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Abstract: The DPC is a multiangle sensor that detects atmospheric parameters. However, the
retrieval of high-precision and high-spatial-resolution aerosol products from the DPC remains a
great challenge due to the ill-posed nature of the problem. Thus, a novel aerosol optical depth
(AOD) retrieval algorithm was proposed using visible surface reflectance relationships (VISRRs). The
VISRR algorithm accounts for the surface anisotropy and needs neither a shortwave infrared band
nor a surface reflectance database that can retrieve AOD over dark and bright land cover. Firstly,
moderate-resolution imaging spectroradiometer (MODIS) surface reflectance (MYD09) products were
used to derive the preceding surface reflectance relationships (SRRs), which are related to surface
types, scattering angle, and normalized difference vegetation index (NDVI). Furthermore, to solve
the problem of the NDVI being susceptible to the atmosphere, an innovative method based on an
iterative atmospheric correction was proposed to provide a realistic NDVI. The VISRR algorithm was
then applied to the thirteen months of DPC multiangle data over the China region. AOD product
comparison between the DPC and MODIS showed that they had similar spatial distribution, but
the DPC had both high spatial resolution and coverage. The validation between the ground-based
sites and the retrieval results showed that the DPC AOD performed best, with a Pearson correlation
coefficient (R) of 0.88, a root mean square error (RMSE) of 0.17, and a good fraction (Gfrac) of 62.7%.
Then, the uncertainties regarding the AOD products were discussed for future improvements. Our
results revealed that the VISRR algorithm is an effective method for retrieving reliable, simultaneously
high-spatial-resolution and full-surface-coverage AOD data with good accuracy.

Keywords: DPC; Gaofen-5; aerosol retrieval; surface reflectance; surface types; bidirectional reflectance
distribution function (BRDF); NDVI; new retrieval algorithm

1. Introduction

Aerosol particles are widely suspended in the Earth’s atmosphere, which greatly
impacts the Earth’s radiation balance and climate change by scattering and absorbing
solar light. Meanwhile, aerosol particles can cause adverse effects on the atmospheric
environment, human health, satellite image quality, etc. Thus, monitoring and determining
aerosols’ optical, physical, and chemical properties are necessary for different research
fields. There are two main aerosol monitoring methods based on the principle of aerosols’
extinction effect on solar radiation. One uses ground-based sun photometers, and the
other uses satellite-based sensors. Aerosol products are often measured via ground-based
observations with high precision that are also used to validate satellite-based aerosol
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product measurements. There are several famous observation networks, for example, the
globally distributed Aerosol Robotic Network (AERONET), whose overall aerosol optical
depth (AOD) uncertainty is estimated to be between 0.01 and 0.02 [1], and the Chinese
Sun–Sky Radiometer Observation Network (SONET), which uses the multiwavelength
polarized sun–sky radiometer CE318-DP [2].

Satellite-based aerosol remote sensing can monitor large-scale and inaccessible areas, in
contrast to the limited distribution of ground-based sites [3]. Satellite-based aerosol remote
sensing has been undergoing development for almost 50 years, ever since Griggs [4] began
using a multispectral scanner (MSS) onboard the Earth Resources Technology-1 (ERTS-1)
satellite to retrieve the AOD over water. Various satellite sensors have been designed for
monitoring aerosols, which can be roughly divided into four categories: (1) single-angle
non-polarized sensors, such as the advanced very-high-resolution radiometer (AVHRR),
the moderate-resolution imaging spectroradiometer (MODIS), the visible infrared imaging
radiometer suite (VIIRS), the medium-resolution imaging spectrometer (MERIS), and the
ocean and land colour instrument (OLCI) [5–9]; (2) multiangle non-polarized sensors, such
as the multiangle imaging spectroradiometer (MISR), the along-track scanning radiometer
(ATSR), the advanced along-track scanning radiometer (AATSR), and the sea and land
surface temperature radiometer (SLSTR) [10–12]; (3) single-angle polarized sensors, such as
the cloud and aerosol polarization imager (CAPI) [13]; and (4) multiangle polarized sensors,
such as the second-generation global imager (SGLI), the polarization and directionality
of the Earth’s reflectance instrument (POLDER), and the directional polarimetric camera
(DPC) [14–16]. Correspondingly, based on the characteristics of these sensors, different
specific aerosol retrieval algorithms have been proposed. The basic principle of satellite-
based aerosol retrieval is to decouple the surface and atmosphere signals. However, satellite-
based aerosol retrieval is an ill-posed problem due to the unknowns being more numerous
than the measurements [17]. Therefore, no matter which algorithm is implemented, it
must solve two basic problems: the prior estimation of the surface reflectance (SR) and the
hypothesis of the aerosol components.

There are two common tools for solving the first of these problems: spectral SR
relationships (SRRs) and SR databases (SRDs). For example, the dark target (DT) method,
an official MODIS aerosol retrieval algorithm, uses the simple SRRs between shortwave
infrared (SWIR) and visible (VIS) bands as the a priori constraints over dark surface types
(i.e., vegetated and dark-soiled regions) and assumes that the SWIR band is initially less
affected by the atmosphere [18]. Furthermore, Levy et al. [19] improved these SRRs by
considering the scattering angle (SCA or Θ) and vegetation index. However, the DT
algorithm cannot be applied to bright land surfaces (i.e., desert and semiarid regions),
where the SRRs between SWIR and VIS bands is poor. To address this issue, Hsu et al. [17]
proposed a novel algorithm called deep blue (DB), which takes advantage of the fact
that bright land surfaces are much darker in the blue spectral region and then constructs
absolute VIS SRDs by using the minimum reflectivity technique to determine the constraints.
However, due to the presence of clouds, gaps still exist over certain regions even when
multiyear data are used [20]. In addition, static SRDs may not be suitable for aerosol
retrieval where vegetation cover changes seasonally. Subsequently, Hsu et al. [20] combined
the SRR and SRD methods to retrieve aerosol properties over dark and bright land covers.
Many researchers have applied spectral SRRs, SRDs, or similar modified methods to
sensors other than MODIS and have achieved good results [7,21–26]. In addition to these
two common methods, Veefkind et al. [27] proposed a dual-view algorithm (DVA) for
ATSR-2, which assumes that the spectral SR ratios between forward and nadir view angles
are independent. Thus, the VIS SR ratios can be determined by the SWIR band. However,
the DVA method is unreliable over bright surfaces [11]. For the multiangle sensor MISR,
Diner et al. [28] applied the mathematical empirical orthogonal functions (EOF) method to
remove the surface contribution for aerosol retrieval; the advantage of the EOF method is
that it does not need to prescribe the spectral absolute SR or SRRs in advance. However, the
implementation of EOF is based on the assumption that the atmosphere is homogeneous
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and surface contrast is sufficient in a certain size window. Thus, it requires a reduction in
spatial resolution, and it is hard to retrieve the aerosol properties at the intrinsic spatial
resolution [29]. For polarized sensor aerosol retrieval, the surface polarized reflectance
(SPR) estimation is usually derived using the bidirectional polarization distribution function
(BPDF) model [14]. However, the BPDF may yield relatively large estimation errors in
some surface types. To solve this problem, Ge et al. [30] provided an alternative approach
that utilizes the spectral neutrality characteristic of SPR as a constraint to retrieve higher-
precision fine-mode aerosol products. In addition, a statistically optimized algorithm
called generalized retrieval of aerosol and surface properties (GRASP) was designed for
characterizing atmosphere and surface properties simultaneously from a diversity of remote
sensing measurements [31]. The aerosol products of GRASP have been validated as high-
quality at a global and regional scale [32,33].

Regarding prior knowledge of the aerosol components, the common method is to
construct typical aerosol models using ground-based observations. Aerosol model prop-
erties usually include the imaginary and real part of the refractive index, parameters of
size distribution, and the single-scattering albedo. For example, Dubovik et al. [34] derived
the aerosol absorption and other properties in several key locations based on the long
time-series data of global AERONET sites. Omar et al. [35] derived six aerosol models,
i.e., biomass burning, urban industrial pollution, rural background, polluted marine, dirty
pollution, and desert dust; Levy et al. [36] used the cluster analysis method and derived
four aerosol models that varied according to the location and season, i.e., moderately
absorbing, absorbing, non-absorbing, and spheroid; and Lee et al. [37] derived six aerosol
models for East Asia and showed that the models were strongly affected by their sources.
Meanwhile, these aerosol models have been widely used in satellite remote sensing aerosol
retrieval [7,19,23,38,39]. However, due to the sites being sparse and distributed unevenly,
the aerosol models based on AERONET may not be representative of China. Thus, Li
et al. [40] used the long time-series of SONET observations to derive fundamental aerosol
models for China.

When the two basic problems have been solved, a look-up table (LUT) method is often
used in operational retrieval algorithms, such as the MODIS, VIIRS, AATSR, and MISR, to
save computation time. Meanwhile, aerosol products retrieved from different sensors have
been well-validated globally [10,41,42]. However, these aerosol products may have the
shortcomings of low spatial resolution (e.g., the aerosol products (MXD04) of DT and DB
have a spatial resolution of 10 km) and low precision for local and regional research [43–48].

In May 2018, the multiangle multispectral polarized sensor directional polarimet-
ric camera (DPC) onboard the Chinese GaoFen-5 (GF-5 01) satellite was successfully
launched [13]. The DPC is equipped with three polarized bands (490, 670, and 865 nm)
and five non-polarized bands (443, 565, 763, 765, and 910 nm). The spatial resolution and
swath width of the DPC are 3.3 and 1850 km, respectively, and the maximum observation
angle of the DPC can be up to 12. The DPC is evidently a powerful tool for monitoring
atmospheric parameters such as aerosols, clouds, and water vapor. Unfortunately, due to
the failure of the solar panel, DPC observation only lasted until April 2020. It provided us
with 13 months of continuous observational data, that is, from March 2019 to March 2020.
However, as described above, the current operational algorithms have some shortcomings.
Furthermore, most of them do not consider surface anisotropy. Thus, to retrieve high-
spatial-resolution and high-precision aerosol products over both dark and bright land cover
based on multiangle intensity data from the DPC, a novel aerosol retrieval algorithm based
on the visible spectral surface reflectance relationships (VISRR) method was proposed (the
detailed VISRR algorithm is introduced in Section 3.3). In addition to the DPC/GF-5 (01),
the VISRR algorithm can also be applied to similar sensors, such as the advanced DPCs
onboard the Chinese GF-5 (02), carbon monitoring (CM-1), and atmospheric environmen-
tal monitoring (DQ-1 and DQ-2) satellites and the European multi-view multi-channel
multi-polarization imaging (3MI) onboard EPS-SG, etc. [49]. When combined with the
fine-model AOD, e.g., our previous fine-model aerosol algorithm ‘spectral neutrality of
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surface polarized reflectance’ (SNOSPR), based on multiangle polarized data [30], the
fine-model aerosol fraction (FMF) can be calculated, which can characterize the weight of
aerosols from anthropogenic and natural sources.

This paper is structured as follows: In Section 2, the study area and datasets are
presented. Section 3 introduces the basic principles of aerosol retrieval based on satellite
remote sensing and the VISRR algorithm. Then, in Section 4, the spatial distribution of
daily and average DPC AOD products is presented and compared with that of MODIS
products. Then, all aerosol products are validated with ground-based (i.e., AERONET and
SONET) products, and the uncertainties regarding the AOD are analyzed and discussed.
Section 5 presents the conclusions.

2. Study Area and Datasets
2.1. Study Area

The territory of China was the study area, and its land cover types are shown in
Figure 1. According to the MODIS Land Cover Type (MCD12Q1) International Geosphere-
Biosphere Programme (IGBP) classification, China has 17 land cover types (as shown in
Table 1). The spatial resolution was 500 m [50]. It can be seen that China comprises all
surface types, with vast deserts and grasslands distributed in the northwest, croplands
mainly located in the east and northeast, forests in the south and northeast, and urban cities
mainly distributed in the east and along the coastal area. Furthermore, China is currently
the biggest developing country globally and has the largest population; with its rapid
development in the past few decades, China has become one of the primary sources of
aerosols globally. Thus, satellite aerosol remote sensing over China is necessary and has
always been a research hotspot. However, due to the complexity of the aerosol sources and
land cover, aerosol retrieval over China is still a great challenge.

Figure 1. Land cover types of the study area and locations of AERONET (yellow stars) and SONET
(blue stars) sites.
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Table 1. Seventeen land cover types of MCD12Q1 IGBP classification.

Number Land Cover Type Number Land Cover Type

(1) Evergreen Needleleaf Forests (10) Grasslands
(2) Evergreen Broadleaf Forests (11) Permanent Wetlands
(3) Deciduous Needleleaf Forests (12) Croplands
(4) Deciduous Broadleaf Forests (13) Urban and Built-up Lands
(5) Mixed Forests (14) Cropland/Natural Vegetation Mosaics
(6) Closed Shrublands (15) Permanent Snow and Ice
(7) Open Shrublands (16) Barren
(8) Woody Savannas (17) Water Bodies
(9) Savannas

2.2. Datasets
2.2.1. DPC Data

The DPC is the first Chinese multiangle polarized satellite sensor. A two-day revisit
period enables the DPC to effectively monitor the temporal variation in aerosols, and it
crosses the equator at about 13:30 local solar time. A more detailed introduction to the
DPC can be found in Li et al. [15]. According to Zhu et al. [51], the calibration uncertainties
of the DPC are about 1–7% depending on the wavelength and view zenith angle. This
study used thirteen months (March 2019 to March 2020) of DPC multiangle multispectral
(443, 490, 670, and 865 nm) intensity data to retrieve AOD using the VISRR algorithm.
The DPC data can be downloaded from the High-Resolution Earth Observation System
Grid Platform/Chinese National Space Administration Earth Observation and Data Center
website (https://www.cheosgrid.org.cn/) (accessed on 17 May 2022).

2.2.2. MODIS Products

MODIS is a multispectral sensor with 36 channels ranging from 0.412 to 14.2 µm onboard
the Terra and Aqua satellites, which cross the equator at about 10:30 and 13:30 local solar time
each day, respectively. MODIS has observed the earth for more than 20 years and provided
many land and atmospheric products from both the Terra (‘MOD’) and Aqua (‘MYD’) satellites.
Bands 1–10 (b1–10) are as follows: b1 (620–670 nm), b2 (841–876 nm), b3 (459–479 nm), b4
(545–565 nm), b5 (1230–1250 nm), b6 (1628–1652 nm), b7 (2105–2155 nm), b8 (405–420 nm), b9
(438–448 nm), and b10 (483–493 nm). MODIS products can be downloaded from the website
of NASA (https://ladsweb.modaps.eosdis.nasa.gov/) (accessed on 15 August 2022). The
MODIS products used here included MYD09; MCD43D; MYD08_D; MCD12Q1; and some
aerosol products (MYD04_L2_DT, MYD04_L2_DB, and MYD04_3k_DT). Detailed information
on these products is listed in Supplementary Materials Section S1.

2.2.3. Elevation Data

Global Multiresolution Terrain Elevation Data 2010 (GMTED2010) is a global elevation
model developed by the U.S. Geological Survey (USGS, https://usgs.gov/) (accessed on
15 August 2022) and National Geospatial Intelligence Agency (NGA), which has three
spatial resolutions of about 1 km, 500 m, and 250 m [52]. In this study, GMTED2010 data
were used to determine the altitude and correct the influence of Rayleigh scattering for
the DPC.

2.2.4. Spectral Library

The USGS spectral library is a reference database containing seven categories of re-
flectance spectra (artificial materials, coatings, liquids, minerals, organic compounds, soils
and mixtures, and vegetation) measured using laboratory, field, and airborne spectrom-
eters [53]. The Spectral Library Version07b (Splib07b) datasets were used to analyze the
characteristic variety of the surface spectra between different bands, in order to adjust the
spectral response function (SRF) differences between DPC and MODIS for correspond-
ing bands.

https://www.cheosgrid.org.cn/
https://ladsweb.modaps.eosdis.nasa.gov/
https://usgs.gov/
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2.2.5. Ground-Based Products

Ground-based aerosol products are widely used to validate satellite aerosol remote
sensing. AERONET (https://aeronet.gsfc.nasa.gov/) (accessed on 15 August 2022) is a
global network established by NASA GSFC (Goddard Space Flight Center) and PHOTONS
(PHOtométrie pour le Traitement Opérationnel de Normalisation Satellitaire), according
to Giles et al. [1], and the uncertainty of the VIS and NIR AERONET AOD is estimated
to be 0.01 for Version 3 (V3) products. However, AERONET sites are rare and distributed
unevenly over China. Thus, the Chinese ground-based aerosol observation network SONET
(http://www.sonet.ac.cn/en/index.php) (accessed on 15 August 2022) was built by the
Chinese Academy of Sciences in collaboration with universities and institutes. The sites of
SONET are widely distributed in the typical area of China [2]. In this study, twenty-two
AERONET and SONET sites were chosen to validate the DPC and MODIS aerosol products.
The spatial distribution and detailed information related to these sites are presented in
Figure 1 and Table 2. In addition, these sites were divided into five surface types according
to MCD12Q1 [54].

Table 2. Twenty-two ground-based sites of AERONET and SONET and their locations, elevations,
surface types, and network.

Number Site Name Longitude (◦E) Latitude (◦N) Elevation (m) Surface Type Network

1 Hefei 117.162 31.905 36 Cropland SONET
2 XiangHe 116.962 39.754 36 Cropland AERONET
3 Zhangye 100.364 38.854 1364 Cropland SONET
4 AOE_Baotou 109.629 40.852 1314 Grassland AERONET
5 Lhasa 91.088 29.648 3678 Grassland SONET
6 Sanya 109.379 18.290 29 Forest SONET
7 Yanqihu 116.674 40.408 100 Forest SONET
8 Kashi 75.930 39.504 1320 Mixed SONET
9 Jiaozuo 113.253 35.187 59 Mixed SONET
10 Songshan 113.096 34.535 475 Mixed SONET
11 Beijing 116.381 39.977 92 Urban AERONET
12 Beijing_PKU 116.310 39.992 53 Urban AERONET
13 Beijing_RADI 116.379 40.005 59 Urban AERONET
14 Beijing-CAMS 116.317 39.933 106 Urban AERONET
15 Chengdu 103.9891 30.5839 510 Urban SONET
16 Guangzhou 113.381 23.06 28 Urban SONET
17 Harbin 126.614 45.705 223 Urban SONET
18 Nanjing 118.957 32.115 52 Urban SONET
19 Xi’an 109.001 34.223 389 Urban SONET
20 XuZhou 117.142 34.217 60 Urban SONET
21 Shanghai 121.481 31.284 84 Urban SONET
22 Taipei_CWB 121.538 25.015 26 Urban AERONET

3. Basic Principles and New Methodology
3.1. Surface BRDF Model

This study adopted a linear semi-empirical kernel-driven RossThick LiSparseRecipro-
cal (RTLSR) BRDF model to describe the anisotropic SR [55,56]. The RTLSR model has been
widely used in many types of research and has obtained good results [57,58]. Meanwhile,
the RTLSR model was adopted to produce MODIS and VIIRS global operational BRDF
products [59,60]. The equation of the RTLSR model is as follows:

RSR(λ, θs, θv,∅) = fiso(λ) Kiso(θs, θv,∅) + fvol(λ) Kvol(θs, θv,∅)
+ fgeo(λ) Kgeo(θs, θv,∅)

(1)

https://aeronet.gsfc.nasa.gov/
http://www.sonet.ac.cn/en/index.php


Remote Sens. 2022, 14, 4045 7 of 25

where λ is the wavelength; θs, θv, and ∅ are solar zenith angle, sensor zenith angle, and
relative azimuth angle, respectively; RSR represents the surface directional reflectance;
Kiso, Kvol , and Kgeo represent the isotropic, volumetric, and geometric kernels, respectively,
where Kiso = 1, and the expression of Kvol and Kgeo, which are fixed functions and only
dependent on the solar and viewing geometry, can be found in Wanner et al. [61]; and
fiso(λ), fgeo(λ), and fvol(λ) are the coefficients of the three kernels, which were varied
according to the wavelength and surface characteristics. Furthermore, Equation (1) could
be separated into two terms:

RSR(λ, θs, θv,∅) = ρ(λ)
[
1 + α1(λ) Kvol(θs, θv,∅) + α2(λ) Kgeo(θs, θv,∅)

]
(2)

where ρ(λ) = fiso(λ) indicates the “reflectance magnitude”, which is governed by surface
type microphysical properties and changes rapidly with wavelength and time; α1 and
α2 represent the geometric factor and volumetric factor, respectively; α1(λ) = fvol(λ)

fiso(λ)
;

and α2(λ) =
fgeo(λ)

fiso(λ)
. The part in the square bracket is the BRDF shape (BRDFs) function

(Equation (3)), which is based on the macroscopic structure of the surface types, remains
nearly independent of the wavelength, and changes slowly in a short time [62]:

BRDFs = 1 + α1(λ) Kvol(θs, θv,∅) + α2(λ) Kgeo(θs, θv,∅) (3)

3.2. Atmospheric Radiative Transfer Model

Overlying the Lambertian homogeneous surface and under cloud-free, plane-parallel
atmosphere conditions, the satellite sensor received reflectance (RTOA) at the top of atmo-
sphere (TOA) can be written as:

RTOA(λ, τ, θs, θv,∅) = Tg(Ratm(λ, τ, θs, θv,∅) +
T↓(θs)RSRT↑(θv)

1− RSRS
) (4)

where τ is the optical depth; Tg indicates the gaseous transmission caused by gases such
as column water vapor (CWV) and ozone (O3); Ratm refers to the aerosol and molecular
intrinsic reflectance; T↓ and T↑ are transmission; S is the spherical albedo of the atmosphere;
and RSR is the angular SR.

SR is an anisotropic Lambertian surface hypothesis can affect the accuracy of the RTOA
simulation, especially for multiangle data, ultimately transferring the error to the aerosol
retrieval [63]. To avoid this problem in the present study, a fast, accurate, non-Lambertian
atmospheric radiative transfer function considering the anisotropy of the surface based on
the four-stream theory was adopted. This function has high precision, with mean relative
differences in the spectral (range from UV to NIR) TOA simulation of less than 0.7% for
different surface types [64]. This forward model has been widely used for aerosol and
surface parameter retrieval [65–67], and the equation can be expressed as:

RTOA(λ, τ, θs, θv,∅) = Tg(Ratm(λ, τ, θs, θv,∅) +

→
T(θs)

T R
→
T(θv)− e−τ/θs |R|e−τ/θv S

1− RBHRS
) (5)

where
→
T(θs) =

[
e−τ/θs , ts(θs)

]T
;
→
T(θv) =

[
e−τ/θv , ts(θv)

]T
; ts(θs/v) refers to the diffuse

transmission; R is the reflectance matrix; and |R| is the determinant of R.

R =

[
RSR RDHR

RHDR RBHR

]
(6)

|R| = (RSRRBHR − RDHRRHDR) (7)

where RDHR represents the directional–hemispherical reflectance (DHR), i.e., black-sky
albedo (Rbs), which describes the diffuse reflection of the incoming direct beam over
the hemisphere; RHDR refers to the hemispherical–directional reflectance (HDR), which
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describes the direct reflection of the incoming diffuse radiation from the whole hemisphere;
and RBHR is the bi-hemispherical reflectance (BHR), i.e., white-sky albedo.

When the coefficients of the three kernels are obtained, the SR for any angle can be
calculated with Equation (1). Meanwhile, the RDHR and RBHR can be computed using the
following Equations (8)–(11) [67]:

RDHR(λ, θs) = fiso(λ)hiso(θs) + fvol(λ)hvol(θs) + fgeo(λ)hgeo(θs) (8)

RHDR(λ, θv) = fiso(λ)hiso(θv) + fvol(λ)hvol(θv) + fgeo(λ)hgeo(θv) (9)

RBHR(λ) = fiso(λ)Hiso + fvol(λ)Hvol + fgeo(λ)Hgeo (10)

hk(θs) = g0k + g1kθs + g2kθs
2 + g3kθs

3 (11)

where Hk and gik (i = 0, 1, 2, 3; k = iso, vol, geo) are the regression coefficients listed in
Table 3.

Table 3. Regression coefficients used to calculate black-sky and white-sky albedo.

Term gik for Kernel k = iso k = vol k = geo

g0k 1.0 −0.0374 −1.2665
g1k 0.0 0.5699 −0.1662
g2k 0.0 −1.1252 0.1829
g3k 0.0 0.8432 −0.1489

White-sky integral (Hk) 1.0 0.189184 −1.377622

3.3. VISRR Algorithm

VISRR is a novel AOD retrieval algorithm, which uses the SRRs between VIS bands as
constraints and considers the influence of surface anisotropy. VISRR can simultaneously
retrieve AOD over dark and bright land covers; the algorithm derivation and retrieval
strategies are described in detail below.

3.3.1. SR Characteristics Analysis

Firstly, we used the Splib07b spectral library to analyze which bands were suitable
for aerosol retrieval. Figure 2 shows the SRFs of the DPC in the 443, 490, 565, 670, and
865 nm bands (red dotted line) and the corresponding MODIS b9, b10, b5, b1, and b2 bands
(gray dotted line). Curves of different colors represent the SR spectral curves of typical
surface materials (i.e., blackbrush, sand, brick, and acmite) from Splib07b. From the picture,
it can be seen that the surface contribution of VIS is much lower than that of NIR; the SR
of non-green vegetation (i.e., sand and brick) is higher than that of green vegetation (i.e.,
blackbrush); and for green vegetation, there exist two high-reflection peaks near 565 and
865 nm. These features mean that VIS bands are more suitable for aerosol retrieval than
NIR bands; aerosol retrieval over green vegetation is easier than over non-green vegetation;
and the green band (565 nm) may not be suitable for aerosol retrieval over green vegetation
cover. Furthermore, we analyzed the SRRs between the VIS and NIR bands; Figure 3a,b
show the SRRs between 490 and 670 nm and between 490 and 865 nm, respectively. It can
be seen that the SRRs between VIS bands are more stable than those between VIS and NIR
bands, which is consistent with Levy’s research [19]. This phenomenon can be explained
by the fact that most ground objects have similar spectral reflectance changes in the VIS
spectrum range but large changes in the NIR or SWIR bands. Thus, the 443, 490, and
670 nm bands were chosen to build the SRRs in this study.
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face types. To ensure the accuracy of the SR, only the pixels with an AOD at 470 nm 

Figure 2. SRFs of DPC (red dotted line) and MODIS (gray dotted line), from left to right, are 443,
490, 565, 670, and 865 nm. The solid lines show the spectral reflectance of typical surface materials in
Splib07b, i.e., blackbrush, sand, brick, and acmite, representing vegetation, soil, artificial material,
and minerals, respectively. The abscissa represents the wavelength, the left ordinate represents the
spectral response function value, and the right represents the surface reflectance value.
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3.3.2. SR Relationship Analysis

Within a satellite sensor’s instantaneous field of view, individual pixels detected by
the scanning device often include more than one object, especially those with a spatial
resolution at the kilometer level. Thus, the determination of SRRs requires real satellite
data. Two common methods are used to construct the target sensor’s prior knowledge of
spectral SR for aerosol retrieval. One is to apply a minimum reflectivity technique [17,68] or
atmospheric correction to the target sensor’s data [7,19]. This method is suitable for target
sensors with long-time-series data that can provide enough samples. The other method is
to use the mature SR products from other satellite sensors, such as MODIS [69,70]. This
method is generally applicable to new sensors. In this study, owing to the limitation of
the relatively small amount of DPC data, the second method was chosen, and three years
(2016–2018) of MYD09 SR products pertaining to China and its surrounding areas (Figure 1)
were used to derive the DPC equivalent spectrum SR over different surface types. To ensure
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the accuracy of the SR, only the pixels with an AOD at 470 nm smaller than 0.2 and the
highest quality assurance (QA) of MYD09 were chosen for analysis.

However, two problems needed to be solved beforehand, since DPC and MODIS differ
in terms of spatial resolution (3.3 versus 1 km) and SRFs (as shown in Figure 2). To make
the spatial resolution consistent, about 3 × 3 pixels of MYD09 and MYD03 were averaged
at 3.3 km. As shown in Figure 2, the SRFs of DPC and MODIS do not exactly match; if we
did not consider these differences, it would have led to errors in the derived equivalent
spectral SR of DPC and affected the accuracy of the aerosol retrieval [70]. We adopted the
singular-value decomposition (SVD) method to predict the DPC equivalent spectral SR
from the corresponding MODIS channels to solve this problem. The steps were as follows:
(1) we used the SRFs and the spectral curves of typical surface materials from Splib07b to
calculate the DPC and MODIS spectral SR; (2) we calculated the SVDs, which included the
singular vectors Vmodis and VDPC, based on the calculated spectral SR from step (1); (3) we
used the Vmodis and MYD09 SR products to calculate the conversion coefficient vector C;
and (4) the DPC equivalent spectrum SR could be calculated using the C and the VDPC.
Detailed information on this method can be found in Sayer et al. [70].

After obtaining the equivalent spectrum SR and geometric information on the DPC
over different surface types (except for permanent snow, ice, and water), we analyzed the
SRRs between 443, 490, and 670 nm. The normalized difference vegetation index (NDVI) is
an important adjustment parameter to estimate the SR for aerosol retrieval [19,20,71], and
it can be calculated by the SR of 670 and 865 nm using Equation (12):

NDVI =
SR(865)− SR(670)
SR(865) + SR(670)

(12)

The statistical results of the SRRs are shown in Figure 4. It can be seen that the Pearson
correlation coefficient (R) of 443 versus 670 nm ranged from 0.82 to 0.98, the root mean
square error (RMSE) ranged from 0.003 to 0.012, and the average SR ratios (K443_670) over
different surface types varied from 0.43 to 0.63. For 490 and 670 nm, the R ranged from 0.90
to 0.99, the RMSE ranged from 0.002 to 0.011, and the K490_670 over different surface types
varied from 0.51 to 0.68. These statistical parameters showed that: (1) the SRRs between
VIS bands had a high correlation, which was consistent with the conclusion of Section 3.3.1;
(2) the SRRs between VIS bands needed to be divided according to the surface types due
the substantial differences; (3) the correlation of SRRs between 490 and 670 nm was higher
than that between 443 and 670 nm overall; and (4) the NDVI could indicate the surface
type and the change in the SR over time to a certain extent—for example, the NDVI of
evergreen vegetation (e.g., Figure 4(1,2)) usually has a high value, while over bare soil
(e.g., Figure 4(16)) it has a low value. When the surface types vary significantly with the
seasons, the NDVI also has a wider range of changes (e.g., Figure 4(10,13)). It is necessary
to consider surface types and NDVI when using the SRRs between VIS bands as constraints
for aerosol retrieval.

In addition, to make the SRRs between VIS bands more accurate, the SCA was also taken
into account when determining the K443_670 and K490_670 over different surface types. The
final values of K443_670 and K490_670 over each typical surface type are shown in Tables 4–8
(mixed forests, grasslands, croplands, urban and built-up lands, and barren land). The NDVI
was set from 0 to 1 with an interval of 0.2; the SCA was set from 60◦ to 100◦ and from 100◦ to
180◦ with an interval of 20◦. The ratios over other surface types (i.e., (1)–(4), (6)–(9), (14), and
(18)–(21)) are shown in Supplemental Materials Section S2, Tables S1–S10.

Θ = cos−1(−cosθscosθv − sinθssinθvcos∅) (13)
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Figure 4. SRRs between DPC (a) 443 and (b) 490 versus 670 nm, respectively. The serial numbers
(1)–(16) of each subgraph (except for (15) permanent snow and ice and (17) water) represent different
surface types, as shown in Figure 1. The abscissa represents the SR of 670 nm, and the ordinate
represents (a) 443 and (b) 490 nm, respectively. The color bar represents the NDVI value.

Table 4. Variation in K443_670 and K490_670 with NDVI and SCA over (5) mixed forests.

NDVI/SCA (60◦, 100◦) (100◦, 120◦) (120◦, 140◦) (140◦, 160◦) (160◦, 180◦)

K443_670 K490_670 K443_670 K490_670 K443_670 K490_670 K443_670 K490_670 K443_670 K490_670

(0.0, 0.2) 0.51 0.68 0.49 0.60 0.47 0.57 0.49 0.58 0.56 0.60
(0.2, 0.4) 0.49 0.61 0.50 0.61 0.48 0.56 0.51 0.59 0.56 0.62
(0.4, 0.6) 0.49 0.64 0.50 0.63 0.47 0.57 0.52 0.61 0.59 0.65
(0.6, 0.8) 0.53 0.64 0.51 0.63 0.51 0.62 0.53 0.61 0.59 0.64
(0.8, 1.0) 0.51 0.62 0.51 0.62 0.58 0.66 0.62 0.65 0.62 0.62

Table 5. Same as Table 4, but for (10) grasslands.

NDVI/SCA (60◦, 100◦) (100◦, 120◦) (120◦, 140◦) (140◦, 160◦) (160◦, 180◦)

K443_670 K490_670 K443_670 K490_670 K443_670 K490_670 K443_670 K490_670 K443_670 K490_670

(0.0, 0.2) 0.49 0.68 0.43 0.53 0.43 0.54 0.48 0.56 0.49 0.52
(0.2, 0.4) 0.53 0.65 0.44 0.56 0.45 0.55 0.46 0.55 0.44 0.50
(0.4, 0.6) 0.51 0.65 0.42 0.55 0.44 0.56 0.47 0.57 0.48 0.54
(0.6, 0.8) 0.53 0.64 0.48 0.62 0.48 0.60 0.48 0.57 0.49 0.55
(0.8, 1.0) 0.53 0.64 0.53 0.64 0.56 0.64 0.59 0.65 0.56 0.61
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Table 6. Same as Table 4, but for (12) croplands.

NDVI/SCA (60◦, 100◦) (100◦, 120◦) (120◦, 140◦) (140◦, 160◦) (160◦, 180◦)

K443_670 K490_670 K443_670 K490_670 K443_670 K490_670 K443_670 K490_670 K443_670 K490_670

(0.0, 0.2) 0.47 0.61 0.50 0.64 0.45 0.57 0.44 0.54 0.52 0.61
(0.2, 0.4) 0.49 0.62 0.52 0.64 0.52 0.65 0.45 0.56 0.43 0.52
(0.4, 0.6) 0.46 0.60 0.50 0.66 0.46 0.63 0.46 0.57 0.46 0.55
(0.6, 0.8) 0.53 0.67 0.51 0.65 0.50 0.65 0.47 0.57 0.47 0.56
(0.8, 1.0) 0.57 0.65 0.57 0.65 0.57 0.65 0.63 0.68 0.63 0.68

Table 7. Same as Table 4, but for (13) urban and built-up lands.

NDVI/SCA (60◦, 100◦) (100◦, 120◦) (120◦, 140◦) (140◦, 160◦) (160◦, 180◦)

K443_670 K490_670 K443_670 K490_670 K443_670 K490_670 K443_670 K490_670 K443_670 K490_670

(0.0, 0.2) 0.49 0.62 0.47 0.60 0.49 0.60 0.52 0.60 0.56 0.63
(0.2, 0.4) 0.48 0.60 0.47 0.60 0.49 0.60 0.52 0.60 0.55 0.61
(0.4, 0.6) 0.50 0.64 0.48 0.63 0.49 0.62 0.52 0.62 0.53 0.61
(0.6, 0.8) 0.48 0.61 0.48 0.62 0.50 0.63 0.52 0.63 0.54 0.62
(0.8, 1.0) 0.49 0.62 0.49 0.64 0.52 0.64 0.53 0.62 0.54 0.63

Table 8. Same as Table 4, but for (16) barren land.

NDVI/SCA (60◦, 100◦) (100◦, 120◦) (120◦, 140◦) (140◦, 160◦) (160◦, 180◦)

K443_670 K490_670 K443_670 K490_670 K443_670 K490_670 K443_670 K490_670 K443_670 K490_670

(0.0, 0.2) 0.45 0.70 0.49 0.63 0.49 0.62 0.52 0.60 0.50 0.54
(0.2, 0.4) 0.52 0.64 0.50 0.63 0.51 0.63 0.52 0.61 0.50 0.55
(0.4, 0.6) 0.51 0.60 0.51 0.66 0.51 0.63 0.53 0.62 0.51 0.58
(0.6, 0.8) 0.46 0.56 0.50 0.64 0.54 0.64 0.54 0.63 0.52 0.58
(0.8, 1.0) 0.57 0.64 0.57 0.64 0.60 0.68 0.61 0.67 0.52 0.57

3.3.3. Aerosol Models

The aerosol model is another essential prior knowledge component, and its accuracy
plays a vital role in the satellite remote sensing of aerosols [72]. Several global and regional
aerosol models derived from AERONET measurements [35–37] have been used for many
research satellite aerosol retrieval methods. However, these models may not be very rep-
resentative in China, where ground-based sites are sparse and distributed unevenly. For
example, the aerosol models used in the VIIRS enterprising processing system (EPS) aerosol
retrieval algorithm have been validated as unsatisfactory in China [44]. Thus, based on
the long-time-series data of the SONET, Li et al. [40] used the K-means cluster analysis
approach and obtained ten fundamental aerosol models for China, including five typical
fine-particle aerosol models ((1) urban polluted, (2) secondary polluted, (3) combined
polluted, (4) polluted fly ash, and (5) continental background) and five coarse models
((6) summer fly ash, (7) winter fly ash, (8) primary dust, (9) transported dust, and (10) back-
ground dust). Li et al. [40] also provided the probability of the appearance of fine-mode
aerosols and coarse-mode aerosols. In this study, we adopted the six combinations with the
highest probability of appearance for aerosol retrieval, i.e., urban polluted and summer
fly ash, secondary polluted and summer fly ash, combined polluted and winter fly ash,
continental background and background dust, continental background and winter fly ash,
and continental background and transported dust. The microphysical parameters of these
aerosol models can be found in Li et al. [40].

3.3.4. Retrieval Scheme

In this study, the VISRR algorithm was implemented based on the precalculated
LUTs, which were built by the second simulation of a satellite signal in the solar spectrum
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vector (6SV) radiative transfer (RT) model [73]. The input parameters of the 6SV RT model
included the SRFs of DPC 443, 490, 670, and 865 nm; six combinations of fine-mode aerosols
and coarse-mode aerosols, as shown in Section 3.3.3; θs and θv ranging from 0◦ to 80◦

with an interval of 6◦; ∅ ranging from 0◦ to 180◦ with an interval of 12◦; 11 AOD values
(550 nm)—0, 0.01, 0.25, 0.5, 1, 1.5, 2, 2.5, 3, 4, 5; and elevation set to sea level. Then,

atmospheric parameters (i.e., Ratm,
→
T(θs),

→
T(θv), ts(θs), and ts(θv) in Equation (4)) for

various observational and atmospheric scenarios were built in the LUTs. Similarly, the
LUTs of CWV and O3 gas transmission were also built by the 6SV RT model. The value
of CWV was set in the range of 0 to 7 g/cm2 with an interval of 0.5, and the value of
O3 was set in the range of 0 to 5 cm-atm with an interval of 0.5. In this study, the prior
knowledge of BRDF shape (Equation (3)) was assumed to be unchanged for one month and
independent of bands [62,65]. When the LUTs and related auxiliary data were ready, the
VISRR algorithm could be performed based on the multiangle multispectral DPC intensity
data. All procedures were applied to the individual pixels, and the output result at each
pixel was recorded. The schematic flowchart is shown in Figure 5, and the specific retrieval
steps are described below.
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(a) Preprocessing the input data

The input parameters of the DPC included the measured TOA reflectance (RMeas
TOA (λ))

of 443, 490, 670, and 865 nm, with N (maximum of 12) multiangle (θs, θv,∅), and the
auxiliary datasets included month-averaged MCD43D19-21, MYD08_D3, GMTED2010,
MCD12Q1, and the LUTs.

The first step was the identification of the land surface type for each pixel using the
MCD12Q1 products; second was the recognition of cloud-contaminated pixels, as only
cloud-free and land (except for permanent snow, ice, or inland water) pixels were further
processed in the next step; and third was to match and extract the auxiliary data according
to the longitude, latitude, the corresponding geometric factor α1 and volumetric factor α2
of the BRDF shape, the daily O3 and CWV, and the elevation from the month-averaged
MCD43D19-20, MYD08_D3, and GMTED2010 products. The global mean values were
adopted if the O3 and CWV were missing from MYD08_D3, as shown in Levy et al. [74].

(b) Atmospheric correction method considering the non-Lambertian effect

(1) According to the observation angle (θs, θv,∅), the atmospheric parameters

Ratm(λ, τ, θs, θv,∅),
→
T(λ, θs),

→
T(λ, θv), and S varied with τ and aerosol model (M), and the

gas transmission Tg(λ) varied with CWV and O3, as could be interpolated from the LUTs.
(2) We utilized the Rayleigh scattering correction method proposed by Fraser et al. [75]

to remove its contribution to the reflectance at TOA [19] and then obtained the gas corrected
reflectance (RMeas_gasc

TOA (λ)).

RMeas_gasc
TOA (λ) = RMeas

TOA (λ)/Tg(λ) (14)

(3) Considering the non-Lambertian characteristics of the surface, the atmospheric
correction (AC) was implemented to calculate accurate directional surface reflectance
RSR(λ). The AC equation is Equation (15), and the detailed derivation process is shown in
Supplementary Section S3.

F1 =
fiso(λ)(F′2 − F′3)

1− fiso(λ)F′4
(15)

where the definitions of F1, F′2, F′3, F′4 can be found in Supplementary Section S3. Then, the
three kernel coefficients fiso(λ), fgeo(λ), and fvol(λ) of the RTLSR BRDF model and the direc-
tional surface reflectance RSR(λ) could be obtained as follows: fiso(λ) = F1/(F′2+F′3 + F′4 ∗ F1),
fvol(λ) = fiso(λ)α1, fgeo(λ) = fiso(λ)α2, fgeo(λ) = fiso(λ)α2, RSR(λ) = fiso(λ)BRDFs.

(c) Determination of the initial NDVI value and prior knowledge of K443_670 and K490_670

The NDVI is an important adjustable parameter for estimating SR and has been
widely used for aerosol retrieval. However, the NDVI usually cannot be obtained before
aerosol retrieval due to the effects of the atmosphere. Thus, some researchers directly use
the reflectance at TOA to calculate the NDVI (NDVI_TOA) [76,77] or use the Rayleigh
corrected reflectance at TOA to calculate the NDVI (NDVI_RC) to reduce the impact of the
atmosphere [20,78]. However, NDVI_TOA and NDVI_RC are still susceptible to aerosols
and rapidly decrease with increasing AOD [79–81]. The use of NDVI_TOA or NDVI_RC
can lead to the selection of the wrong K443_670 and K490_670 values (as shown in Tables 3–7)
under some atmospheric conditions and can cause further errors in aerosol retrieval. Thus,
to solve this problem, we developed a novel iterative AC method to calculate the real NDVI.
Firstly, we used the Rayleigh scattering and gas correction NDVI_RC, which was calculated
via Equation (16), as the initial NDVI value (recorded as NDVIinit); then, after combining
the SCA and surface type, the initial Kinit

443_670 and Kinit
490_670 could be determined as:

NDVI_RC =
RMeas_gasc

TOA (865)− RMeas_gasc
TOA (670)

RMeas_gasc
TOA (865) + RMeas_gasc

TOA (670)
(16)

(d) AOD retrieval
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There were three problems to be solved in this step. The first was the determination of
the solution τ for each aerosol model, the second was the determination of the NDVI, and
the third was the determination of the best aerosol model. The steps are described in detail
as follows:

(1) For each aerosol model M and Θ, we found the solution τ(M, Θ) that made the
cost function ε1 (Equation (17)) equal to 0 (i.e., ε1 = 0). Then, we obtained the RCal

SR (λ, M, Θ)
of 443, 490, 670, and 865 nm:

ε1(M, Θ) =
RCal

SR
(
490, M, Θj, τ

)
RCal

SR
(
670, M, Θj, τ

) − Ki
490_670(M, NDVIi, Θj) (17)

where RCal
SR (λ, M, Θ, τ) is the directional surface reflectance calculated using the AC method

considering the non-Lambertian effect, as shown in step (c); the superscript i of NDVIi and
Ki

490_670 represents the number of iterations; and the NDVIinit and Kinit
490_670 determined in

step (d) are the initial values of the iteration (i.e., i = 0).
(2) We calculated the new NDVIi+1 using the RCal

SR (670, M, Θ) and RCal
SR (865, M, Θ)

obtained from step (1) and determined the new Ki+1
430670

(
M, NDVIi+1, Θ

)
and

Ki+1
490_670

(
M, NDVIi+1, Θ

)
values using the NDVIi+1 and Θ. Then, we considered For-

mula (18); if the NDVIi and NDVIi+1 belonged to the same NDVI interval (NDVIinterval)
defined in Section 3.3.2, we proceeded to step (3). Otherwise, we repeated (1) and (2) until
Formula (18) was satisfied.

(NDVIi ∪ NDVIi+1) ∈ NDVIinterval (18)

(3) We calculated the cost function ε2 (Equation (19)) using RCal
SR (443, M, Θ),

RCal
SR (670, M, Θ), and Ki+1

430670

(
M, NDVIi+1, Θ

)
, with some fitting error; the solution M was

that which minimized ε2. Then, the corresponding multiangle mean value of τ(550 nm, Θ)
was the retrieval solution τ(550 nm).

ε2 =

√√√√ 1
N

N

∑
j=1

(
RCal

SR
(
443, M, Θj

)
RCal

SR
(
670, M, Θj

) − Ki+1
443_670

(
M, NDVIi+1, Θj

)
)2 (19)

4. Results and Discussion
4.1. Case Results over Typical Surface Covers

Figure 6 shows the spatial distribution of the DPC AOD (550 nm) products retrieved
from the VISRR on 3 April 2019 over eastern China; the main surface types of this region are
grass, croplands, urban land, and water (lake and sea), as shown in Figure 1. Figure 6a is the
DPC TOA true-color image (RGB) consisting of RMeas

TOA (670), RMeas
TOA (565), and RMeas

TOA (490). It
can be seen that most regions were cloud-free, except for some areas in the south and west,
where an obvious strip of white cloud and some flocculent clouds existed; in addition, grey
haze aerosols were distributed in most areas and blurred the surface. Figure 6b shows the
DPC AOD (3.3 km) products: the blank areas represent those pixels identified as clouds,
ice, and water; the blue regions with a low AOD (<0.2) indicate a clean atmosphere and
were mainly distributed in the northern and eastern parts of the Shandong peninsula; the
slight-pollution (0.25 < AOD < 0.5) regions were spread over southern Beijing–Tianjin–
Hebei (BTH), western Shandong, northern Jiangsu, etc.; and moderate- and heavy-pollution
regions with a high AOD (>0.5) could be found over most areas of Henan, central Anhui,
and southern Jiangsu. Meanwhile, the DPC surface products’ RGB consisting of RSR(670),
RSR(565), and RSR(490) is shown in Figure 6c. It can be seen that the surface features
became more distinguishable after removing the coupling effect of the atmosphere. In
addition, the AOD products of the MYD04_3k_DT AOD (3 km), MYD04_L2_DB AOD
(10 km), and MYD04_L2_DT AOD (10 km) results were chosen for comparison and are
shown in Figure 6c–e, respectively. Overall, the spatial distribution between the DPC
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and MODIS AOD products was similar, but there were some differences. First, the AOD
from the DPC and MYD04_L2_DB had high spatial coverage. However, the products from
MODIS DT were missing in areas such as BTH and the Liaoning region, even if there was
no cloud shown in the TOA reflectance RGB. The reason for this might be that the pixels
were over-recognized as clouds, or that the DT algorithm cannot be implemented over
bright land cover. Second, the spatial resolutions of the DPC and MYD04_3k_DT AOD
were 3.3 km (individual pixel) and 3 km, respectively, while that of the MYD04_L2_DT
and MYD04_L2_DB AOD was 10 km. In addition to the increased detail, the variations
between different gradients of 3.3 or 3 km AOD products are also smoother than those of
10 km products. Third, the four AOD products were of different magnitudes on the whole;
the DT AOD products had the highest value, while the DPC products had the lowest value.
In this case, the DPC VISRR algorithm can simultaneously retrieve AOD products with the
advantages of fine spatial resolution and high coverage.
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Figure 6. AOD (550 nm) distribution on 3 April 2019: (a) DPC true-color image (670,565 and 490 nm)
of TOA, (b) DPC AOD (3.3 km) results from VISRR, (c) AOD (3 km) results from MYD04_3k_DT,
(d) AOD (10 km) results from MYD04_L2_DB, (e) AOD (10 km) results from MYD04_L2_DT.

Figure 7 shows another example of AOD products over western China and its sur-
rounding areas on 30 May 2019, where the main surface types are barren land, grass,
permanent snow, ice, and water (lake). From the TOA RGB (a), it can be seen that the
permanent snow and ice cover was mainly located in the Himalayas, Kunlun, and the
Tianshan Mountains. Thick, thin, and broken clouds were distributed in the Qinghai–Tibet
Plateau and east of the Taklimakan Desert. Figure 7b presents the AOD products retrieved
from the DPC, which show that the high aerosol loadings were distributed in the oases
around the Taklimakan Desert and the Tarim River. Figure 7c–e display the AOD products
of MODIS. It is evident that the DT algorithm is ineffective when applied to bright land
cover compared to the VISRR and DB products. The DPC AOD products had a higher
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value over north Taklimakan and were more detailed than the DB products due to their
fine spatial resolution.

Figure 7. AOD (550 nm) distribution on 30 May 2019: (a) DPC true-color image (670,565 and 490 nm)
of TOA, (b) DPC AOD (3.3 km) results from VISRR, (c) AOD (3 km) results from MYD04_3k_DT,
(d) AOD (10 km) results from MYD04_L2_DB, (e) AOD (10 km) results from MYD04_L2_DT.

4.2. Average Results over the Study Area

Figure 8a shows the average DPC VISRR AOD products (March 2019 to March 2020)
over China. There were four main high-value regions: (1) the northern and eastern plain of
China, mainly including BTH, Shandong, Henan, Anhui, and Shanghai, where the aerosol
emissions may be related to the fact that this region contains the largest population and
the most industries; (2) the Sichuan Basin, mainly including eastern Sichuan and western
Chongqing, where, in addition to industrial emissions, topographic and meteorological
factors contribute to aerosol pollution [82,83]; (3) southern China, mainly including the
south of Yunnan, Guangxi, and Hainan, where smoke aerosol pollution is transported in
significant amounts from biomass burning in Southeast Asia [84,85]; (4) western China,
mainly including the Taklimakan Desert and its surrounding areas—Taklimakan is the
largest desert in China, and dust events often break out here, which are likely responsible
for the aerosol pollution over this region [86]. Figure 8b–d present the AOD products
from MYD04_3k_DT, MYD04_DB, and MYD04_DT and compare them with the MODIS
products. In general, the spatial distributions of the AOD between the DPC and MODIS
were similar. However, the AOD magnitude differed in that the MODIS AOD products
were slightly higher than those of the DPC over northeastern China and the Qinghai–Tibet
Plateau region. According to the validation of He et al. [47], MODIS 3 km and 10 km aerosol
products are generally overestimated over China, and the error derives from two main
sources. The first is the surface reflectance, and the second is the aerosol models in the LUT.
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Figure 8. Spatial distribution of average AOD products from March 2019 to March 2020. (a) DPC
AOD (3.3 km) products from VISRR, (b) AOD (3 km) results from MYD04_3k_DT, (c) AOD (10 km)
results from MYD04_L2_DB, (d) AOD (10 km) results from MYD04_L2_DT. The scatter plots on
the bottom left of subgraph (b,c) show the comparison between DPC and MODIS AOD products,
based on the spatial interpolation of DPC data. The RMSEs between DPC and MYD04_3k_DT,
MYD04_L2_DB, and MYD04_L2_DT were 0.15, 0.16, and 0.17, and the mean bias errors (MBEs) were
0.09, 0.07, and 0.10, respectively.

4.3. Validation Using Ground-Based Aerosol Products

In this study, twenty-two AERONET and SONET sites (Figure 1 and Table 2) were
chosen to validate the AOD (550 nm) products from the DPC and MODIS. Due to the lack
of ground-based measurements with 550 nm AOD products, a second-order polynomial
fitting method was chosen to calculate the 550 nm AOD using the 440, 500, and 675 nm
values [87]. Furthermore, for the spatiotemporal matching between the ground and the
satellites, the ground-based valid AOD products were averaged within one hour (30 min
before or after the overpass of the satellite), and the satellite-based available AOD products
were averaged within a sampling window (5 × 5 pixels) centered on the ground site [88].
Figure 9 shows the validation results for the DPC (a) and MODIS (MYD04_3k_DT (b),
MYD04_L2_DB (c), and MYD04_L2_DB (d)) AOD products compared to the ground-based
products from March 2019 to March 2020. y = a × x + b is a linear fitting equation, where
a and b are the slope and intercept, respectively; N is the number of AOD pairs; and
the good fraction (Gfrac) refers to the fraction of AOD pairs within the expected error
EE = ±(0.05+20%). The evaluating indicators of the four aerosol products (a–d) were as
follows: a and b were (0.96, 0.01), (1.03, 0.12), (0.98, 0.05), and (0.97, 0.1); the R was 0.88,
0.87, 0.82, and 0.87; the RMSE was 0.17, 0.21, 0.27, and 0.20; the N was 971, 1413, 2539, and
1997; and the Gfrac(s) was 62.7%, 51.7%, 60.6%, and 58.5%. The best evaluating indicators
are presented in bold. The fact that the revisitation period of the DPC was longer than that
of MODIS caused the total number of collected DPC AOD retrievals to be the lowest. At the
same time, MYD04_L2_DB had the most retrieval results. The slopes of all products were
close to 1; however, the DPC AOD products had the lowest intercept and RMSE and the
highest R and Gfrac, demonstrating that the DPC AOD products had the highest accuracy
over the study area. Specifically, compared with the AOD products at the 3 km level
(i.e., Figure 9a versus Figure 9b), although they had a similar R value (0.88 vs. 0.87), the
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MYD04_3k_DT products had a low Gfrac (51.7%), a slope (1.03) greater than 1, and a high
bias of intercept (0.12), revealing that these AOD products were generally overestimated.
Compared with the AOD products at the 10 km level (i.e., Figure 9a versus Figure 9c,d),
although they had similar Gfrac values (62.7%, 60.6%, and 58.5%), the MYD04_L2_DB
products had a high RMSE (0.27) and a low R (0.82), and the MYD04_L2_DT products were
similar to MYD04_3k_DT with a high bias of intercept (0.1). The slope smaller than 1 and
the intercept greater than 0 implied that these AOD products were overestimated for small
values but underestimated for large values. The validation results of three MODIS AOD
products in this study were consistent with previous research [47,54].
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Figure 9. Validation of AOD (550 nm) products between ground-based and satellite-based measure-
ments: (a) DPC (3.3 km), (b) MYD04_3k (3 km), (c) MYD04_L2_DB (10 km), and (d) MYD04_L2_DT
(10 km). Black solid and dashed lines are the 1:1 lines and EE (±(0.05 + 20%) envelope lines,
respectively. Blue dots and red fitting lines represent the satellite-based and ground-based measure-
ments, respectively.

To better understand and analyze the uncertainties of the DPC VISRR AOD prod-
ucts, Figure 10 shows the validation results over different land cover types: (a) urban,
(b) cropland, (c) mixed, (d) forest, and (e) grassland. The evaluating indicators over the
four surface types (a–d) are shown in Table 9, where the best evaluating indicators are
presented in bold. There were 12 ground-based sites covering urban land; therefore, most
of the collected DPC AOD retrievals were over this surface type. The slopes and intercepts
of all the products were close to 1 and 0; the R was higher than 0.85, and the RMSE was
lower than 0.22. Specifically, the accuracy of the DPC AOD over forests and croplands
was highest among the surface types, with Gfrac values of 77.3% and 69.3%, respectively.
The reasons for this can be summarized as follows: (1) compared to bright land cover,
aerosol retrieval over vegetation (dark) surface types has advantages, as the surface signal
accounts for a relatively low proportion of the VIS reflectance at TOA; (2) the VIS SRR
with the NDVI and SCA constraints proposed in this study can well express the change
in vegetation with time. The Gfrac (61.6%) of urban land was lower than that of forests
and croplands, possibly because urban land cover is very complex, consisting of buildings,
trees, water, roads, etc., and, with the rapid development of urbanization, urban land cover
can change substantially over a short time [89]. Although the VISRR algorithm considers
the discrepancies in the SRR over different surface types, it does not consider the change
in the surface type over a short period of time, which can result in an estimation error for
the surface that can be further transmitted to AOD retrieval. The mixed surface type was
represented by three sites (Kashi, Jiaozuo, and Songshan): the Jiaozuo site was mainly a
mix of urban land (56%) and cropland (46%); the Songshan site was mainly a mix of forests
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(36%), grassland (36%), and cropland (28%); and the Kashi site was mainly a mix of barren
land (49%), cropland (40%), and grassland (20%). Over mixed-surface-type regions, there
will be many mixed pixels. Although these pixels are identified as a certain surface type in
advance, the selected prior SRRs may not represent the real relationship of the mixed pixels,
which results in retrieval errors. Figure 10e shows the time series of the DPC AOD (blue
dot) products against ground-based (red triangle) measurements over grassland (including
the AOE_Baotou and Lhasa sites). The first 16 points are matchups from the AOE_Baotou
site, and the rest are from the Lhasa site; the evaluating indicators N, RMSE, and Gfrac were
35, 0.1, and 62.9%, respectively. Although most of the valid matched AOD values were
lower than 0.2 for AOD_Baotou and 0.1 for Lhasa, it can be seen that DPC AOD products
were in better agreement with the ground-based measurements and showed the gradual
process of AOD change.

Remote Sens. 2022, 14, x FOR PEER REVIEW 21 of 26 
 

 

mix of forests (36%), grassland (36%), and cropland (28%); and the Kashi site was mainly 
a mix of barren land (49%), cropland (40%), and grassland (20%). Over mixed-surface-
type regions, there will be many mixed pixels. Although these pixels are identified as a 
certain surface type in advance, the selected prior SRRs may not represent the real rela-
tionship of the mixed pixels, which results in retrieval errors. Figure 10e shows the time 
series of the DPC AOD (blue dot) products against ground-based (red triangle) measure-
ments over grassland (including the AOE_Baotou and Lhasa sites). The first 16 points are 
matchups from the AOE_Baotou site, and the rest are from the Lhasa site; the evaluating 
indicators N, RMSE, and Gfrac were 35, 0.1, and 62.9%, respectively. Although most of 
the valid matched AOD values were lower than 0.2 for AOD_Baotou and 0.1 for Lhasa, it 
can be seen that DPC AOD products were in better agreement with the ground-based 
measurements and showed the gradual process of AOD change. 

 
Figure 10. Validation of DPC AOD (550 nm) products against ground-based measurements over 
different surface types: (a) urban, (b) cropland, (c) mixed, (d) forest, and (e) grassland. Blue dots 
and red triangles represent the DPC AOD and ground-based measurements. 

Table 9. Statistical parameters of Figure 10a–d. The best evaluating indicators are presented in bold. 

Land Cover a b N R RMSE Gfrac 
Urban 1.07 0.007 550 0.88 0.16 61.6 
Cropland 1.005 −0.006 153 0.86 0.19 69.3 
Mixed 0.91 0.11 157 0.93 0.21 53.5 
Forest 0.96 −0.06 75 0.94 0.14 77.3 

5. Conclusions 
In this study, an innovative algorithm called VISRR was proposed and applied to 

DPC multiangle intensity data to simultaneously retrieve AOD at an intrinsic spatial res-
olution (3.3 km) over dark and bright land cover. The VISRR algorithm considers surface 
anisotropy and neither requires a shortwave infrared band nor establishes SRDs. The 
VISRR’s previous SRRs were built based on long-time-series MYD09 products and 

Figure 10. Validation of DPC AOD (550 nm) products against ground-based measurements over
different surface types: (a) urban, (b) cropland, (c) mixed, (d) forest, and (e) grassland. Blue dots and
red triangles represent the DPC AOD and ground-based measurements.

Table 9. Statistical parameters of Figure 10a–d. The best evaluating indicators are presented in bold.

Land Cover a b N R RMSE Gfrac

Urban 1.07 0.007 550 0.88 0.16 61.6
Cropland 1.005 −0.006 153 0.86 0.19 69.3
Mixed 0.91 0.11 157 0.93 0.21 53.5
Forest 0.96 −0.06 75 0.94 0.14 77.3

5. Conclusions

In this study, an innovative algorithm called VISRR was proposed and applied to DPC
multiangle intensity data to simultaneously retrieve AOD at an intrinsic spatial resolution
(3.3 km) over dark and bright land cover. The VISRR algorithm considers surface anisotropy
and neither requires a shortwave infrared band nor establishes SRDs. The VISRR’s previous
SRRs were built based on long-time-series MYD09 products and consideration of surface
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types, SCA, and NDVI. Meanwhile, to address the issue of the NDVI being susceptible
to the atmosphere, an innovative iterative AC method was proposed to obtain realistic
NDVI values. Then, by combining the fundamental aerosol models across China with a
LUT method, the proposed algorithm was applied to thirteen months of DPC multiangle
intensity data.

A long-time-series comparison and validation of the AOD products were performed,
and the results showed that the VISRR algorithm is suitable for dark and bright land cover.
The DPC and three MODIS AOD products had similar spatial distribution, but the DPC
AOD products had both high spatial resolution and coverage. Validation using twenty-two
ground-based sites over different surface types showed that the DPC AOD had the best
performance (R of 0.88, RMSE of 0.17, and Gfrac of 62.7%) among the four products over the
study area. Then, the uncertainties of the AOD products were comprehensively analyzed
and discussed for future improvements. First, the DPC AOD products were validated over
five typical surface types: forests had the best Gfrac (77.3%), while mixed land cover had
the lowest Gfrac (53.5%). The possible source of error was the chance that the selected prior
SRRs did not represent the real relationships of the mixed pixels.

In addition to the DPC/GF-5(01), VISRR can be applied to similar sensors, such as
the advanced DPC/GF-5 (02), CM-1, DQ-1, DQ-2, and 3MI [49]. When combined with our
previous fine-model aerosol algorithm SNOSPR, based on multiangle polarized data [30],
the fine-model aerosol friction can be calculated, a key aerosol optical parameter retrieved
from satellite remote sensing for distinguishing aerosol sources.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14164045/s1, Table S1. K443_670 and K490_670 varies with NDVI
and SCA over (1) Evergreen Needleleaf Forests; Table S2. Same as Table S1, but for (2) Evergreen
Broadleaf Forests, Table S3. Same as Table S1, but for (3) Deciduous Needleleaf Forests, Table S4. Same
as Table S1, but for (4) Deciduous Broadleaf Forests, Table S5. Same as Table S1, but for (6) Closed
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Vegetation Mosaics.

Author Contributions: This work was carried out through the collaboration of all the authors.
Conceptualization, B.G., Z.L. and C.C.; methodology, B.G. and Z.L.; validation, B.G. and W.H.;
writing—original draft, B.G., Z.L., C.C., W.H., Y.X., S.Z., L.Q., Y.Z., K.L., H.X., Y.M., L.Y. and X.M.; All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (grant
No. 42105134, 42175147, and 41871269); the China Postdoctoral Science Foundation (grant No.
2020M680684); the National Outstanding Youth Foundation of China (grant No. 41925019); the
Fundamental Research Funds for the Central Universities (E0E48967); and the Special Research
Assistant Project of CAS (E0Z103010F).

Data Availability Statement: Data used in the reported studies were obtained from websites as
indicated in the text.

Acknowledgments: The authors would like to express our gratitude to AOE Baotou, Beijing, Beijing
PKU, XiangHe and Taipei CWB AERONET sites for ground-based data. The authors would also like
to thank the Chinese National Space Administration Earth Observation and Data Center for providing
the DPC/GF-5 data, NASA for providing the MODIS products data, and USGS for providing the
GMTED2010 and Splib07b datasets. The authors deeply appreciate the detailed comments and
valuable suggestions from the anonymous reviewers.

Conflicts of Interest: The authors declare no conflict of interest.

https://www.mdpi.com/article/10.3390/rs14164045/s1
https://www.mdpi.com/article/10.3390/rs14164045/s1


Remote Sens. 2022, 14, 4045 22 of 25

References
1. Giles, D.M.; Sinyuk, A.; Sorokin, M.G.; Schafer, J.S.; Smirnov, A.; Slutsker, I.; Eck, T.F.; Holben, B.N.; Lewis, J.R.; Campbell,

J.R.; et al. Advancements in the Aerosol Robotic Network (AERONET) Version 3 database–automated near-real-time quality
control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements. Atmos. Meas.
Tech. 2019, 12, 169–209. [CrossRef]

2. Li, Z.; Xu, H.; Li, K.; Li, D.; Xie, Y.; Li, L.; Zhang, Y.; Gu, X.; Zhao, W.; Tian, Q. Comprehensive study of optical, physical, chemical
and radiative properties of total columnar atmospheric aerosols over China: An overview of Sun-sky radiometer Observation
NETwork (SONET) measurements. Bull. Am. Meteor. Soc. 2018, 99, 739–755. [CrossRef]

3. Dubovik, O.; Schuster, G.L.; Xu, F.; Hu, Y.; Bösch, H.; Landgraf, J.; Li, Z. Grand Challenges in Satellite Remote Sensing. Front.
Remote Sens. 2021, 2, 619818. [CrossRef]

4. Griggs, M. Measurements of atmospheric aerosol optical thickness over water using ERTS-1 data. J. Air Pollut. Control. Assoc.
1975, 25, 622–626. [CrossRef]

5. Hauser, A.; Oesch, D.; Foppa, N.; Wunderle, S. NOAA AVHRR derived aerosol optical depth over land. J. Geophys. Res. Atmos.
2005, 110, D08204. [CrossRef]

6. Von Hoyningen-Huene, W.; Joon, Y.; Vountas, M.; Istomina, G.; Rohen, G.; Dinter, T.; Kokhanovsky, A.; Burrows, J. Retrieval of
spectral aerosol optical thickness over land using ocean color sensors MERIS and SeaWiFS. Atmos. Meas. Tech. 2011, 4, 151–171.
[CrossRef]

7. Jackson, J.M.; Liu, H.; Laszlo, I.; Kondragunta, S.; Remer, L.A.; Huang, J.; Huang, H.C. Suomi-NPP VIIRS aerosol algorithms and
data products. J. Geophys. Res. Atmos. 2013, 118, 12673–12689. [CrossRef]

8. Kaufman, Y.J.; Sendra, C. Algorithm for automatic atmospheric corrections to visible and near-IR satellite imagery. Int. J. Remote
Sens. 1988, 9, 1357–1381. [CrossRef]

9. Mei, L.; Rozanov, V.; Vountas, M.; Burrows, J.P.; Richter, A. XBAER-derived aerosol optical thickness from OLCI/Sentinel-3
observation. Atmos. Chem. Phys. 2018, 18, 2511–2523. [CrossRef]

10. Garay, M.J.; Witek, M.L.; Kahn, R.A.; Seidel, F.C.; Limbacher, J.A.; Bull, M.A.; Diner, D.J.; Hansen, E.G.; Kalashnikova, O.V.; Lee,
H.; et al. Introducing the 4.4 km spatial resolution Multi-Angle Imaging SpectroRadiometer (MISR) aerosol product. Atmos. Meas.
Tech. 2020, 13, 593–628. [CrossRef]

11. Kolmonen, P.; Sogacheva, L.; Virtanen, T.H.; Leeuw, G.D.; Kulmala, M. The ADV/ASV AATSR aerosol retrieval algorithm:
Current status and presentation of a full-mission AOD dataset. Int. J. Digit. Earth 2015, 9, 545–561. [CrossRef]

12. Luffarelli, M.; Govaerts, Y.; Franceschini, L. Aerosol Optical Thickness Retrieval in Presence of Cloud: Application to S3A/SLSTR
Observations. Atmosphere 2022, 13, 691. [CrossRef]

13. Chen, X.; Wang, J.; Liu, Y.; Xu, X.G.; Cai, Z.N.; Yang, D.X.; Yan, C.X.; Feng, L. Angular dependence of aerosol information content
in CAPI/TanSat observation over land: Effect of polarization and synergy with A-train satellites. Remote Sens. Environ. 2017,
196, 163–177. [CrossRef]

14. Tanré, D.; Bréon, F.; Deuzé, J.; Dubovik, O.; Ducos, F.; François, P.; Goloub, P.; Herman, M.; Lifermann, A.; Waquet, F. Remote
sensing of aerosols by using polarized, directional and spectral measurements within the A-Train: The PARASOL mission. Atmos.
Meas. Tech. 2011, 4, 1383–1395. [CrossRef]

15. Li, Z.; Hou, W.; Hong, J.; Zheng, F.; Luo, D.; Wang, J.; Gu, X.; Qiao, Y. Directional Polarimetric Camera (DPC): Monitoring aerosol
spectral optical properties over land from satellite observation. J. Quant. Spectrosc. Radiat. Transf. 2018, 218, 21–37. [CrossRef]

16. Sano, I.; Mukai, S.; Nakata, M. An effective method for retrieval of three kinds of aerosol properties focusing on a coming
GCOM-C1/SGLI in December of 2017. In Proceedings of the Remote Sensing of Clouds and the Atmosphere XXII, Warsaw,
Poland, 13 October 2017; p. 1042403.

17. Hsu, N.C.; Tsay, S.-C.; King, M.D.; Herman, J.R. Aerosol properties over bright-reflecting source regions. IEEE Trans. Geosci.
Remote Sens. 2004, 42, 557–569. [CrossRef]

18. Kaufman, Y.J.; Wald, A.E.; Remer, L.A.; Gao, B.; Li, R.; Flynn, L. The MODIS 2.1-µm channel-correlation with visible reflectance
for use in remote sensing of aerosol. IEEE Trans. Geosci. Remote Sens. 1997, 35, 1286–1298. [CrossRef]

19. Levy, R.C.; Remer, L.A.; Mattoo, S.; Vermote, E.F.; Kaufman, Y.J. Second-generation operational algorithm: Retrieval of aerosol
properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance. J. Geophys. Res.
Atmos. 2007, 112, D13211. [CrossRef]

20. Hsu, N.; Jeong, M.J.; Bettenhausen, C.; Sayer, A.; Hansell, R.; Seftor, C.; Huang, J.; Tsay, S.C. Enhanced Deep Blue aerosol retrieval
algorithm: The second generation. J. Geophys. Res. Atmos. 2013, 118, 9296–9315. [CrossRef]

21. Ge, B.; Li, Z.; Liu, L.; Yang, L.; Chen, X.; Hou, W.; Zhang, Y.; Li, D.; Li, L.; Qie, L. A Dark Target Method for Himawari-8/AHI
Aerosol Retrieval: Application and Validation. IEEE Trans. Geosci. Remote Sens. 2019, 57, 381–394. [CrossRef]

22. Su, X.; Wang, L.; Zhang, M.; Qin, W.; Bilal, M. A High-Precision Aerosol Retrieval Algorithm (HiPARA) for Advanced Himawari
Imager (AHI) data: Development and verification. Remote Sens. Environ. 2021, 253, 112221. [CrossRef]

23. Gao, L.; Chen, L.; Li, J.; Li, C.; Zhu, L. An improved dark target method for aerosol optical depth retrieval over China from
Himawari-8. Atmos. Res. 2021, 250, 105399. [CrossRef]

24. Choi, M.; Kim, J.; Lee, J.; Kim, M.; Park, Y.-J.; Jeong, U.; Kim, W.; Hong, H.; Holben, B.; Eck, T.F.; et al. GOCI Yonsei Aerosol
Retrieval (YAER) algorithm and validation during the DRAGON-NE Asia 2012 campaign. Atmos. Meas. Tech. 2016, 9, 1377–1398.
[CrossRef]

http://doi.org/10.5194/amt-12-169-2019
http://doi.org/10.1175/BAMS-D-17-0133.1
http://doi.org/10.3389/frsen.2021.619818
http://doi.org/10.1080/00022470.1975.10470118
http://doi.org/10.1029/2004JD005439
http://doi.org/10.5194/amt-4-151-2011
http://doi.org/10.1002/2013JD020449
http://doi.org/10.1080/01431168808954942
http://doi.org/10.5194/acp-18-2511-2018
http://doi.org/10.5194/amt-13-593-2020
http://doi.org/10.1080/17538947.2015.1111450
http://doi.org/10.3390/atmos13050691
http://doi.org/10.1016/j.rse.2017.05.007
http://doi.org/10.5194/amt-4-1383-2011
http://doi.org/10.1016/j.jqsrt.2018.07.003
http://doi.org/10.1109/TGRS.2004.824067
http://doi.org/10.1109/36.628795
http://doi.org/10.1029/2006JD007811
http://doi.org/10.1002/jgrd.50712
http://doi.org/10.1109/TGRS.2018.2854743
http://doi.org/10.1016/j.rse.2020.112221
http://doi.org/10.1016/j.atmosres.2020.105399
http://doi.org/10.5194/amt-9-1377-2016


Remote Sens. 2022, 14, 4045 23 of 25

25. Zhang, Y.; Li, Z.; Zhang, Y.; Hou, W.; Xu, H.; Chen, C.; Ma, Y. High temporal resolution aerosol retrieval using Geostationary
Ocean Color Imager: Application and initial validation. J. Appl. Remote Sens. 2014, 8, 083612. [CrossRef]

26. Thomas, G.E.; Carboni, E.; Sayer, A.M.; Poulsen, C.A.; Siddans, R.; Grainger, R.G. Oxford-RAL Aerosol and Cloud (ORAC):
Aerosol retrievals from satellite radiometers. In Satellite Aerosol Remote Sensing over Land; Springer: Berlin/Heidelberg, Germany,
2009; pp. 193–225.

27. Veefkind, J.P.; de Leeuw, G.; Durkee, P.A. Retrieval of aerosol optical depth over land using two-angle view satellite radiometry
during TARFOX. Geophys. Res. Lett. 1998, 25, 3135–3138. [CrossRef]

28. Diner, D.J.; Abdou, W.A.; Bruegge, C.J.; Conel, J.E.; Crean, K.A.; Gaitley, B.J.; Helmlinger, M.C.; Kahn, R.A.; Martonchik, J.V.;
Pilorz, S.H.; et al. MISR aerosol optical depth retrievals over southern Africa during the SAFARI-2000 Dry Season Campaign.
Geophys. Res. Lett. 2001, 28, 3127–3130. [CrossRef]

29. Martonchik, J.V.; Kahn, R.A.; Diner, D.J. Retrieval of aerosol properties over land using MISR observations. In Satellite Aerosol
Remote Sensing over Land; Springer: Berlin/Heidelberg, Germany, 2009; pp. 267–293.

30. Ge, B.; Mei, X.; Li, Z.; Hou, W.; Xie, Y.; Zhang, Y.; Xu, H.; Li, K.; Wei, Y. An improved algorithm for retrieving high resolution
fine-mode aerosol based on polarized satellite data: Application and validation for POLDER-3. Remote Sens. Environ. 2020,
247, 111894. [CrossRef]

31. Dubovik, O.; Herman, M.; Holdak, A.; Lapyonok, T.; Tanré, D.; Deuzé, J.; Ducos, F.; Sinyuk, A.; Lopatin, A. Statistically optimized
inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations.
Atmos. Meas. Tech. 2011, 4, 975–1018. [CrossRef]

32. Chen, C.; Dubovik, O.; Fuertes, D.; Litvinov, P.; Lapyonok, T.; Lopatin, A.; Ducos, F.; Derimian, Y.; Herman, M.; Tanré, D.; et al.
Validation of GRASP algorithm product from POLDER/PARASOL data and assessment of multi-angular polarimetry potential
for aerosol monitoring. Earth Syst. Sci. Data 2020, 12, 3573–3620. [CrossRef]

33. Wei, Y.; Li, Z.; Zhang, Y.; Chen, C.; Dubovik, O.; Zhang, Y.; Xu, H.; Li, K.; Chen, J.; Wang, H.; et al. Validation of POLDER GRASP
Aerosol Optical Retrieval Over China Using SONET Observations. J. Quant. Spectrosc. Radiat. Transf. 2020, 246, 106931. [CrossRef]

34. Dubovik, O.; Holben, B.; Eck, T.F.; Smirnov, A.; Kaufman, Y.J.; King, M.D.; Tanré, D.; Slutsker, I. Variability of absorption and
optical properties of key aerosol types observed in worldwide locations. J. Atmos. Sci. 2002, 59, 590–608. [CrossRef]

35. Omar, A.H.; Won, J.G.; Winker, D.M.; Yoon, S.C.; Dubovik, O.; McCormick, M.P. Development of global aerosol models using
cluster analysis of Aerosol Robotic Network (AERONET) measurements. J. Geophys. Res. Atmos. 2005, 110, D10S14. [CrossRef]

36. Levy, R.C.; Remer, L.A.; Dubovik, O. Global aerosol optical properties and application to Moderate Resolution Imaging
Spectroradiometer aerosol retrieval over land. J. Geophys. Res. Atmos. 2007, 112, D13210. [CrossRef]

37. Lee, J.; Kim, J.; Song, C.; Kim, S.; Chun, Y.; Sohn, B.; Holben, B. Characteristics of aerosol types from AERONET sunphotometer
measurements. Atmos. Environ. 2010, 44, 3110–3117. [CrossRef]

38. Mei, L.; Rozanov, V.; Vountas, M.; Burrows, J.P.; Levy, R.C.; Lotz, W. Retrieval of aerosol optical properties using MERIS
observations: Algorithm and some first results. Remote Sens. Environ. 2017, 197, 125–140. [CrossRef]

39. Omar, A.H.; Winker, D.M.; Vaughan, M.A.; Hu, Y.; Trepte, C.R.; Ferrare, R.A.; Lee, K.-P.; Hostetler, C.A.; Kittaka, C.; Rogers,
R.R.; et al. The CALIPSO automated aerosol classification and lidar ratio selection algorithm. J. Atmos. Ocean. Technol. 2009,
26, 1994–2014. [CrossRef]

40. Li, Z.; Zhang, Y.; Xu, H.; Li, K.; Dubovik, O.; Goloub, P. The Fundamental Aerosol Models Over China Region: A Cluster Analysis
of the Ground-Based Remote Sensing Measurements of Total Columnar Atmosphere. Geophys. Res. Lett. 2019, 46, 4924–4932.
[CrossRef]

41. Levy, R.; Mattoo, S.; Munchak, L.; Remer, L.; Sayer, A.; Patadia, F.; Hsu, N. The Collection 6 MODIS aerosol products over land
and ocean. Atmos. Meas. Tech. 2013, 6, 2989–3034. [CrossRef]

42. Sayer, A.M.; Hsu, N.C.; Lee, J.; Kim, W.V.; Dutcher, S.T. Validation, stability, and consistency of MODIS Collection 6.1 and VIIRS
Version 1 Deep Blue aerosol data over land. J. Geophys. Res. Atmos. 2019, 124, 4658–4688. [CrossRef]

43. Tao, M.; Wang, J.; Li, R.; Chen, L.; Xu, X.; Wang, L.; Tao, J.; Wang, Z.; Xiang, J. Characterization of aerosol type over East Asia by
4.4 km MISR product: First insight and general performance. J. Geophys. Res. Atmos. 2020, 125, e2019JD031909. [CrossRef]

44. Li, C.; Li, J.; Xu, H.; Li, Z.; Xia, X.; Che, H. Evaluating VIIRS EPS Aerosol Optical Depth in China: An intercomparison against
ground-based measurements and MODIS. J. Quant. Spectrosc. Radiat. Transf. 2019, 224, 368–377. [CrossRef]

45. Wei, J.; Sun, L.; Huang, B.; Bilal, M.; Zhang, Z.; Wang, L. Verification, improvement and application of aerosol optical depths in
China Part 1: Inter-comparison of NPP-VIIRS and Aqua-MODIS. Atmos. Environ. 2018, 175, 221–233. [CrossRef]

46. Sogacheva, L.; de Leeuw, G.; Rodriguez, E.; Kolmonen, P.; Georgoulias, A.K.; Alexandri, G.; Kourtidis, K.; Proestakis, E.; Marinou,
E.; Amiridis, V. Spatial and seasonal variations of aerosols over China from two decades of multi-satellite observations–part 1:
ATSR (1995–2011) and MODIS C6. 1 (2000–2017). Atmos. Chem. Phys. 2018, 18, 11389–11407. [CrossRef]

47. He, Q.; Zhang, M.; Huang, B.; Tong, X. MODIS 3 km and 10 km aerosol optical depth for China: Evaluation and comparison.
Atmos. Environ. 2017, 153, 150–162. [CrossRef]

48. Huang, G.; Chen, Y.; Li, Z.; Liu, Q.; Wang, Y.; He, Q.; Liu, T.; Liu, X.; Zhang, Y.; Gao, J. Validation and Accuracy Analysis of the
Collection 6.1 MODIS Aerosol Optical Depth Over the Westernmost City in China Based on the Sun-Sky Radiometer Observations
From SONET. Earth Space Sci. 2020, 7, e2019EA001041. [CrossRef]

http://doi.org/10.1117/1.JRS.8.083612
http://doi.org/10.1029/98GL02264
http://doi.org/10.1029/2001GL013188
http://doi.org/10.1016/j.rse.2020.111894
http://doi.org/10.5194/amt-4-975-2011
http://doi.org/10.5194/essd-12-3573-2020
http://doi.org/10.1016/j.jqsrt.2020.106931
http://doi.org/10.1175/1520-0469(2002)059&lt;0590:VOAAOP&gt;2.0.CO;2
http://doi.org/10.1029/2004JD004874
http://doi.org/10.1029/2006JD007815
http://doi.org/10.1016/j.atmosenv.2010.05.035
http://doi.org/10.1016/j.rse.2016.11.015
http://doi.org/10.1175/2009JTECHA1231.1
http://doi.org/10.1029/2019GL082056
http://doi.org/10.5194/amt-6-2989-2013
http://doi.org/10.1029/2018JD029598
http://doi.org/10.1029/2019JD031909
http://doi.org/10.1016/j.jqsrt.2018.12.002
http://doi.org/10.1016/j.atmosenv.2017.11.048
http://doi.org/10.5194/acp-18-11389-2018
http://doi.org/10.1016/j.atmosenv.2017.01.023
http://doi.org/10.1029/2019EA001041


Remote Sens. 2022, 14, 4045 24 of 25

49. Dubovik, O.; Li, Z.; Mishchenko, M.I.; Tanré, D.; Karol, Y.; Bojkov, B.; Cairns, B.; Diner, D.J.; Espinosa, W.R.; Goloub, P.; et al.
Polarimetric remote sensing of atmospheric aerosols: Instruments, methodologies, results, and perspectives. J. Quant. Spectrosc.
Radiat. Transf. 2018, 224, 474–511. [CrossRef]

50. Friedl, M.A.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.; Huang, X. MODIS Collection 5 global land
cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 2010, 114, 168–182. [CrossRef]

51. Zhu, S.; Li, Z.; Qie, L.; Xu, H.; Ge, B.; Xie, Y.; Qiao, R.; Xie, Y.; Hong, J.; Meng, B.; et al. In-Flight Relative Radiometric Calibration
of a Wide Field of View Directional Polarimetric Camera Based on the Rayleigh Scattering over Ocean. Remote Sens. 2022,
14, 1211. [CrossRef]

52. Danielson, J.J.; Gesch, D.B. Global Multi-Resolution Terrain Elevation Data 2010 (GMTED2010). US Department of the Interior;
US Geological Survey, 2011. Available online: https://pubs.usgs.gov/of/2011/1073/ (accessed on 15 August 2022).

53. Kokaly, R.; Clark, R.; Swayze, G.; Livo, K.; Hoefen, T.; Pearson, N.; Wise, R.; Benzel, W.; Lowers, H.; Driscoll, R.; et al. Usgs
Spectral Library Version 7 Data: Us Geological Survey Data Release; United States Geological Survey (USGS): Reston, VA, USA, 2017.
[CrossRef]

54. Liu, N.; Zou, B.; Feng, H.; Tang, Y.; Liang, Y. Evaluation and comparison of MAIAC, DT and DB aerosol products over China.
Atmos. Chem. Phys. Discuss 2019, 19, 8243–8268. [CrossRef]

55. Li, X.; Strahler, A.H. Geometric-optical bidirectional reflectance modeling of the discrete crown vegetation canopy: Effect of
crown shape and mutual shadowing. IEEE Trans. Geosci. Remote Sens. 1992, 30, 276–292. [CrossRef]

56. Lucht, W.; Schaaf, C.B.; Strahler, A.H. An algorithm for the retrieval of albedo from space using semiempirical BRDF models.
IEEE Trans. Geosci. Remote Sens. 2000, 38, 977–998. [CrossRef]

57. Jiao, Z.; Ding, A.; Kokhanovsky, A.; Schaaf, C.; Bréon, F.-M.; Dong, Y.; Wang, Z.; Liu, Y.; Zhang, X.; Yin, S.; et al. Development of a
snow kernel to better model the anisotropic reflectance of pure snow in a kernel-driven BRDF model framework. Remote Sens.
Environ. 2019, 221, 198–209. [CrossRef]

58. Bréon, F.-M.; Vermote, E. Correction of MODIS surface reflectance time series for BRDF effects. Remote Sens. Environ. 2012,
125, 1–9. [CrossRef]

59. Schaaf, C.B.; Gao, F.; Strahler, A.H.; Lucht, W.; Li, X.; Tsang, T.; Strugnell, N.C.; Zhang, X.; Jin, Y.; Muller, J.-P.; et al. First
operational BRDF, albedo nadir reflectance products from MODIS. Remote Sens. Environ. 2002, 83, 135–148. [CrossRef]

60. Liu, Y.; Wang, Z.; Sun, Q.; Erb, A.M.; Li, Z.; Schaaf, C.B.; Zhang, X.; Román, M.O.; Scott, R.L.; Zhang, Q.; et al. Evaluation of the
VIIRS BRDF, Albedo and NBAR products suite and an assessment of continuity with the long term MODIS record. Remote Sens.
Environ. 2017, 201, 256–274. [CrossRef]

61. Wanner, W.; Li, X.; Strahler, A. On the derivation of kernels for kernel-driven models of bidirectional reflectance. J. Geophys. Res.
Atmos. 1995, 100, 21077–21089. [CrossRef]

62. Vermote, E.; Justice, C.O.; Bréon, F.-M. Towards a generalized approach for correction of the BRDF effect in MODIS directional
reflectances. IEEE Trans. Geosci. Remote Sens. 2009, 47, 898–908. [CrossRef]

63. Yang, L.; Xue, Y.; Li, Y.; Li, C.; Guang, J.; He, X.; Dong, J.; Hou, T. Uncertainty from Lambertian surface assumption in satellite
aerosol retrieval. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany,
22–27 July 2012; pp. 3662–3665.

64. Qin, W.; Herman, J.R.; Ahmad, Z. A fast, accurate algorithm to account for non-Lambertian surface effects on TOA radiance.
J. Geophys. Res. Atmos. 2001, 106, 22671–22684. [CrossRef]

65. She, L.; Xue, Y.; Yang, X.; Leys, J.; Guang, J.; Che, Y.; Fan, C.; Xie, Y.; Li, Y. Joint Retrieval of Aerosol Optical Depth and Surface
Reflectance Over Land Using Geostationary Satellite Data. IEEE Trans. Geosci. Remote Sens. 2018, 57, 1489–1501. [CrossRef]

66. Yang, L.; Xue, Y.; Guang, J.; Kazemian, H.; Zhang, J.; Li, C. Improved Aerosol Optical Depth and Ångstrom Exponent Retrieval
Over Land From MODIS Based on the Non-Lambertian Forward Model. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1629–1633.
[CrossRef]

67. He, T.; Liang, S.; Wang, D.; Wu, H.; Yu, Y.; Wang, J. Estimation of surface albedo and directional reflectance from Moderate
Resolution Imaging Spectroradiometer (MODIS) observations. Remote Sens. Environ. 2012, 119, 286–300. [CrossRef]

68. Koelemeijer, R.; De Haan, J.; Stammes, P. A database of spectral surface reflectivity in the range 335–772 nm derived from 5.5 years
of GOME observations. J. Geophys. Res. Atmos. 2003, 108, 4070. [CrossRef]

69. Sun, L.; Wei, J.; Bilal, M.; Tian, X.; Jia, C.; Guo, Y.; Mi, X. Aerosol optical depth retrieval over bright areas using Landsat 8 OLI
images. Remote Sens. 2016, 8, 23. [CrossRef]

70. Sayer, A.M.; Thomas, G.E.; Grainger, R.G.; Carboni, E.; Poulsen, C.; Siddans, R. Use of MODIS-derived surface reflectance data in
the ORAC-AATSR aerosol retrieval algorithm: Impact of differences between sensor spectral response functions. Remote Sens.
Environ. 2012, 116, 177–188. [CrossRef]

71. Wang, Z.; Deng, R.; Ma, P.; Zhang, Y.; Liang, Y.; Chen, H.; Zhao, S.; Chen, L. 250-m Aerosol Retrieval from FY-3 Satellite in
Guangzhou. Remote Sens. 2021, 13, 920. [CrossRef]

72. Qie, L.; Ma, Y.; Chen, X.; Li, L.; Li, Z.; Zhang, Y. Aerosol model assumption: The retrievals of aerosol optical depth from satellite
near-infrared polarimetric measurements. J. Infrared Millim. Waves 2016, 35, 569–577.

73. Vermote, E.; Tanré, D.; Deuzé, J.; Herman, M.; Morcrette, J.; Kotchenova, S. Second Simulation of a Satellite Signal in the Solar
Spectrum-Vector (6SV). Available online: https://salsa.umd.edu/files/6S/6S_Manual_Part_1.pdf (accessed on 30 July 2022).

http://doi.org/10.1016/j.jqsrt.2018.11.024
http://doi.org/10.1016/j.rse.2009.08.016
http://doi.org/10.3390/rs14051211
https://pubs.usgs.gov/of/2011/1073/
http://doi.org/10.5066/F7RR1WDJ
http://doi.org/10.5194/acp-19-8243-2019
http://doi.org/10.1109/36.134078
http://doi.org/10.1109/36.841980
http://doi.org/10.1016/j.rse.2018.11.001
http://doi.org/10.1016/j.rse.2012.06.025
http://doi.org/10.1016/S0034-4257(02)00091-3
http://doi.org/10.1016/j.rse.2017.09.020
http://doi.org/10.1029/95JD02371
http://doi.org/10.1109/TGRS.2008.2005977
http://doi.org/10.1029/2001JD900215
http://doi.org/10.1109/TGRS.2018.2867000
http://doi.org/10.1109/LGRS.2014.2303317
http://doi.org/10.1016/j.rse.2012.01.004
http://doi.org/10.1029/2002JD002429
http://doi.org/10.3390/rs8010023
http://doi.org/10.1016/j.rse.2011.02.029
http://doi.org/10.3390/rs13050920
https://salsa.umd.edu/files/6S/6S_Manual_Part_1.pdf


Remote Sens. 2022, 14, 4045 25 of 25

74. Levy, R.C.; Remer, L.A.; Tanré, D.; Mattoo, S.; Kaufman, Y.J. Algorithm for Remote Sensing of Tropospheric Aerosol over Dark
Targets from MODIS: Collections 005 and 051: Revision 2. February 2009. Available online: https://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.386.980&rep=rep1&type=pdf (accessed on 30 July 2022).

75. Fraser, R.S.; Ferrare, R.A.; Kaufman, Y.J.; Markham, B.L.; Mattoo, S. Algorithm for atmospheric corrections of aircraft and satellite
imagery. Int. J. Remote Sens. 1992, 13, 541–557. [CrossRef]

76. Deuzé, J.; Bréon, F.; Devaux, C.; Goloub, P.; Herman, M.; Lafrance, B.; Maignan, F.; Marchand, A.; Nadal, F.; Perry, G.; et al.
Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements. J. Geophys. Res. Atmos. 2001,
106, 4913–4926. [CrossRef]

77. Von Hoyningen-Huene, W.; Freitag, M.; Burrows, J. Retrieval of aerosol optical thickness over land surfaces from top-of-
atmosphere radiance. J. Geophys. Res. Atmos. 2003, 108, 4260. [CrossRef]

78. She, L.; Mei, L.; Xue, Y.; Che, Y.; Guang, J. SAHARA: A Simplified AtmospHeric Correction AlgoRithm for Chinese gAofen Data:
1. Aerosol Algorithm. Remote Sens. 2017, 9, 253. [CrossRef]

79. Ge, B.; Li, Z.; Hou, W.; Ma, Y.; Xie, Y.; Wang, H.; Zhu, S.; Chen, J. An impact study of NDVI on the BPDF model under different
atmosphere and multi-angles conditions. In Proceedings of the Applied Optics and Photonics China (AOPC2019), Nanjing,
China, 22 December 2019; p. 1133834.

80. Liu, G.; Liang, C.; Kuo, T.; Lin, T.; Huang, S. Comparison of the NDVI, ARVI and AFRI Vegetation Index, Along with Their
Relations with the AOD Using SPOT 4 Vegetation Data. Terr. Atmos. Ocean. Sci. 2004, 15, 15–31. [CrossRef]

81. Nagol, J.R.; Vermote, E.F.; Prince, S.D. Effects of atmospheric variation on AVHRR NDVI data. Remote Sens. Environ. 2009,
113, 392–397. [CrossRef]

82. Zhang, C.; Zhang, Y.; Li, Z.; Wang, Y.; Xu, H.; Li, K.; Li, D.; Xie, Y.; Zhang, Y. Sub-Mode Aerosol Volume Size Distribution
and Complex Refractive Index from the Three-Year Ground-Based Measurements in Chengdu China. Atmosphere 2019, 10, 46.
[CrossRef]

83. Liu, X.; Chen, Q.; Che, H.; Zhang, R.; Gui, K.; Zhang, H.; Zhao, T. Spatial distribution and temporal variation of aerosol optical
depth in the Sichuan basin, China, the recent ten years. Atmos. Environ. 2016, 147, 434–445. [CrossRef]

84. Zhu, J.; Xia, X.; Wang, J.; Zhang, J.; Wiedinmyer, C.; Fisher, J.A.; Keller, C.A. Impact of Southeast Asian smoke on aerosol
properties in Southwest China: First comparison of model simulations with satellite and ground observations. J. Geophys. Res.
Atmos. 2017, 122, 3904–3919. [CrossRef]

85. Shao, P.; Xin, J.; Zhang, X.; Gong, C.; Ma, Y.; Wang, Y.; Wang, S.; Hu, B.; Ren, X.; Wang, B. Aerosol optical properties and their
impacts on the co–occurrence of surface ozone and particulate matter in Kunming City, on the Yunnan–Guizhou Plateau of China.
Atmos. Res. 2022, 266, 105963. [CrossRef]

86. Huang, J.; Minnis, P.; Chen, B.; Huang, Z.; Liu, Z.; Zhao, Q.; Yi, Y.; Ayers, J.K. Long-range transport and vertical structure of Asian
dust from CALIPSO and surface measurements during PACDEX. J. Geophys. Res. Atmos. 2008, 113, D23212. [CrossRef]

87. Eck, T.; Holben, B.; Reid, J.; Dubovik, O.; Smirnov, A.; O’neill, N.; Slutsker, I.; Kinne, S. Wavelength dependence of the optical
depth of biomass burning, urban, and desert dust aerosols. J. Geophys. Res. Atmos. 1999, 104, 31333–31349. [CrossRef]

88. Remer, L.A.; Mattoo, S.; Levy, R.C.; Munchak, L.A. MODIS 3 km aerosol product: Algorithm and global perspective. Atmos. Meas.
Tech. 2013, 6, 1829–1844. [CrossRef]

89. Zhang, H.; Wang, T.; Zhang, Y.; Dai, Y.; Jia, J.; Yu, C.; Li, G.; Lin, Y.; Lin, H.; Cao, Y. Quantifying short-term urban land cover
change with time series landsat data: A comparison of four different cities. Sensors 2018, 18, 4319. [CrossRef]

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.386.980&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.386.980&rep=rep1&type=pdf
http://doi.org/10.1080/01431169208904056
http://doi.org/10.1029/2000JD900364
http://doi.org/10.1029/2001JD002018
http://doi.org/10.3390/rs9030253
http://doi.org/10.3319/TAO.2004.15.1.15(A)
http://doi.org/10.1016/j.rse.2008.10.007
http://doi.org/10.3390/atmos10020046
http://doi.org/10.1016/j.atmosenv.2016.10.008
http://doi.org/10.1002/2016JD025793
http://doi.org/10.1016/j.atmosres.2021.105963
http://doi.org/10.1029/2008JD010620
http://doi.org/10.1029/1999JD900923
http://doi.org/10.5194/amt-6-1829-2013
http://doi.org/10.3390/s18124319

	Introduction 
	Study Area and Datasets 
	Study Area 
	Datasets 
	DPC Data 
	MODIS Products 
	Elevation Data 
	Spectral Library 
	Ground-Based Products 


	Basic Principles and New Methodology 
	Surface BRDF Model 
	Atmospheric Radiative Transfer Model 
	VISRR Algorithm 
	SR Characteristics Analysis 
	SR Relationship Analysis 
	Aerosol Models 
	Retrieval Scheme 


	Results and Discussion 
	Case Results over Typical Surface Covers 
	Average Results over the Study Area 
	Validation Using Ground-Based Aerosol Products 

	Conclusions 
	References

