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Abstract: The protection and conservation of old-growth forests (OGFs) are becoming a global
concern due to their irreplaceability and high biodiversity. Nonetheless, there has been little research
into the identification and characterization of OGFs of the oldest tree species in Mediterranean areas.
We used forest inventory data, low-density airborne laser scanning (ALS) metrics, and geostatistical
analysis to estimate old-growth indices (OGIs) as indicators of old-growth forest conditions. We
selected a pilot area in European black pine (Pinus nigra subsp. salzmannii) ecosystems where the
oldest known living trees in the Iberian Peninsula are found. A total of 756 inventory plots were
established to characterize standard live tree and stand attributes. We estimated several structural
attributes that discriminate old growth from younger age classes and calculated different types of
OGI for each plot. The best OGI was based on mean tree diameter, standard deviation of tree diameter,
and stand density of large trees (diameter > 50 cm). This index is useful for assessing old-growthness
at different successional stages (young and OGFs) in Mediterranean black pine forests. Our results
confirm that the estimation of OGIs based on a combination of forest inventory data, geostatistical
analysis, and ALS is useful for identifying OGFs.

Keywords: Pinus nigra; mediterranean ecosystems; old-growth index; stand structure; geographic
information system; forest management

1. Introduction

The irreplaceability and high biodiversity of old-growth forests (OGFs) have generated
much interest in their identification and maintenance [1], making their protection and con-
servation a global concern [2,3]. There is, however, no single definition of OGF [4,5]. The
author of [6] groups OGF definitions into four categories: (1) definitions that emphasize a
lack of disturbance by humans (OGFs have abundant old trees, some of which are approach-
ing the maximum age for the species); (2) definitions that use a minimum age (typically
150 years), combined with the presence of logs, snags, canopy gaps, etc.; (3) definitions
that emphasize stand development (in particular, climax forest); and (4) definitions that
use an economic threshold (the stands have passed the economic optimum for harvesting).
As a consequence, the identification of OGFs could be supported by indicators related
to the structural and functional conditions of the forests [7]; focused on the structural at-
tributes and composition, e.g., [8–12], and/or based on the age structure, e.g., [8,13], stand
dynamics, and natural regeneration, e.g., [14,15]; or the presence of deadwood, e.g., [16,17].

Key information about sustainable management, conservation strategies, and restora-
tion can be obtained from OGFs, e.g., [3,18,19], since they hold essential data concerning
how forest biodiversity has resisted threats [20] over their long lifespan. Unfortunately, a
decrease in these unique forests has been observed worldwide [21], as a consequence of
deforestation, major disturbances [1], agriculture or active management, and conversion to
managed plantations, e.g., [3,22,23]. In Europe, forests are now mainly seminatural, with
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undisturbed forests accounting for just 4% of all forest area [24]. Further, only 0.7% of
European forests are undisturbed forests composed of native species [21], and just 46% of
these forests are strictly protected [25].

An ecological understanding of OGFs requires a multiscale perspective, from indi-
vidual trees to landscape scales, considering the complexity of forests and their spatial
heterogeneity [26] as well as their developmental stages [4]. Moreover, OGFs play an
important role in the response to climate change [22], as they continue to sequester carbon
for long time periods, but also store more carbon per unit area than any other successional
stage [5]. Uncertainty in climate change should be considered when suitably adapting
forest management [27], and OGFs may provide valuable information about the resilience
of forest ecosystems to climate change [20]. Forest policies and management practices may
need to be as diverse as the OGFs themselves [4], taking into consideration the structure
and function of the target forests, e.g., [28,29].

In the Mediterranean region, OGF research studies are scarce. It is known, however,
that forests in this region have been extensively modified by humans of most countries [20],
with OGFs usually found in forest reserves, e.g., [30], or remote mountain areas, e.g., [31],
reaching successional stages with high levels of naturalness [32]. Greater efforts should
be devoted to identifying and protecting these Mediterranean OGFs, as forests in this
region represent the third-richest biodiversity hotspot in the world in terms of plant
diversity [33,34]. Despite the relevance of OGFs in Mediterranean areas [31,35,36], most of
the studies on OGFs in Europe have focused on forests in temperate and boreal regions,
e.g., [37].

In the case of the Spanish Pinus nigra Arnold subsp. salzmannii (Dunal) Franco forests,
with a long history of anthropogenic alteration [38], some remnant old-growth stands with
very old individuals can be found in remote mountain areas, e.g., [39], as there has been
less silviculture in such inaccessible areas [39]. Studies on the structure of these remaining
P. nigra OGFs, which contain the oldest known living trees in the Iberia Peninsula, are very
limited [27,39,40] and there is an urgent need for more data to guide their conservation
and management.

The identification of the best old-growth index (OGI, a dimensionless metric con-
structed by combining structural features of old forests such as large trees and size di-
versity) for each forest type and its prediction with spatial modeling could assist in the
identification of OGFs in the landscape [11]. Their combination with techniques such as
aerial laser scanning (ALS) may be an effective way of generating these OGIs and mapping
OGFs [41]. ALS provides information that can be used to predict the three-dimensional
structure of vegetation at different scales [42], and this technology has proven useful for
estimating a set of attributes related to OGF description; for example, standing dead tree
class distributions [43], stand age [44], forest canopy gaps [45], structural canopy complex-
ity [46,47], and forest successional stages [48]. Nonetheless, specific studies describing
and mapping old-growth forests using ALS are scarce and none have focused on the
Mediterranean region. In other locations, [49] used a random forest framework to model
old-growth attributes and predicted an OGI in British Columbia (Canada); [50] investigated
the structure of OGFs in the Ukrainian Carpathian Mountains and differences between
OGFs and non-OGFs were found over a wide range of ALS metrics; [51] discriminated
areas of old growth from areas recovering from selective logging in Sierra Leone (West
Africa); and [52] used a combination of airborne LiDAR and satellite imagery to identify
and discriminate OGF structures resulting from different disturbance histories in the mixed
boreal forest of Quebec (Canada).

The main objectives of this study were: (1) to identify and describe the structural
attributes of OGFs; (2) to assess and select the best OGI using field-measured stand vari-
ables; and (3) to model the selected OGI using geostatistical analysis and ALS data. We
hypothesized that OGIs, which include several attributes and processes associated with
OGFs for a given forest type or forest region, might be useful for identifying OGFs and
establishing priorities for conservation and management.
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2. Materials and Methods
2.1. The Study Area

This study focused on the southwest portion of the Cazorla Mountains, within the
Cazorla, Segura and Las Villas Natural Park, at the northwest of the Andalusian region
(Jaén, southeastern Iberian Peninsula; 37◦51′ N, 2◦52′ W; Figure 1). The climate of the
study site is Mediterranean, characterized by severe summer drought and highly variable
precipitation between and within years. The average rainfall is 1100 mm year−1 (range
400–1900 mm) and the average temperature is 11.7 ◦C. Pines are the main coniferous trees
in the area, with Aleppo pine (Pinus halepensis Mill.), Maritime pine (P. pinaster Ait.) and
black pine (P. nigra subsp. salzmannii) distributed in slopes and valleys according to edaphic
and climatic conditions. Common hardwood species are Quercus ilex L. and Q. faginea
Lam., which grow at lower altitudes and are often mixed with maples (Acer spp.), aspens
(Populus spp.), rowans (Sorbus spp.), and ashes (Fraxinus angustifolia). Black pine is the most
abundant species in the Natural Park, covering 60,000 ha between 1000 and 2000 m [53].
This species can reach 40 m in height and 1.2 m in diameter and is well adapted to poor
and shallow soils, steep slopes, and upper and rocky areas, where other more demanding
species cannot survive [54]. We selected the Navahondona forest (15,588.73 ha) in the Natural
Park as a pilot area and focused on the management units of the forest in which P. nigra is
the dominant tree species (>80%, 4487 ha).
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Figure 1. (a) Study site location (red area) in Cazorla, Segura and Las Villas Natural Park (pink area)
in Andalusia, Spain (a) left; (b,c) Physiognomy of old-growth stands in the study area.

2.2. Forest Inventory Data

To calculate the OGIs, we used data from management plans on the forest inventory
plots (n = 756), consisting of circular plots of 148 m2 (15 m radius) systematically distributed
in a grid of 200 m sides resulting in a density of 1 plot per 4 ha. There was no pre-field
screening to check if the plots were in forested areas. The inventory included the diameter
at breast height (DBH) and total height (HT) of every tree.

2.3. Calculation of Old-Growth Indices

An OGI provides a measure of the dissimilarity of a stand relative to young stand
conditions [8]. To calculate this index in the inventory plots, we initially followed the
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approach of [55] and calculated four structural variables per plot that, according to these
authors, successfully discriminate between age classes of a forest: (1) standard deviation
of tree DBH; (2) density (trees ha−1) of large trees; (3) mean tree DBH; and (4) density
(trees ha−1) of all trees. These four structural variables can be used to compute an OGI,
according to Equation (1) [8]:

OGI = 25
4

∑
i=1

∣∣∣∣∣ xi − xi young

xi old − xi young

∣∣∣∣∣ (1)

where i represents each of the four structural variables (1–4); xi is the observed value for
the ith structural variable; xi young is the mean value of the ith structural variable for young
stands; and xi old is the mean value of the ith structural variable for old stands. When the
value of any structural variable in a plot is less than that calculated for young stands, the
value for young stands applies. Likewise, when the value of the variable exceeds that of
the old stands, the value corresponding to an old stand is assigned. Hence, the OGI ranges
from 0, when all structural variables correspond to the values of young stands, to 100, when
all structural variables correspond to the values of old stands.

The structural values for old stands were determined in a specific inventory carried
out in the Cabañas forest, situated in the vicinity of Navahondona forest. According to our
observations and the thoughts of forest managers, the structure, age, and low-intensity
management of the stands situated in this forest could be considered representative of old
stand structural attributes of P. nigra in the area. We established 21 plots of 15 m radius in
which P. nigra was the dominant species (>80%) and measured the DBH and height of all
trees. The structural values for young stands were defined based on the mean values in the
18 inventory plots in which the mean DBH was <20 cm [56,57].

We considered several types of OGI, seeking to account for measures of: (1) the DBH
variability in the plot and (2) the definition of large trees. First, as indicators of DBH
variability, we calculated two parameters: the standard deviation of tree DBH and the
Gini coefficient (GC). GC is a structural heterogeneity index considering the basal area of
individual trees in each plot [58], and is computed as follows:

GC =
∑n

j=1(2j− n− 1) gj

(n− 1)∑n
j=1 gj

(2)

where n is the number of trees in the plot and gj is the basal area of tree j in the plot.
Second, for the definition of large trees, we used the thresholds of 50 cm [59], 70 cm [37],
and 100 cm DBH [55], and calculated the density of trees (in trees ha−1 and basal area
(m2 ha−1) with DBH > 50, 70, and 100 cm in each plot. As a result, 15 OGIs were calculated,
combining different definitions of the aforementioned structural variables (Table 1). Each
of the structural variables was compared between old and young forests using analysis
of variance.

The most suitable index to be applied in the study area for detecting OGFs was
selected by graphical analysis. We plotted the distribution of the indices and compared
their boxplots. The pilot area is considered to have significant areas in different successional
stages, from young stands to old growth, and this needed to be reflected in an OGI
distribution with a large interquartile range covering young and old stages.

2.4. Geostatistical Modeling

After selecting the best OGI (Table 1), we analyzed the spatial correlation of OGI
data in the pilot area. We used a linear mixed model for testing the significance of spatial
correlations considering altitude, slope, and orientation of the inventory plots as model
covariates. Covariates were derived from a digital elevation model (DEM) with 5 m hori-
zontal resolution from the Spanish National Centre for Geographic Information (CNIG)
(data available at http://centrodedescargas.cnig.es/CentroDescargas/index.jsp#, accessed
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on 13 July 2019) and calculated with ArcGis v.10. Orientation was considered a categor-
ical variable with eight categories (N, NE, E, SE, S, SW, W, NW) and altitude and slope
continuous variables. The model structure is as follows:

OGIi = µ+ slopei + altitudei + orientationi + ei (3)

where ei is the error term assuming that ei ~ N(0, σ2 + σ1
2) and Cov[ei, ej] = σ2[f(dij)], with

f(dij) a function of the distance between the locations si and sj. We chose the spherical
distance function f(dij) = [1 − 1.5(dij/ρ) + 0.5(dij/ρ)3] if dij < ρ, and f(dij) = 0 otherwise.
Parameters σ1

2, σ2 + σ1
2, and ρ correspond to the nugget, sill, and range of the geostatistical

model, respectively.

Table 1. Structural variables selected to calculate the old-growth index (OGI) in the study area.
Structural parameters were weighted to obtain an OGI with 0–100 range. All varieties include the
mean DBH of the plot as the structural variable. OGI: old-growth index; STDDBH: standard deviation
of tree DBH; GC: Gini coefficient. Density values are in trees ha−1 and basal area is in m2 ha−1.

Structural Parameters

OGI Type DBH Variability Density of Large Trees

1 STDDBH Density of trees > 50 cm DBH
2 STDDBH Density of trees > 70 cm DBH
3 STDDBH Density of trees > 100 cm DBH
4 GC Density of trees > 50 cm DBH
5 GC Density of trees > 70 cm DBH
6 GC Density of trees > 100 cm DBH
7 - Density of trees > 50 cm DBH
8 - Density of trees > 70 cm DBH
9 - Density of trees > 100 cm DBH
10 STDDBH Basal area of trees > 50 cm DBH
11 STDDBH Basal area of trees > 70 cm DBH
12 STDDBH Basal area of trees > 100 cm DBH
13 - Basal area of trees > 50 cm DBH
14 - Basal area of trees > 70 cm DBH
15 - Basal area of trees > 100 cm DBH

In order to test the significance of the spatial correlation of OGI data and select the best
model variance–covariance structure, we examined the following options before testing
the significance of covariates: (1) a model with spatial structure (and considering a nugget
effect); (2) a model with spatial structure (no nugget effect); and (3) a model without
spatial structure. Models were estimated by the restricted maximum likelihood method
and the Akaike information criterion (AIC) was used for model selection [60]. We tested
the significance of covariates in the best previous model using all possible combinations of
covariates. In this case, models were estimated by maximum likelihood and the best model
was selected using the AIC. The statistical analysis was performed with SAS 9.2. In the case
of a significant spatial correlation, we predicted the values of the OGI in the study area by
kriging with ArcGis v.10 using the predicted values of nugget, sill, and range.

2.5. ALS Data Analysis

We used ALS data within the limits of the 756 field plots to compute metrics re-
lated to the height distribution and canopy cover. Square 2 × 2 km ALS blocks were
obtained from the 2014 CNIG flight data (data available at http://centrodedescargas.cnig.
es/CentroDescargas/index.jsp#, last accessed on 28 September 2019). The point cloud was
acquired with a maximum of 4 returns per pulse, a theoretical mean density of 0.5 points m2,
and vertical root mean square error (RMSE) < 0.20 m. The summary statistics of ALS return
density within the plots (pulses m−2) were: mean = 0.4, minimum = 0.13, maximum = 2.25,
and standard deviation = 0.23.

http://centrodedescargas.cnig.es/CentroDescargas/index.jsp#
http://centrodedescargas.cnig.es/CentroDescargas/index.jsp#
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ALS data were processed using FUSION V 3.50 software [61]. A DEM with a 2 m cell
size was generated from classified ground returns and was used to normalize non-ground
ALS returns to height above ground surface. The normalized ALS point cloud was clipped,
with an independent file generated for each plot (15 m radius). Finally, ALS metrics were
extracted for each plot. The ALS metrics employed in this work (Table 2) have been widely
used as predictor variables in forest models (e.g., [42,62] low-density ALS and [63] high-
density ALS data). Only returns classified as vegetation and with normalized height of
between 3 and 32 m were used to compute height and canopy cover metrics (based on
field observations).

Table 2. ALS metrics computed for each plot. h: tree height (m).

ALS Metrics Description

hmean, hmode mean, mode
hmin, hmax minimum, maximum
hSD, hCV standard deviation, coefficient of variation

hSkw skewness
hkurt kurtosis
hID, interquartile range,

hAAD average absolute deviation
hMADmedian median of the absolute deviations from the overall median
hMADmode median of the absolute deviations from the overall mode

hL1, hL2, hL3, hL4 L-moments
hLskw L-moments of skewness
hLkur L-moments of kurtosis

h01, h05, h10, h20, h25, . . . , h90, h95, h99 Percentiles
CRR canopy relief ratio: mean height-min height/max height-min height
CC canopy cover: percentage of first returns above 4.5 m/total returns

PARA3 percentage of all returns above 3 m/total all returns
ARA3.TFR ratio between all returns above 3 m and total of first returns

PFRAM percentage of first returns above mean/total all returns
PARAM percentage of all returns above mean/total all returns

PARAMO percentage of all returns above mode/total all returns
PFRAMO percentage of first returns above mode/total all returns

ARAM.TFR ratio between all returns above mean and total of first returns
ARAMO.TFR ratio between all returns above mode and total of first returns

The best OGI, selected from Table 1, was then used to assess the best ALS metrics for
estimating the index. As there is a temporal difference between the ALS data (2014) and the
inventory data (2011), we first estimated the DBH of trees in 2014 from the radial increment
obtained in the forest inventory. To prevent modeling errors due to a lack of precision in the
GPS data in the forest inventory or the impact of silvicultural treatments between the date
of the forest inventory and the ALS flight, the 95th percentile of tree height was calculated.
Following [64], plots with a difference exceeding 3 m between the two values (inventory
and LiDAR) were excluded. As a result, 488 (64.5% of the total) plots were included for
estimating OGI values from ALS data.

A multiple linear regression model was used to describe the empirical relationship
between OGI and ALS metrics. The general expression is as follows:

OGI = β0 + β1X1 + β2X2 + . . . + βnXn + ε (4)

where X1, X2, . . . Xn are metrics derived from the ALS dataset (Table 2); ß0, ß1, . . . ßn are
the parameters to be estimated; and ε is an additive error term.

Data were split into two different samples: a random selection of 342 cases (70% of the
sample) was used as a training subset, while the 146 unselected cases were used for testing.
A stepwise regression method was applied to the training dataset to select independent
variables for the model. Although [65] pointed out problems in the use of stepwise selection
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in ecology, it has been used successfully in forest modeling from ALS data where the main
objective is prediction and not the understanding of a phenomenon, e.g., [42,62,66–69]. The
stepwise selection procedure was performed using a combination of forward and backward
algorithms implemented in the R Commander package [70] of the R statistical software [71].
We only retained models with no collinearity (VIF < 10) [72] and with all parameters
significant (α = 0.05). For selecting the best model, we considered the RMSE and adjusted
R square (R2adj) statistics. Heteroscedasticity was checked with the Breusch–Pagan test.
Finally, RMSE and root mean square error of prediction (RMSEP) were compared to verify
that the selected model was not overfitted.

3. Results
3.1. Selection of Structural Parameters and OGI

All the variables studied showed significant differences between old and young stands
(Table 3; p < 0.05). Forests in more advanced successional stages (old forests) have a
significantly larger mean and standard deviation of DBH, total basal area, and density
of large trees above the thresholds of 50, 70, and 100 cm DBH. Moreover, the diameter
distribution of forests shows a wider range of distribution in the older stands, with higher
tree densities in the 60–80 and 80–100 cm diameter classes (Figure S1). In contrast, total
stand density (N, in trees ha−1) was significantly larger in the young stands, which also
were dominated by smaller diameter trees (<60 cm), unlike the larger trees observed in older
stands (Figure S1). Although clear differences have been observed among successional
stages, high variability was observed in most of the variables (particularly N and N50 in
young forests; see Table 3). Values of basal area and density of trees > 70 and >100 cm were
null in early successional stages (young forests).

Table 3. Comparison of values (average and standard deviation in parenthesis) of structural vari-
ables for old and young stands. Different letters within each row represent significant differences
(p value < 0.05).

Structural Variables Old Forests (n = 21) Young Forests (n = 18) F (p > F)

Mean tree diameter (mDBH, cm) 70.48 (15.0) a 17.58 (2.01) b 219.55 (<0.0001)
Diameter standard deviation (STDDBH) 30.89 (17.2) a 4.28 (2.23) b 42.45 (<0.0001)

Basal area (G, m2 ha−1) 36.08 (15.2) a 5.74 (5.75) b 47.88 (<0.0001)
Basal area of trees > 50 cm DBH (BA50, m2 ha−1) 34.69 (15.2) a 1.67 (0.71) b 91.92 (<0.0001)
Basal area of trees > 70 cm DBH (BA70, m2 ha−1) 31.35 (12.0) a 0 (0) b 86.98 (<0.0001)

Basal area of trees > 100 cm DBH (BA100, m2 ha−1) 27.26 (10.5) a 0 (0) b 12.35 (0.0012)
Density (N, trees ha−1) 83.15 (41.9) b 285.30 (277.7) a 10.88 (0.0022)

Density of trees > 50 cm DBH (N50, trees ha−1) 58.94 (29.9) a 0.78 (3.33) b 67.00 (<0.0001)
Density of trees > 70 cm DBH (N70, trees ha−1) 42.10 (19.6) a 0 (0) b 82.30 (<0.0001)

Density of trees > 100 cm DBH (N100, trees ha−1) 11.57 (13.3) a 0 (0) b 13.59 (0.0007)
Gini coefficient (GC) 0.45 (0.21) a 0.26 (0.11) b 11.67 (0.006)

The total stand density (N) is one of the four structural variables used by [55] for the
calculation of their OGI; however, in our study, this variable was not a good indicator of
old-growth attributes (Figure 2) since low total density values were found in plots with
very low but also very high mean DBH. For this reason, we did not include this structural
variable in any of the 15 types of OGI considered (Table 1). The same reasoning can be
applied to the total basal area (Figure 3), hence, this variable was also excluded from our
OGI calculations.
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Figure 2. Scatterplot of mean diameter at breast height (DBH) and total density (trees ha−1) (a) and
total basal area (m2 ha−1) (b) at the inventory plots. The curved line shows the tendency (penalized
B-spline).
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Figure 3. Boxplots of the 15 types of old-growth index (OGI) calculated in the study area. The
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Boxplots of the 15 OGIs show marked differences in the OGI distribution for the
different OGI types (Figures 4 and S2). Clearly, the OGI types with a larger interquartile
range are numbers 1, 4, and 7 (hereafter, OGI 1, OGI 4, and OGI 7). These three OGIs
are all computed with the mean tree DBH and density of trees > 50 cm DBH (trees ha−1),
but differ in the structural parameter included to account for DBH variability: standard
deviation of tree DBH in OGI 1, GC in OGI 4, and none in OGI 7 (Table 1). The values
of OGI 1 and OGI 7 are highly correlated (Pearson r = 0.96) and have a similar frequency
distribution (Figure 5), while the distribution of OGI 4 is skewed to higher values and less
strongly correlated with OGI 1 and OGI 7 (r = 0.88 and 0.79, respectively). In this case, the
GC (included in OGI 4) is not an adequate old-growth attribute because the mean value in
the inventory plots (0.418) is very close to the mean value for old stands (0.449; Table 3) and,
thus, this parameter will not properly distinguish young and old stands. This is because, in
order to calculate the old-growth index, the value of the structural variable (in this case,
GC) that is included in the index (see Equation (1)) cannot exceed the characteristic value
for old stands (in that case, the characteristic value for old stands applies). In our case, this
happens in 38.4% of the inventory plots, which is a very high value. In this high percentage
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of plots, the value that enters in the OGI is the same (the characteristic for old-growth
stands), so the discriminatory power of using GC as a structural stand characteristic for
evaluating old growth is very low.
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The similarity between OGI 1 and OGI 7 reflects the lack of a clear trend in our study
area between the size of the trees in the plot (expressed by the mean DBH and density
of trees > 50 cm DBH) and the standard deviation of tree DBH (STDDBH). Nevertheless,
taking into account the characteristic value of STDDBH, namely, it is much higher in old
than young stands (Table 3), we considered STDDBH a desirable structural parameter to
include in the OGI of the study forests. Hence, finally, OGI 1 was selected.

3.2. Geostatistical Model

The threshold that we used to select our inventory plots (i.e., >80% of P. nigra trees) led
to the formation of two isolated subareas in our study area (Figure 6) that we called North
and South. Given this, in our model selection process, we also considered the hypothesis
of having different spatial covariance parameters in these two areas. We finally selected
the model with the same spatial covariance structure in both areas (North and South)
that incorporates a nugget effect and has no covariates (Table 4, model 5), which is the
model with the lowest AIC. The estimated values for nugget, partial sill, and range in
the selected model were 315.78, 38.76, and 1579.17, respectively. The slope, orientation,
and altitude of the plot were not significantly related to the OGI 1 (p = 0.22, p = 0.51, and
p = 0.11, respectively). Therefore, the final selected model (model 5 in Table 4; AIC: 6568.4)
was significantly better than the non-spatial model (model 4 in Table 4, AIC: 6585.5), with
evidence shown of the spatial correlation in the OGI 1 distribution. Data in Table 4 also
support that the most complex model (model 1 in Table 4; AIC: 6575.5, which includes
nugget, covariates, and different spatial covariance in areas North and South) does not
perform better than the selected simpler model (model 5), which has no covariates and the
same covariance in areas North and South.

Figure 6. Measured old-growth index (OGI) values versus OGI values predicted by the geostatistical
model at the inventory plots (a) and measured old-growth index (OGI) values versus OGI values
from the validation dataset of the ALS model (b). The straight line shows a 1:1 relationship, while the
curved line shows the tendency (penalized B-spline).

Table 4. Geostatistical model selection process. −2LL: −2 Log Likelihood. AIC: Akaike information
criterion (the smaller the better). The selected model is model 5.

Model Description −2LL AIC

1 With nugget, covariates, and different spatial covariance in
areas North and South 6545.5 6575.5

2 = Model 1 but same spatial covariance in areas North and South 6549.4 6575.4
3 = Model 2 but without nugget 6751.6 6775.6
4 With covariates but no spatial covariance 6563.5 6585.5
5 = Model 2 but without covariates 6560.4 6568.4

The predicted values of OGI 1 in the study area range from 14 to 48 (Figure 6). The OGI
1 is underestimated in plots with high values and overestimated in those with low values.

3.3. ALS Model

The model selected for estimating the OGI from ALS data is as follows:
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OGI = −30.14945− 0.25675×ARAM.TFR + 1.90980× h95 + 8.86526× hL2 + 32.37033×CRR
R2

adj = 0.42; p value < 0.0001; AIC = 2822.4 (5)

where ARAM.TFR (a variant of canopy cover) is the ratio of all the returns above the average
over the total of all first returns; h95 is the 95th percentile; hL2 is the second-order moment;
and CRR is the canopy relief ratio (describing the degree to which canopy surfaces are in
the upper (CRR > 0.5) or lower (CRR < 0.5) portions of the height range) [73]. Figure 6 is a
scatterplot of the predicted versus measured OGI 1 values. For this regression model, the
RMSE was 14.84 (337 degrees of freedom) and the RMSEP was 14.54. Further information
about the model can be seen in Table 5.

Table 5. Parameter estimates and goodness-of-fit statistics of the model selected for estimating the
OGI 1 from ALS data. ARAM.TFR: ratio between all returns above mean and total of first returns;
H95: 95th percentile; HL2: second-order moment; CRR: canopy relief ratio.

Parameter Estimate Standard Error t-Value p >|t|

Intercept −30.14945 5.25588 −5.736 <0.0001
ARAM.TFR −0.25675 0.08158 −3.147 0.0018

h95 1.90980 0.38434 4.969 <0.0001
hL2 8.86526 2.12298 4.176 <0.0001

CRR 32.37033 10.86575 2.979 0.0031

This section may be divided by subheadings. It should provide a concise and precise
description of the experimental results and their interpretation, as well as the experimental
conclusions that can be drawn.

4. Discussion
4.1. Stand Structure Differences between Young and Old-Growth Forests

Forests of P. nigra subsp. Salzmannii in the Cazorla, Segura and Las Villas Natural
Park reveal a forest structure with a multiple age distribution [39]. The remnant OGFs of
this species are characterized by a wide range of tree sizes (Figure S1), with trees attaining
notably large dimensions in the case of the largest trees, in agreement with previous studies
of this species in the Mediterranean region [39,40]. Only the younger forests are dominated
by small-diameter trees, although old sites also have small trees (Figure S1). This could
suggest that regeneration has been successful in these sites, providing greater structural
heterogeneity to the old-growth stages. Moreover, the older forests have significantly
higher total basal area and GC, confirming greater structural heterogeneity. In contrast,
younger forests have more simple structures, with a low diversity of sizes and conditions
of live trees (Figure S1), as also described in other forest ecosystems [12].

Larger and older trees have been shown to play key ecological roles, not covered by
younger and smaller trees [74]. Moreover, older trees provide very valuable ecosystem
services (e.g., biodiversity refuge, carbon storage, etc.) [5,75]. Nonetheless, there is a lack of
knowledge about P. nigra in this respect [27,39], with further research necessary to better
understand the role of large trees in biodiversity conservation and sustainable forestry,
e.g., [76] in the Mediterranean region. In addition, other attributes of OGFs, such as snags
and logs [12], need to be considered.

4.2. OGIs to Distinguish Old Growth from Young Forests

Forest structural attributes of OGFs have shown to be useful parameters for identi-
fying forests with OGIs, e.g., [8,77–79]. The OGI selected in this study (OGI 1) integrates
three elements of stand structure which reflect the differences in forests across a range of
successional stages (young vs. old).

The use of an OGI to evidence structural differences between young and old forests
is consistent with previous findings, e.g., [12,78], even when structural attributes only
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consider live trees [8]. Nonetheless, such OGIs must be used with caution since they are
based on a limited set of measures. In the future, efforts should be made to characterize
these forests including as many important OGF structural features as possible [8], such as
logs and snags, which play an important role as primary sources of deadwood [80] and
sources of energy and nutrients for the ecosystem [18].

Notably, forest structure varies between forest types [12,39,81] and can be modified
by disturbances, such as human activities or changes in land use, e.g., [27,39,40]; biotic
(insects and pathogens) and abiotic agents (e.g., fire [82]), and wind [15]; and indirect
climate effects which also influence the aforementioned forest disturbances [83]. The
OGFs studied here are in remote mountain areas where silviculture has been limited, due
to difficulty accessing the forests [39], and there is no evidence of disturbance in recent
decades. Nonetheless, due to the long lifespan of OGFs, there is a greater probability of
a history of disturbance in these forests [84] than in the younger ones. This is even more
important in the Mediterranean region where climate change (a driver of disturbances
regimes [83]) strongly affect forests [85]. Therefore, more detailed data to reconstruct
the past disturbances [79] and climate [31] is required to better understand the present
structural attributes of forests and their complexity and dynamics over time.

4.3. Geostatistics and ALS to Estimate OGIs

There has been little research into the use of geostatistical analysis and ALS data to es-
timate OGIs [41], despite the potential usefulness of describing and mapping of OGFs using
these data. Models developed are biased for various reasons. Traditional forest inventories
require a large number of plots and inventory replications to cover forests in the different
successional stages, especially in the most advanced ones (OGFs), and those located in the
least accessible areas. On the other hand, we found spatial correlation in OGIs, which could
be related to a higher frequency and a more continuous spatial distribution of the earlier
successional stages (younger forests). This could indicate that traditional forest inventory
is not detecting old-growth characteristics with sufficient detail. Old-growth conditions
also vary between forest types and type-specific definitions are necessary [12]. Certain
environmental conditions, particularly those that are extreme, may also be associated with
distinctive old-growth attributes [12], as occur in the Mediterranean region (characterized
by extremely high temperatures and low precipitation). Nevertheless, the presence of
spatial correlation in the OGI distribution will be dependent on the forest type and the
extension of old-growth forests in the study areas. In fact, even if the geospatial model
performed better in our study, this improvement was not very high in comparison with
the non-spatial model and this situation can vary in other areas, in which simpler ordinary
regression models can perform better. The combination of statistical and geostatistical
approaches could also lead to further improvements in OGI prediction [86].

The approach tested in this study using ALS data to define an OGI model can be
considered a useful first step but needs refining. Explanatory variables selected were h95,
hL2, CRR, and ARAM.TFR, from which h95 and hL2 contained the most information about
the response. The presence of h95 in the model confirms the strong relationship of height
with stand age, this being one of the percentiles most useful in modeling stand height
using an area-based approach [87]. On the other hand, numerous studies have utilized L-
moments for characterizing dasymetric variables with ALS data, e.g., [88–90]. In particular,
hL2 (i.e., measurement of dispersion similar to standard deviation, with less weight given
to outliers [91]) as a predictor variable is in accordance with the results obtained in the
characterization of OGFs (such forests showed greater diameter standard deviation). In
addition, the OGI selected in this study includes the standard deviation of the diameter.

The model defined to estimate the OGI from ALS data presents a high residual
standard error, but it is observed that ALS data and OGI are correlated. These results may
be explained by the characteristics of the ALS flight, which was not designed for forest
inventory (low density of data of 0.5 first returns m−2) [42,62]. Notably, [92] recommended
a minimum of 1 pulse m−2 (>4 pulses m−2 for dense forests on complex terrain) to produce
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an operational ALS-based enhanced forest inventory. The results could also be explained
by ground plot georeferencing errors, but in the present study, large-size ground plots
were used (706 m2); in relation to this, [93] point out that regression analysis using larger
plots (>314 m2) appeared more robust to the ill effects of GPS error and therefore, this
source of error can be considered less important than the low density of ALS data. The
temporal cover provided by PNOA flights has been set at 6 years and new flights will
provide a higher density of returns (2 returns m−2), which will influence the precision of
the relationships between ALS metrics and OGIs; hence, it can be expected that future
models estimating OGIs from ALS data will obtain better results. Moreover, future PNOA
flights will also allow monitoring of the forests over time.

Further research is needed to obtain more accurate estimations of OGIs using geo-
statistics and ALS data. A first assessment of the forests, combining these data with those
from a forest inventory, could be helpful to recognize the areas in which to conduct a more
detailed study to better identify OGFs. Characterization of OGFs using field inventory, ALS
data, and OGIs may be useful in future studies, for describing the variation in old-growth
attributes and how this variation is spatially distributed, making it possible to generate
maps at different scales [41]. Nevertheless, our results must be considered a first approxi-
mation, and field inventory data covering forests at different successional stages will be
necessary to confirm the OGF distribution and provide essential information to preserve
and manage these valuable ecosystems.

5. Conclusions

The OGI that combines the structural variables of mean DBH, standard deviation
of tree DBH, and density of trees with diameter > 50 cm proved to be a good index for
assessing old-growth attributes in Mediterranean Pinus nigra forests, making it a valuable
tool for their identification and characterization and easy to calculate from standard forest
inventories. The Gini coefficient as a measure of tree DBH diversity was less useful than
the standard deviation in this species. The geostatistical OGF model proved the existence
of spatial correlation in the OGFs’ attributes and we succeeded in providing a map of the
distribution of the OGFs, in which the location of old-growth stands was not related to
altitude, exposition, or slope. In this sense, spatial prediction of OGIs derived from the
geostatistical model provides a good first step in screening old-growth characteristics on
forested lands. The ALS model highlighted that the main variables related to old-growth
attributes were the 95th percentile of height and the second-order moment. The ALS
model’s performance was limited by the low density of the ALS data, but it is expected
that this circumstance will be overcome shortly with the incorporation of data with higher
resolution. We consider finally that the methodology and workflow presented in this study
could be applied for detecting OGFs of other conifer and broad-leaved species in different
ecosystems, to monitor changes in OGFs’ attributes over time, and to establish priorities
for conservation and management.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14164040/s1, Figure S1: Diameter size distributions of live
trees from old (black bars) and young (grey bars) stands; Figure S2: Old-growth indices (OGIs) for
each OGI type calculated in the study area. Normal (blue line) and kernel density (red dashed line)
of the distribution of each index. The structural variables included in each OGI type are described in
Table 1.

Author Contributions: Conceptualization, A.H., R.A., A.C. and J.V.-P.; methodology, A.H., R.A.,
A.C. and J.V.-P.; formal analysis, A.H., R.A., A.C. and J.V.-P.; investigation, A.H., A.C., R.A. and
J.V.-P.; resources, R.A. and J.V.-P.; writing—original draft preparation, A.H., A.C., R.A. and J.V.-P.;
writing—review and editing, A.H., A.C., R.A. and J.V.-P.; visualization, A.H., R.A., A.C. and J.V.-P.;
supervision, A.H., A.C., R.A. and J.V.-P.; project administration, R.A. and J.V.-P.; funding acquisition,
R.A. and J.V.-P. All authors have read and agreed to the published version of the manuscript.

https://www.mdpi.com/article/10.3390/rs14164040/s1
https://www.mdpi.com/article/10.3390/rs14164040/s1


Remote Sens. 2022, 14, 4040 14 of 17

Funding: This work was supported by the following projects: “Iberian Heritage Project”, funded by
the Netherlands Organization for Scientific Research (NWO, project number 236-61-001), National
Geographic Society-Waitts Grant Program (“Millennia old black pines and Andalusian Cultural
Heritage to unravel human-environment interactions in the Western Mediterranean”, W329-14),
the Biodiversity Foundation of the Ministry of Agriculture and Fisheries, Food and Environment
(“Bosques viejos frente al cambio climático. Vulnerabilidad, capacidad adaptativa e implicaciones
frente a la gestión forestal”, PRCV00433) and Ministry of Economy, Industry and Competitiveness
(MINECO) (“El final del ciclo envejecimiento, mortalidad y regeneración en pinares mediterráneos, y
su papel en la adaptación ante un ambiente en cambio (OLDPINE), AGL2017-83828-C2-2-R). The
Ministry of Agriculture and Environment of the Regional Government of Andalusia provided the AF
forest inventory data. AH have been supported by PinCaR project (UHU-1266324, FEDER Funds,
Andalusia Regional Government, Consejería de Economía, Conocimiento, Empresas y Universidad
2014-2020).

Data Availability Statement: The dataset generated during and/or analyzed in the current study is
available from the corresponding author on reasonable request.

Acknowledgments: We are grateful to Teresa Moro from the Natural Park, and Valentin Badillo from
the Cazorla, Segura and Las Villas Natural Park, for their interest and support. The forestry engi-
neering students Raúl García-Raga and Carlos Maeztu (University of Huelva), and Alex Boninsegna
(University of Padova) contributed to the fieldwork as part of their final thesis undergraduate studies.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bauhus, J.; Puettmann, K.; Messier, C. Silviculture for old-growth attributes. For. Ecol. Manag. 2009, 258, 525–537. [CrossRef]
2. Spies, T.A.; Hemstrom, M.A.; Youngblood, A.; Hummel, S. Conserving old-growth forest diversity in disturbance-prone

landscapes. Conserv. Biol. 2006, 20, 351–362. [CrossRef] [PubMed]
3. Mackey, B.; DellaSala, D.A.; Kormos, C.; Lindenmayer, D.; Kumpel, N.; Zimmerman, B.; Watson, J.E.M. Policy options for the

world’s primary forests in multilateral environmental agreements. Conserv. Lett. 2015, 8, 139–147. [CrossRef]
4. Spies, T.A. Ecological concepts and diversity of old-growth forests. J. For. 2004, 102, 14–20. [CrossRef]
5. Wirth, C.; Gleixner, G.; Heimann, M. Old-growth forests. Function, Fate and Value. Ecolo. Stud. 2009, 207, 3–7. [CrossRef]
6. Leverett, R. Definitions and history. In Eastern Old-Growth Forests: Prospects for Rediscovery and Recovery; Davis, M.B., Ed.; Island

Press: Washington, WA, USA, 1996; pp. 3–17.
7. Peterken, G.F. Natural Woodland. Ecology and Conservation on Northern temperate Regions; Cambridge University Press: Cambridge,

UK, 1996; 522p.
8. Acker, S.; Sabin, T.E.; Ganio, M.; McKee, W.A. Development of old growth structure and timber volume growth trends in maturing

Douglas-fir stands. For. Ecol. Manag. 1998, 104, 265–280. [CrossRef]
9. Kuuluvainen, T.; Syrjänen, K.; Kalliola, R. Structure of a pristine Picea abies forest in northeastern Europe. J. Veg. Sci. 1998, 9,

563–574. [CrossRef]
10. Mosseler, A.; Lynds, J.A.; Major, J.E. Old-growth forests of the Acadian Forest Region. Environ. Rev. 2003, 11, S47–S77. [CrossRef]
11. Mosseler, A.; Thompson, I.; Pendrel, B.A. Overview of old-growth forests in Canada from a science perspective. Environ. Rev.

2003, 11, S1–S7. [CrossRef]
12. Franklin, J.F.; Spies, T.A.; Van Pelt, R. Definition and Inventory of Old-Growth Forests on DNR-Managed State Lands; Washington State

Department of Natural Resources: Washington, DC, USA, 2005; 74p.
13. Rozas, V. Regeneration patterns, dendroecology, and forest-use history in an old-growth beech-oak lowland forest in Northern

Spain. For. Ecol. Manag. 2003, 18, 175–194. [CrossRef]
14. Lindner, M.; Sievanen, R.; Pretzsch, H. Improving the simulation of stand structure in a forest gap model. For. Ecol. Manag. 1997,

95, 183–195. [CrossRef]
15. Nagel, T.A.; Svoboda, M.; Diaci, J. Regeneration patterns after intermediate wind disturbance in an old growth Fagus-Abies forest

in Southeastern Slovenia. For. Ecol. Manag. 2006, 226, 268–278. [CrossRef]
16. Siitonen, P.; Martikainen, P.; Punttila, P.; Rauh, J. Coarse woody debris and stand characteristics in mature and oldgrowth boreal

mesic forests in southern Finland. For. Ecol. Manag. 2000, 128, 211–225. [CrossRef]
17. Lombardi, F.; Chirici, G.; Marchetti, M.; Tognetti, R.; Lasserre, B.; Corona, P.; Barbati, A.; Ferrari, B.; Di Paolo, S.; Giuliarelli, D.;

et al. Deadwood in forest stands close to old-growthness under Mediterranean conditions in the Italian Peninsula. Ital. J. For. Mt.
Environ. 2010, 65, 481–501. [CrossRef]

18. Franklin, J.F.; Spies, T.A. Composition, function, and structure of old-growth Douglas-fir forests. In Wildlife and Vegetation of
Unmanaged Douglas-Fir Forests; General Technical Report PNW-GTR-285; Ruggiero, L.F., Aubry, K.B., Carey, A.B., Huff, M.H.,
Eds.; USDA Forest Service: Washington, DC, USA, 1991; pp. 71–80.

http://doi.org/10.1016/j.foreco.2009.01.053
http://doi.org/10.1111/j.1523-1739.2006.00389.x
http://www.ncbi.nlm.nih.gov/pubmed/16903096
http://doi.org/10.1111/conl.12120
http://doi.org/10.1093/jof/102.3.14
http://doi.org/10.1007/978-3-540-92706-8_1
http://doi.org/10.1016/S0378-1127(97)00249-1
http://doi.org/10.2307/3237272
http://doi.org/10.1139/a03-015
http://doi.org/10.1139/a03-018
http://doi.org/10.1016/S0378-1127(03)00070-7
http://doi.org/10.1016/S0378-1127(96)03967-9
http://doi.org/10.1016/j.foreco.2006.01.039
http://doi.org/10.1016/S0378-1127(99)00148-6
http://doi.org/10.4129/ifm.2010.5.02


Remote Sens. 2022, 14, 4040 15 of 17

19. Gibson, L.; Lee, T.M.; Koh, L.P.; Brook, B.W.; Gardner, T.A.; Barlow, J.; Peres, C.A.; Bradshaw, C.J.A.; Laurance, W.F.; Lovejoy, T.E.;
et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 2011, 478, 378–381. [CrossRef]

20. Mansourian, S.; Rossi, M.; Vallauri, D. Ancient Forests in the Northern Mediterranean: Neglected High Conservation Value Areas; WWF:
Marseille, France, 2013; 80p.

21. FAO. Global Forest Resources Assessment 2015. Terms and definitions. In Forest Resources Assessment Working Paper 180; FAO:
Rome, Italy, 2015; p. 36.

22. Knorn, J.A.N.; Kuemmerle, T.; Radeloff, V.C.; Keeton, W.S. Continued loss of temperate old-growth forests in the Romanian
Carpathians despite an increasing protected area network. Environ. Conserv. 2013, 40, 182–193. [CrossRef]

23. Potapov, P.; Hansen, M.C.; Laestadius, L.; Turubanova, S.; Yaroshrenko, A.; Thies, C.; Esipova, E. The last frontiers of wilderness:
Tracking loss of intact forest landscapes from 2000 to 2013. Sci. Adv. 2017, 3, e1600821. [CrossRef]

24. Forest Europe 2015. State of Europe’s Forests 2015 Report. Available online: https://www.foresteurope.org/docs/fullsoef2015.
pdf (accessed on 21 April 2021).

25. Sabatini, F.M.; Burrascano, S.; Keeton, W.S.; Levers, C.; Lindner, M.; Pötzschner, F.; Verkerk, P.J.; Bauhus, J.; Buchwald, E.;
Chaskovsky, O.; et al. Where are Europe’s last primary forests? Divers. Distrib. 2018, 24, 1426–1439. [CrossRef]

26. Zhengquan, W.; Qingcheng, W.; Yandong, Z.; Li, H. Quantification of spatial heterogeneity in old growth forests of Korean pine. J.
For. Res. 1997, 8, 65. [CrossRef]

27. Tíscar, P.A.; Linares, J.C. Structure and regeneration patterns of Pinus nigra subsp. salzmannii natural forests: A basic knowledge
for adaptive management in a changing climate. Forests 2011, 2, 1013–1030. [CrossRef]

28. Noss, R.F. Beyond Kyoto: Forest management in a time of rapid climate change. Conserv. Biol. 2001, 15, 578–590. [CrossRef]
29. Millar, C.I.; Stephenson, N.L.; Stephens, S.L. Climate change and forests of the future: Managing in the face of uncertainty. Ecol.

Appl. 2007, 17, 2145–2151. [CrossRef] [PubMed]
30. Paci, M.; Salbitano, F. The role of studies on vegetation dynamics in undisturbed natural reserves towards the need of knowledge

for close-to-nature silvicultural treatments: The case study of Natural Reserve of Sasso Fratino (Foreste Casentinesi, northern-
central Apennines). In Proceedings of the AISF-EFI International Conference on “Forest Management in Designated Conservation
& Recreation Areas, Florence, Italy, 7–11 October 1998; Morandini, R., Merlo, M., Paivinnen, R., Eds.; University of Padua Press:
Padua, Italy, 1998; pp. 45–156.

31. Piovesan, G.; di Filippo, A.; Alessandrini, A.; Biondi, F.; Schirone, B. Structure, dynamics and dendroecology of an old-growth
Fagus forest in the Apennines. J. Veg. Sci. 2005, 16, 13–28. [CrossRef]

32. Lombardi, F.; Cherubini, P.; Lasserre, B.; Tognetti, R.; Marchetti, M. Tree rings used to assess time-since-death of deadwood of
different decay classes in beech and silver fir forests in the Central Apennines (Molise, Italy). Can. J. For. Res. 2008, 38, 821–833.
[CrossRef]

33. Mittermeier, R.A.; Hoffmann, M.; Pilgrim, J.; Brooks, T.; Lamoreux, J.; Mittermeier, C.G.; Gil, P.R.; Da Fonseca, G.A.B. Hotspots
Revisited: Earth’s Biologically Richest and Most Endangered Terrestrial Ecoregions; CEMEX: Mexico City, Mexico, 2004; 392p.

34. FAO. Plan Bleu 2018. In State of Mediterranean Forests 2018; Food and Agriculture Organization of the United Nations, Rome and
Plan Bleu: Marseille, France, 2018; 331p.

35. Firm, D.; Nagel, T.A.; Diaci, J. Disturbance history and dynamics of an old-growth mixed species mountain forest in the Slovenian
Alps. For. Ecol. Manag. 2009, 257, 1893–1901. [CrossRef]

36. Keren, S.; Motta, R.; Govedar, Z.; Lucic, R.; Medarevic, M.; Diaci, J. Comparative structural dynamics of the Janj Mixed old-growth
mountain forest in Bosnia and Herzegovina: Are conifers in a long-term decline? Forests 2014, 5, 1243–1266. [CrossRef]

37. Nilsson, S.G.; Niklasson, M.; Hedin, J.; Aronsson, G.; Gutowski, J.; Linder, P.; Ljunberg, H.; Mikusinski, G.; Ranius, T. Densities of
large living and dead trees in old-growth temperate and boreal forests. For. Ecol. Manag. 2002, 161, 189–204, Erratum in For. Ecol.
Manag. 2003, 178, 355–370. [CrossRef]

38. Carrión, J.S.; Munera, M.; Dupre, M.; Andrade, A. Abrupt Vegetation Changes in the Segura Mountains of Southern Spain
Throughout the Holocene. J. Ecol. 2001, 89, 783–797. Available online: https://www.jstor.org/stable/3072152 (accessed on 16
May 2021). [CrossRef]

39. Tíscar, P.A.; Lucas-Borja, M.E. Structure of old-growth and managed stands and growth of old trees in a Mediterranean Pinus
nigra forest in southern Spain. For. Int. J. For. Res. 2016, 89, 201–207. [CrossRef]

40. Abellanas, B.; Pérez Moreno, P.J. Assessing spatial dynamics of a Pinus nigra subsp. salzmannii natural stand combining point and
polygon patterns analysis. For. Ecol. Manag. 2018, 424, 136–153. [CrossRef]

41. Barros, L.A. Mapping Old-Growth Forests with Airbone LiDAR Delivered Forest Metrics Report. University of Northern British
Columbia. Available online: https://scholars.esri.ca/wp-content/uploads/profiles/318/Barros_Report.pdf (accessed on 1
October 2020).

42. González-Ferreiro, E.; Arellano-Pérez, S.; Castedo-Dorado, F.; Hevia, A.; Vega, J.A.; Vega-Nieva, D.; Álvarez-González, J.G.;
Ruiz-González, A.D. Modelling the vertical distribution of canopy fuel load using national forest inventory and low-density
airbone laser scanning data. PLoS ONE 2017, 12, e0176114. [CrossRef] [PubMed]

43. Bater, C.W.; Coops, N.C.; Gergel, S.E.; LeMay, V.; Collins, D. Estimation of standing dead tree class distributions in northwest
coastal forests using lidar remote sensing. Can. J. For. Res. 2009, 39, 1080–1091. [CrossRef]

44. Racine, E.B.; Coops, N.C.; St-Onge, B.; Bégin, J. Estimating Forest Stand Age from LiDAR-Derived Predictors and Nearest
Neighbor Imputation. For. Sci. 2014, 60, 128–136. [CrossRef]

http://doi.org/10.1038/nature10425
http://doi.org/10.1017/S0376892912000355
http://doi.org/10.1126/sciadv.1600821
https://www.foresteurope.org/docs/fullsoef2015.pdf
https://www.foresteurope.org/docs/fullsoef2015.pdf
http://doi.org/10.1111/ddi.12778
http://doi.org/10.1007/BF02864969
http://doi.org/10.3390/f2041013
http://doi.org/10.1046/j.1523-1739.2001.015003578.x
http://doi.org/10.1890/06-1715.1
http://www.ncbi.nlm.nih.gov/pubmed/18213958
http://doi.org/10.1658/1100-9233(2005)016[0013:SDADOA]2.0.CO;2
http://doi.org/10.1139/X07-195
http://doi.org/10.1016/j.foreco.2008.09.034
http://doi.org/10.3390/f5061243
http://doi.org/10.1016/S0378-1127(01)00480-7
https://www.jstor.org/stable/3072152
http://doi.org/10.1046/j.0022-0477.2001.00601.x
http://doi.org/10.1093/forestry/cpw002
http://doi.org/10.1016/j.foreco.2018.04.050
https://scholars.esri.ca/wp-content/uploads/profiles/318/Barros_Report.pdf
http://doi.org/10.1371/journal.pone.0176114
http://www.ncbi.nlm.nih.gov/pubmed/28448524
http://doi.org/10.1139/X09-030
http://doi.org/10.5849/forsci.12-088


Remote Sens. 2022, 14, 4040 16 of 17

45. White, J.C.; Tompalski, P.; Coops, N.C.; Wulder, M.A. Comparison of airborne laser scanning and digital stereo imagery for
characterizing forest canopy gaps in coastal temperate rainforests. Remote Sens. Environ. 2018, 208, 1–14. [CrossRef]

46. Kane, V.R.; McGaughey, R.J.; Bakker, J.D.; Gersonde, R.F.; Lutz, J.A.; Franklin, J.F. Comparisons between field- and LiDAR-based
measures of stand structural complexity. Can. J. For. Res. 2010, 40, 761–773. [CrossRef]

47. Zimble, D.A.; Evans, D.L.; Carlson, G.C.; Parker, R.C.; Grado, S.C.; Gerard, P.D. Characterizing vertical forest structure using
small-footprint airborne LiDAR. Remote Sens. Environ. 2003, 87, 171–182. [CrossRef]

48. Falkowski, M.J.; Evans, J.S.; Martinuzzi, S.; Gessler, P.E.; Hudak, A.T. Characterizing forest succession with lidar data: An
evaluation for the Inland Northwest, USA. Remote Sens. Environ. 2009, 113, 946–956. [CrossRef]

49. Barros, L.A.; Elkin, C. An index for tracking old-growth value in disturbance-prone forest landscapes. Ecol. Indic. 2021, 121, 107175.
[CrossRef]

50. Spracklen, B.; Spracklen, D.V. Determination of structural characteristics of old-growth forest in Ukraine using spaceborne LiDAR.
Remote Sens. 2021, 13, 1233. [CrossRef]

51. Kent, R.; Lindsell, J.A.; Laurin, G.V.; Valentini, R.; Coomes, D.A. Airborne LiDAR Detects Selectively Logged Tropical Forest Even
in an Advanced Stage of Recovery. Remote Sens. 2015, 7, 8348–8367. [CrossRef]

52. Martin, M.; Cerrejón, C.; Valeria, O. Complementary airborne LiDAR and satellite indices are reliable predictors of disturbance-
induced structural diversity in mixed old-growth forest landscapes. Remote Sens. Environ. 2021, 267, 112746. [CrossRef]

53. Tíscar, P.A. Estructura, Regeneración y Crecimiento de Pinus nigra en el área de Reserva Navahondona-Guadahornillos (Sierra de
Cazorla, Jaén). Ph.D. Thesis, Universidad Politécnica de Madrid, Madrid, Spain, 2004.

54. Alejano, R. Regeneración Natural de Pinus nigra Arn. ssp. salzmannii en las Sierras Béticas. Ph.D. Thesis, Universidad Politécnica
de Madrid, Madrid, Spain, 1997.

55. Spies, T.A.; Franklin, J.F. The structure of natural young, mature and old-growth Douglas- fir forests in Oregon and Washington.
Wildlife and Vegetation of Unmanaged Douglas-Fir. Forests 1991, 285, 91–109.

56. Whitford, T.C. Defining Old-Growth Douglas-Fir Forests of Central Montana and Use of the Northern Goshawk (Accipiter gentilis)
as a Management Indicator Species. Ph.D. Thesis, University of Montana, Missoula, MT, USA, 1991.

57. Zhang, Z.; Papaik, M.J.; Wang, X.; Hao, Z.; Ye, J.; Lin, F.; Yuan, Z. The effect of tree size, neighborhood competition and
environment on tree growth in an old-growth temperate forest. J. Plant Ecol. 2017, 10, 970–980. [CrossRef]

58. Lexerød, N.L.; Eid, T. An evaluation of different diameter diversity indices based on criteria related to forest management
planning. For. Ecol. Manag. 2006, 222, 17–28. [CrossRef]

59. Burrascano, S.; Keeton, W.S.; Sabatini, F.M.; Blasi, C. Commonality and variability in the structural attributes of moist temperate
old-growth forests: A global review. For. Ecol. Manag. 2013, 291, 458–479. [CrossRef]

60. Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 1974, 19, 716–723. [CrossRef]
61. McGaughey, R.J. Fusion/LDV: Software for LiDAR Data Analysis and Visualization; USDA Forest Service, Pacific Northwest Research

Station: Portland, OR, USA, 2015; 119p.
62. Arias-Rodil, M.; Diéguez-Aranda, U.; Álvarez-González, J.G.; Pérez-Cuadrado, C.; Castedo-Dorado, F.; González-Ferreiro, E.

Modeling diameter distributions in radiata pine plantations in Spain with existing countrywide LiDAR data. Ann. For. Sci. 2018,
75, 36. [CrossRef]

63. Hevia, A.; Álvarez-González, J.G.; Ruiz-Fernández, E.; Prendes, C.; Ruiz-González, A.D.; Majada, J.; González-Ferreiro, E.
Modelling canopy fuel and forest stand variables and characterizing the influence of the thinning treatments in the stand structure
using airborne LiDAR. Rev. Teledetec. 2016, 45, 41–55. [CrossRef]

64. Novo-Fernández, A.; Barrio-Anta, M.; Recondo, C.; Cámara-Obregón, A.; López-Sánchez, C.A. Integration of national forest
inventory and nationwide airborne laser scanning data to improve forest yield predictions in North-Western Spain. Remote Sens.
2019, 11, 1693. [CrossRef]

65. Whittingham, M.J.; Stephens, P.A.; Bradbury, R.B.; Freckleton, R.P. Why do we still use stepwise modeling in ecology and
behaviour? J. Anim. Ecol. 2006, 75, 1182–1189. [CrossRef]

66. Andersen, H.E.; McGaughey, R.J.; Reutebuch, S.E. Estimating forest canopy fuel parameters using LIDAR data. Remote Sens.
Environ. 2005, 94, 441–449. [CrossRef]

67. Næsset, E. Estimating above-ground biomass in young forests with airborne laser scanning. Int. J. Remote Sens. 2011, 32, 473–501.
[CrossRef]

68. Guerra-Hernández, J.; Görgens, E.B.; García-Gutiérrez, J.; Rodriguez, L.C.E.; Tomé, M.; González-Ferreiro, E. Comparison of ALS
based models for estimating aboveground biomass in three types of Mediterranean forest. Eur. J. Remote Sens. 2016, 49, 85–204.
[CrossRef]

69. Montealegre, A.L.; Lamelas, M.T.; de la Riva, J.; García-Martín, A.; Escribano, F. Use of low point density ALS data to estimate
stand-level structural variables in Mediterranean Aleppo pine forest. Forestry. Int. J. For. Res. 2016, 89, 373–382. [CrossRef]

70. Rcmdr: R Commander.R Package Version 2.7-1. Available online: https://socialsciences.mcmaster.ca/jfox/Misc/Rcmdr/
(accessed on 28 January 2021).

71. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna,
Austria. Available online: https://www.R-project.org/ (accessed on 28 January 2021).

72. Alin, A. Multicollinearity. WIREs Comp. Stat. 2010, 2, 370–374. [CrossRef]

http://doi.org/10.1016/j.rse.2018.02.002
http://doi.org/10.1139/X10-024
http://doi.org/10.1016/S0034-4257(03)00139-1
http://doi.org/10.1016/j.rse.2009.01.003
http://doi.org/10.1016/j.ecolind.2020.107175
http://doi.org/10.3390/rs13071233
http://doi.org/10.3390/rs70708348
http://doi.org/10.1016/j.rse.2021.112746
http://doi.org/10.1093/jpe/rtw126
http://doi.org/10.1016/j.foreco.2005.10.046
http://doi.org/10.1016/j.foreco.2012.11.020
http://doi.org/10.1109/TAC.1974.1100705
http://doi.org/10.1007/s13595-018-0712-z
http://doi.org/10.4995/raet.2016.3979
http://doi.org/10.3390/rs11141693
http://doi.org/10.1111/j.1365-2656.2006.01141.x
http://doi.org/10.1016/j.rse.2004.10.013
http://doi.org/10.1080/01431160903474970
http://doi.org/10.5721/EuJRS20164911
http://doi.org/10.1093/forestry/cpw008
https://socialsciences.mcmaster.ca/jfox/Misc/Rcmdr/
https://www.R-project.org/
http://doi.org/10.1002/wics.84


Remote Sens. 2022, 14, 4040 17 of 17

73. Torresan, C.; Corona, P.; Scrinzi, G.; Valls Marsal, J. Using classification trees to predict forest structure types from LiDAR data.
Ann. For. Res. 2016, 59, 281–298. [CrossRef]

74. Lindenmayer, D.B.; Laurance, W.F.; Franklin, J.F. Global decline in large old trees. Science 2012, 338, 1305–1306. [CrossRef]
75. Franklin, J.F.; Spies, T.A.; van Pelt, R.; Carey, A.B.; Thornburgh, D.A.; Berg, D.R.; Lindenmayer, D.B.; Harmon, M.E.; Keeton, W.S.;

Shaw, D.C.; et al. Disturbances and structural development of natural forest ecosystems with silvicultural implications, using
Douglas-fir forests as an example. For. Ecol. Manag. 2002, 155, 399–423. [CrossRef]

76. Hansen, A.J.; Spies, T.A.; Swanson, F.J.; Ohmann, J.L. Conserving biodiversity in managed forests. BioScience 1991, 41, 382–392.
[CrossRef]

77. Holt, R.F.; Braumandl, T.F.; Mackillop, D.J. An Index of Old-Growthness for Two BEC Variants in the Nelson Forest Region. Final Report;
Inter-agency Management Committee, Land Use Coordination Office, Ministry of Environment Lands and Parks: Victoria, BC,
Canada, 1999; 47p.

78. Freund, J.A.; Franklin, J.F.; Lutz, J.A. Structure of early old-growth Douglas-fir forests in the Pacific Northwest. For. Ecol. Manag.
2015, 335, 11–25. [CrossRef]

79. Sabatini, F.M.; Burrascano, S.; Lombardi, F.; Chirici, G.; Blasi, C. An index of structural complexity for Apennine beech forests.
iForest 2015, 8, 314–323. [CrossRef]

80. Molino, F. Los Coleópteros Saproxílicos de Andalucía. Ph.D. Thesis, University of Granada, Granada, Spain, 1996.
81. Ponce, D.B.; Donoso, P.J.; Salas-Eljatib, C. Differentiating structural and compositional attributes across successional stages in

chilean temperate rainforests. Forests 2017, 8, 329. [CrossRef]
82. Fulé, P.Z.; Ribas, M.; Gutiérrez, E.; Vallejo, R.; Kaye, M.W. Forest structure and fire history in an old Pinus nigra forest, eastern

Spain. For. Ecol. Manag. 2008, 255, 1234–1242. [CrossRef]
83. Seidl, R.; Thom, D.; Kautz, M.; Martin-Benito, D.; Peltoniemi, M.; Vacchiano, G.; Wild, J.; Ascoli, D.; Petr, M.; Honkaniemi, J.

Forest disturbances under climate change. Nat. Clim. Chang. 2017, 7, 395–402. [CrossRef] [PubMed]
84. Luyssaert, S.; Schulze, E.D.; Börner, A.; Knohl, A.; Hessenmöller, D.; Law, B.E.; Ciais, P.; Grace, J. Old-growth forests as global

carbon sinks. Nature 2008, 455, 213. [CrossRef]
85. Giorgi, F.; Lionello, P. Climate change projections for the Mediterranean region. Glob. Planet Chang. 2008, 63, 90–104. [CrossRef]
86. Seidling, W.; Mues, V. Statistical and geostatistical modelling of preliminarily adjusted defoliation on a European scale. Environ.

Monit. Assess. 2005, 101, 223–247. [CrossRef]
87. White, J.C.; Tompalski, P.; Vastaranta, M.; Wulder, M.A.; Saarinen, N.; Stepper, C.; Coops, N.C. A Model Development and Application

Guide for Generating an Enhanced Forest Inventory Using Airborne Laser Scanning Data and an Area-Based Approach; Information
Report FI-X-018; Canadian Wood Fibre Centre: Ottawa, ON, Canada, 2017; 38p.

88. Ozdemir, I.; Donoghue, D.M.N. Modelling tree size diversity from airborne laser scanning using canopy height models with
image texture measures. For. Ecol. Manag. 2013, 295, 28–37. [CrossRef]

89. Valbuena, R.; Maltamo, M.; Mehtätalo, L.; Packalen, P. Key structural features of Boreal forests may be detected directly using
L-moments from airborne LiDAR data. Remote Sens. Environ. 2017, 194, 437–446. [CrossRef]

90. Moran, C.J.; Rowell, E.M.; Seielstad, C.A. A data-driven framework to identify and compare forest structure classes using LiDAR.
Remote Sens. Environ. 2018, 211, 154–166. [CrossRef]

91. Hosking, J.R.M. L-moments analysis and estimation of distributions using linear combinations of order statistics. J. Royal Stat.
Soc. 1990, 52, 105–124. [CrossRef]

92. White, J.C.; Wulder, M.A.; Varhola, A.; Vastaranta, M.; Coops, N.C.; Cook, B.D.; Pitt, D.; Woods, M. A best practices guide for
generating forest inventory attributes from airborne laser scanning data using an area-based approach. For. Chron. 2013, 89,
722–723. [CrossRef]

93. Frazer, G.W.; Magnussen, S.; Wulder, M.A.; Niemann, K.O. Simulated impact of sample plot size and co-registration error on
the accuracy and uncertainty of LiDAR-derived estimates of forest stand biomass. Remote Sens. Environ. 2011, 115, 636–649.
[CrossRef]

http://doi.org/10.15287/afr.2016.423
http://doi.org/10.1126/science.1231070
http://doi.org/10.1016/S0378-1127(01)00575-8
http://doi.org/10.2307/1311745
http://doi.org/10.1016/j.foreco.2014.08.023
http://doi.org/10.3832/ifor1160-008
http://doi.org/10.3390/f8090329
http://doi.org/10.1016/j.foreco.2007.10.046
http://doi.org/10.1038/nclimate3303
http://www.ncbi.nlm.nih.gov/pubmed/28861124
http://doi.org/10.1038/nature07276
http://doi.org/10.1016/j.gloplacha.2007.09.005
http://doi.org/10.1007/s10661-005-9304-0
http://doi.org/10.1016/j.foreco.2012.12.044
http://doi.org/10.1016/j.rse.2016.10.024
http://doi.org/10.1016/j.rse.2018.04.005
http://doi.org/10.1111/j.2517-6161.1990.tb01775.x
http://doi.org/10.5558/tfc2013-132
http://doi.org/10.1016/j.rse.2010.10.008

	Introduction 
	Materials and Methods 
	The Study Area 
	Forest Inventory Data 
	Calculation of Old-Growth Indices 
	Geostatistical Modeling 
	ALS Data Analysis 

	Results 
	Selection of Structural Parameters and OGI 
	Geostatistical Model 
	ALS Model 

	Discussion 
	Stand Structure Differences between Young and Old-Growth Forests 
	OGIs to Distinguish Old Growth from Young Forests 
	Geostatistics and ALS to Estimate OGIs 

	Conclusions 
	References

