar to the LiDAR data. The mean absolute error between the proposed
method and the LiDAR data is about 0.168 m. Thus, the accuracy of the proposed ground
clearance measurement method is evaluated, which could meet the requirements of actual
inspection applications. Meanwhile, integrated with the proposed inspection platform,
the inspection of transmission line is safer and more efficient. The red boxes in Figure 17
indicate the positions with the minimum ground clearance distances for all scenes. The
measured distances are further compared with the minimum clearance distance of each
class. As shown in Table 8, the safe level of each scene could be judged with high accuracy.
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Table 7. The mean and standard deviation of the errors within the average of calculated ground
clearance distances.

Types
Average Clearances Error

LiDAR Proposed Method Mean Absolute (m) Standard Deviation (m2)

Scene 1 24.843 24.871 0.168 0.0176
Scene 2 23.910 23.940 0.208 0.0199

Table 8. Results of ground clearance detection in the tested 220-kV transmission line corridor.

Scene Category of Ground Object Measured Clearance Safety Standards Judgment Results

1 Trees 14.9 m 3.5 m Safe
2 Buildings 11.4 m 6.0 m Safe
3 Trees 16.7 m 3.5 m Safe
4 Trees 6.9 m 3.5 m Safe
5 Buildings 10.3 m 6.0 m Safe
6 Trees 20.2 m 3.5 m Safe

Finally, the interface of the inspection platform is shown in Figure 19. During the
inspection process, the state of the UAV, the acquired images, and processing results are
aggregated for the image transmission. The interface could be monitored on the observation
screen by the pilot in real-time. Thus, the pilot could obtain the real distance between the
UAV and power lines to improve the inspection safety. The inspection report could be
generated when the inspection is finished, which could further improve the automation of
the system.

(a) (b)

Figure 19. Interface and the generated patrol report of the inspection platform. (a) The visual
interface of the automatic electricity transmission line inspection system; (b) The report of the
automatic electricity transmission line inspection system.

5. Discussion

In this paper, a dual-view stereovision-guided automatic inspection system for the
transmission line corridor is developed. The system consists of a DJI UAV, an advanced em-
bedded NVIDIA platform, and a dual-view stereovision module, which can synchronously
sense 3D information of power lines and ground objects on transmission line corridors.
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Based on the hardware platform, we further develop a dual-view stereovision-guided auto-
matic inspection strategy. Using this strategy can control the UAV to move along the power
lines automatically and measure the ground clearance in real-time. Specifically, we firstly
locate power lines in upper binocular images accurately by the proposed edge-assisted
power line detection method. Experiments show that the proposed power line detection
method performs well even in images with complex backgrounds compared with other
state-of-the-art methods. Then, 3D points of the detected power lines are reconstructed
based on epipolar geometry constraint. After that, the next guidance flight point is gener-
ated to control the automatic movement of the UAV. Besides, the lower binocular images
are processed by the proposed aerial image classification method to classify categories of
ground objects. Meanwhile, 3D points of ground objects are reconstructed and concate-
nated with 3D points of power lines to generate the local 3D point cloud of the transmission
line corridor. Finally, based on plumb line determination and object classification results,
ground clearance is measured and detected correctly. The inspection tests in real-world en-
vironments have demonstrated that the proposed automatic flight and inspection strategy
can satisfy the real-time and accuracy requirements for practical inspection applications.

The magnetic field generated by the high-voltage cable will affect the flight state of the
UAV. During the previous development of our system, we have taken into account the effect
of the transmission line magnetic field on the UAV. We find that the DJI UAV will be unable
to fly normally when it detects excessive magnetic interference. Therefore, we will conduct
the magnetic compass calibration of the UAV in an environment without strong magnetic
field interference. Besides, in order to decrease the magnetic field interference and keep the
safety of the inspection system, we kept the distance between the UAV and power lines
above 20 m. At the present stage, we control the interference of the magnetic field of the
transmission line by keeping the proper distance between the drone and the transmission
lines. As can be seen in Figure 13, the gray arrows are the heading directions (declination
angles) generated by the magnetic compass from the UAV DJI. The angles between gray
arrows and power lines are almost maintained near 90 degrees, which indicates that the
declination angles are not greatly affected by the magnetic field. The anti-electromagnetic
interference performance of the UAV system is essential for transmission line inspection.
When the magnetic field becomes stronger, increasing the distance to the power line will not
be feasible. Therefore, we will further analyze, study, and optimize the anti-electromagnetic
interference performance of the UAV system in future work.

Transmission line inspection is an extremely complex and challenging task. There are
still many interesting directions to study. For example, more inspection functions could be
embedded into the proposed system to make the inspection more convenient. Thus, we
will research the defect detection methods of power line such as broken strand, icing, etc.
and integrate all these algorithms into a unified framework. Besides, we will further study
the automatic flight strategy of power towers based on the proposed UAV platform and
attempt to enable the UAV system to automatically accomplish electric fitting detection
tasks of transmission line such as insulators, vibration dampers, and so on.

6. Conclusions

In this paper, a dual-view stereovision-guided automatic inspection system for the
transmission line corridor is developed. Beneficial from the proposed power line detection,
ground object classification, and stereovision-based measurement methods, our system
could perceive and reconstruct power lines and ground areas, thus realizing autonomous
flight and ground clearance measurements. The inspection experiments in real-world
environments have demonstrated that the proposed system could satisfy the real-time and
accuracy requirements for practical inspection applications.

Our further work will focus on three aspects to extend the functions of the UAV system.
Firstly, we will further analyze, study, and optimize the anti-electromagnetic interference
performance of the UAV system. Secondly, we will research the defect detection methods of
power line such as broken strand, icing, and so on; this is also important for transmission
line corridor inspection. Afterwards, we will further study the automatic flight strategy
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of power towers based on the proposed UAV platform, and attempt to enable the UAV
system to automatically accomplish electric fitting detection tasks of transmission lines
such as insulators, vibration dampers, and so on.
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