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Abstract: State estimation and mapping based on Light Detection and Ranging (LIDAR) are important
for autonomous systems. Point cloud registration is a crucial module affecting the accuracy and real-
time performance of LIDAR simultaneous localization and mapping (SLAM). In this paper, a novel
point cloud feature selection for LIDAR-inertial tightly coupled systems is proposed. In the front-end,
a point cloud registration is carried out after marking rod-shaped and planar feature information
which is different from the existing LIDAR and inertial measurement unit (IMU) integration scheme.
This preprocessing method subsequently reduces the outliers. IMU pre-integration outputs high-
frequency result and is used to provide the initial value for LIDAR solution. In the scan-to-map
module, a computationally efficient graph optimization framework is applied. Moreover, the LIDAR
odometry further constrains the IMU states. In the back-end, the optimization based on sliding-
window incorporates the LIDAR-inertial measurement and loop closure global constraints to reduce
the cumulative error. Combining the front-end and back-end, we propose the low drift and high
real-time LIDAR-inertial positioning system. Furthermore, we conducted an exhaustive comparison
in open data sequences and real-word experiments. The proposed system outperforms much higher
positioning accuracy than the state-of-the-art methods in various scenarios. Compared with the
LIO-SAM, the absolute trajectory error (ATE) average RMSE (Root Mean Square Error) in this study
increases by 64.45% in M2DGR street dataset (street_01, 04, 07, 10) and 24.85% in our actual scene
datasets. In the most time-consuming mapping module of each system, our system runtime can also
be significantly reduced due to the front-end preprocessing and back-end graph model.

Keywords: tightly-coupled integration; LIDAR-inertial SLAM; rod-shaped and planar feature;
sliding-window; graph optimization framework

1. Introduction

Accurate and reliable state estimation is a fundamental requirement of mobile robot
and automatic driving. In urban environments, indoor environments and other complex
scenes, it is difficult to achieve a high precision of positioning requirements with the
traditional GNSS/INS integrated.

In recent years, visual/LIDAR simultaneous localization and mapping have made
certain developments. On the one hand, visual slam can achieve six degrees-of-freedom
state estimation just by camera, but it is seriously affected by the illumination and low
texture feature [1]. On the other hand, the laser sensor directly obtains depth information
and has high resolution, which can also work at night and achieve accurate pose estimation.
Therefore, this research mainly focuses on LIDAR simultaneous localization and mapping.

LIDAR odometry and mapping (LOAM) [2] is an earlier proposed LIDAR slam al-
gorithm. Iterative ICP algorithm is a common method for point cloud matching, which
is time-consuming for registration, and it is easy to fall into a local minimum [3]. LOAM
replaces ICP with point-to-line and point-to-plane matching. It consists of two subsystems.
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The odometry system performs point to line/plane feature matching to calculate pose
between scans. The features of line and plane are judged according to point curvature. At
the same time, LOAM effectively eliminates the unreliable parallel points and occlusion
points. And it performs the distortion compensation by motion interpolation. The mapping
system performs scan to map matching and runs at lower frequency, which can perform
higher accuracy state estimation. By combining these two systems, LOAM achieves low
drift and low-computational complexity, which has been ranked as the top in the LIDAR
based method on the KITTI odometry benchmark site [4]. However, LOAM still has some
flaws; its point cloud is stored in global voxel. Without key frame selection, it is difficult to
integrate observation information of other sensors and perform global optimization.

F-LOAM adopts a two-stage distortion compensation method to reduce the com-
putational cost and improve the real-time performance [5], but there are still no global
optimization methods such as loop closure, resulting in large cumulative errors over a long
period of time. Liu et al. propose a method based on deep learning for extracting feature
points and obtaining the descriptors in LIDAR odometry. It also adopts the two-step state
estimation for long distance experiment, which has a good performance for LIDAR of vari-
ous resolutions [6]. V-LOAM introduces the visual odometry as the front-end of the laser
odometry, further improving the accuracy of slam [7]. HDL_GRAPH_SLAM [8] is an algo-
rithm that can fuse LIDAR, IMU and GNSS sensors, but the scan registration accuracy is low
which is based on NDT [9]. It is also prone to drift in non-plane because of the flat ground
constraint. LeGo-LOAM implements point cloud segmentation to reduce the number of
features, and two-step registration provides the initial value for LIDAR mapping module.
LeGo-LOAM firstly covers the key frame selection and loop detection [10]. However, there
is obvious drift in the large scene testing experiment and the IMU is only used to remove
distortion. LIO-mapping [11] is a joint state estimation problem based on the ideas of
LOAM and VINS-Mono [12]. The front-end vision part is replaced by the LIDAR front-end
for feature extraction and state estimation. However, the optimization problem is too large
to be real-time, which makes it hard to apply in a mobile device. LINS is a tightly coupled
LIDAR-inertial odometry (LIO) system based on the filter method [13]. The iterative error
state Kalman Filter is used to correct the state estimation of the robot, but there is still a
problem that the robot will drift when it runs for a long time without global constraints.
LiLi-OM puts forward an adaptive keyframe selection for both solid-state and traditional
LIDAR. It also introduces a metric weighting function during sensor fusion [14]. However,
lacking a point cloud processing, the system stability is inadequate. LIO-SAM [15] is also a
tightly-coupled LIO system, which is based on the incremental smoothing and mapping
framework iSAM2 [16]. In addition, the loop closure factor and GPS factor can be added
to the global optimization factor graph. In spite of this, its IMU constraints do not enter
the factor graph optimization system, which may result in loss of constraint information
between IMU and LIDAR measurements. In the actual scene test, LIO-SAM will appear at
unstable states such as point cloud matching errors, especially when the carrier movement
is in a large scene. Zhang et al. proposed the LIDAR-inertial odometry with an adaptive
covariance estimation algorithm which is based on loosely-coupled method. It achieves
better result compared to the tightly-coupled method [17].

In short, the existing LIDAR slam algorithms are mainly for small scenes. But for
the complex scene or the great motion change, they are prone to cumulative errors and
poor robustness.

Meanwhile, the processing of point cloud data affects the accuracy of point cloud
registration for LIDAR slam. Douillard et al. introduced a method which jointly determines
the ground and individual objects on the ground in three-dimensional space, including
overhanging structures, but it requires a large amount of computation time, limiting
online applications [17]. B. Douillard et al. proposed a priori ground extraction way.
Segmentation of dense 3D data is optimized via a simple yet efficient voxel of the space.
This approach provides near-real-time performance, but is not sufficient for real-time
positioning scenarios [18]. M. Himmelsbach et al. proposed that 3D point clouds are
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projected onto 2D grids on the ground plane, and then point clouds were segmented on the
occupied grids [19]. The algorithm has fast speed and is suitable for online segmentation.
However, the method tends to result in weak segmentation. When two objects are relatively
close to each other, it is prone to misrecognition, especially in the z-axis direction. In 2019,
Seungcheol Park et al. proposed Curved-Voxel Clustering. The point cloud coordinates
are converted from cartesian coordinates to spherical coordinates, and each point cloud
is assigned to the voxel in the corresponding spherical coordinate system. Hash tables
establish associations between indexes and points. When clustering, lookup is implemented
using the hash tables [20]. Chen et al. use IMU to assist the point cloud registration and
introduce the inertial error model for mobile laser scanning, which could effectively reduce
the error with low time cost [21].

This paper mainly aims to improve the accuracy of LIDAR point cloud registration
under the condition of real-time positioning, so as to ensure the robustness of the system.
The contributions of this paper are summarized as follows:

1. A quick and effective feature extraction method is proposed. Due to the information of
rod-shaped and planar feature, edge points and surface points are extracted reasonably
to calculate curvature with the low computational cost.

2. IMU pre-integration is used to provide the initial value for LIDAR odometry, and the
LIDAR odometry further constrains the pre-integrated IMU states.

3. A graph optimization model is used to solve the scan-to-map module, which greatly
improves the speed of the traditional algorithm. Another graph optimization model is
used to globally optimize the pre-integrated IMU measurements residuals, inter-frame
matching residuals and loop residuals, which improves the accuracy and stability of
LIO system effectively.

2. System Overview

The overall framework of this system is shown in the Figure 1. LIDAR and IMU
measurements are the inputs for the system.
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The system can be divided into three parts.
First, the preprocessing module, the raw point clouds are de-skewed using gyroscope

data and IMU pre-integration value. Current scan’s point cloud is projected to the 2D
image. The depth characteristic value is used to remove the outlier points. Image is used to
segment the planar feature and cluster the rod-shaped feature information.

Then, the LIO odometry module, IMU pre-integration results are used to estimate motion
pose. The scan-to-map between current frame and local map is performed. In the scan-to-
map module, we introduce the graph optimization model which can enhance the speed
and accuracy of the solution, and a sliding window-based way is applied to update and
maintain the local map.

At last, the global optimization module, if the current frame is judged to be a keyframe,
LIDAR scan-to-scan residuals, pre-integrated IMU residuals and loop residuals are opti-
mized via the slide window optimization. Information of marginalization is used for prior
constraints. Loop closure is detected and performed in an effective way, which is beneficial
to reduce cumulative error.

According to this system, we get the 6-DOF pose estimation and a real-time updated
global map. Exhaustive comparisons have been conducted to prove the superiority of
our system.

We define notations and frame definitions throughout the article. (·)W is considered
as world frame. In the LIO system, the origin of the world coordinate is identified as
the first LIDAR frame (·)B is the body frame and (·)L is the LIDAR frame. Rotation is
represented by rotation matrices R and quaternions q. So RB

W and qB
W is the rotation from

world frame to body frame, and pB
W is the translation. ⊗ is defined as the multiplication

between two quaternions.

3. The Preprocessing Module

In this study, the current LIDAR point cloud is projected onto the current 2D image
grid, which is represented by a matrix. The horizontal index unit of moment frame is the
horizontal resolution of each frame, and the vertical unit is the vertical resolution. For
example, the size of the projected image matrix of 16-line LIDAR is 16 ×1800. The value of
the image grid stores the depth of each point, and the points will be removed if there is an
outlier value. The operating point cloud data on the basis of two-dimensional images can
significantly improve the computing speed.

After this process, reliable estimation of LIDAR´s per scan is a necessary prerequisite.
In this paper, IMU pre-integration is used to obtain the relative translational motion at
the beginning and the end of each scan. Based on this method, point cloud distortion
can be eliminated. In the meantime, the raw point clouds from each scan are rotationally
de-skewed using gyroscope data.

3.1. Label Planar Feature Information

The sensor carrier is moving on the ground and the LIDAR is mounted horizontally.
The ground is observed with the beams below. We can get a rough but fast estimate of
the plane from the number of rows of the image matrix. In the estimation plane, accurate
ground points can be marked by judging the angle of each point to the ground.

a = tan−1 dz√
(dx)2+(dy)2

=
OP2

OP1
(1)

As shown in the Figure 2, P1 and P2 are two laser beams reflection points. The angle
a corresponding to the points of adjacent laser beams should have a small value if there
is no barrier. Points on the ground can be marked according to the size of the included
angle value. Dx, dy and dz represent the differences of the two laser beams in the three
directions, respectively.
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3.2. Label Rod-Shape Feature Information

Figure 3 is the top view; OC is the measurement of the first beam and OD is the second.

B = tan−1 r2sinα

r1 − r2cosα
=

MD
OM

(2)
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In this formula, r1 and r2 are the depth values measured by the two beams. A is the
angle between the two laser beams. For example, the angle is 0.2◦ in x direction and 2◦ in y
direction in Velodyne16.

If C and D are on different objects, the angle β between OC and OD will be greater than
a certain threshold. In this work, we set this threshold at 20◦. According to this method, we
can cluster the same cluster objects quickly and accurately.

The point cloud of our two-dimensional image model can be traversed quickly. We
traversed each pixel in the 2D image and calculated the included angle for four points
around each pixel. And each pixel is searched by BFS algorithm [22].

As shown in the Figure 3c, the surrounding points consist of the left, right, lower and
top pixels. If the angle between the surrounding points is smaller than the threshold, we
decided they are the same object. If a point is marked, then it will be skipped. So, the
algorithm complexity is Θ(N), where N is the number of image pixels.

For the subsequent processing of point cloud, the influence of disorderly points and
inaccurate points can be avoided. For example, when the carrier is driving, leaves, small
objects, grass and weeds can be removed. These are difficult to observe through two
consecutive frames of scanning, which are the main factors affecting the pose solution.

3.3. Feature Extraction

Through the segmentation and clustering of planar and rod-shaped information in
the previous steps, the extraction of edge point and planar point are carried out in the
rod-shape and planar feature information. Curvature is defined as follows:

c =
1

|S|• ||Pr L
i ||
|| ∑

j∈S,j 6=i
(Pr L

j − PrL
i )|| (3)

In this formula, S is the set of continuous points from the same row of the 2D image. Pr
is the point range. In this work, S is set to 10. And c is the curvature value.

Similar to LOAM, the depth information of each point is used to eliminate parallel
points and occluded points, which have certain influence on the subsequent solution. In the
feature extraction process, each frame is divided into 6 sub-images, which has a resolution
of 16 × 300. Edge points and planar points are extracted from each sub-image, which are
determined according to threshold cth and pth. In this work, cth and pth are chosen to be
1 and 0.1. The edge point set and planar point set extracted from k frame are εk and sk.

After this process, we selectively obtain stable features and reduce the calculation
pressure at the back-end. At the same time, this step improves the reliability of front-end
scan registration.

4. The LIO Odometry Module
4.1. IMU Pre-Integration

LIDAR and IMU work in different frequencies. Usually, the LIDAR is 10 to 30 Hz and
the IMU is 100 to 500 Hz. The pre-integration integrates the IMU measurement values
between each adjacent frame of LIDAR, and adopts a value to express it. Through this step,
we can get the output of the two sensors at the same frequency

The measurements of IMU include angular velocity ω̃B(t) and acceleration ãB(t). The
measured values are all under the B coordinate system. And the measurement equation
can be modeled as:

ω̃B(t)= ωB(t)+bω(t)+ηω(t) (4)

ãB(t)= RB
W(t)(a W(t) − gW) + ba(t)+ηa(t) (5)

The measured values are affected by the slowly varying bias b(t) and white noise η(t).
The acceleration of gravity in the world system. gW= [0, 0, g]T is the gravity vector, which
affects the measurement. So, it should be subtracted.
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In our work, noise is ignored and the biases are considered the constant during the
pre-integration period. The current state value can be obtained based on the derive of
pre-integration. Assuming that j is the current frame and i is the last frame. The attitude
rotation matrix Rj

WB, velocity vj
WB, and position pj

WB can be expressed as:

Rj
WB= Ri

WB∆RijExp(J g
∆Rij

δbi
ω

)
(6)

vj
WB= vi

WB +gW∆tij+Ri
WB

(
∆vij+Jω

∆vij
δbi

ω+Ja
∆vij

δbi
a

)
(7)

pj
WB= pi

WB+vi
WB∆tij +

1
2

gW∆tij
2+Ri

WB

(
∆pij+Jω

∆pij
δbi

ω+Ja
∆pij

δbi
a

)
(8)

J is for Jacobians, and the details can be found in [23]. The Ja
(·)ba and Jω

(·)bω means a
first-order approximation of the effect of changing the biases to avoid repeated integration.
Meanwhile, the terms of pre-integration ∆Rij, ∆vij and ∆pij can be computed between the
frame i and j:

∆Rij =
j−1

∏
k=i

Exp((ω k
B−bi

ω)∆ t) (9)

∆vij =
j−1

∑
k=i

∆Rik(a k
B−bi

a)∆t (10)

∆pij =
j−1

∑
k=i

(∆vik∆t+
1
2

∆Rik(a k
B−bi

a)∆t2) (11)

4.2. Build Local Map

In point cloud registration, the iterative closest point (ICP) algorithm is the most
commonly scan registration method. However, as the urban scenes consists of lots of
moving targets, ICP registration failure rate is high, which is directly based on raw point
data. And ICP is improper for localization and mapping in real time due to its large amount
of computation. In LOAM, pose estimation depends on scan-to-scan matching for quick
estimation. However, this method is prone to cumulative error. In our work, current
scan and local map are matched according to the predict value of IMU pre-integration.
Meanwhile, the scan-to-map result is used to correct the IMU accumulative errors.

A local map associated with the current LIDAR frame is constructed. A fixed number
of key frame maps within a certain range are constructed by sliding window method.
The local map is converted to the W coordinate system. Edge points and planar points
of a local map form the voxel map. And the points in local map are down-sampled to
eliminate the duplicated features. In order to improve the point cloud matching speed, the
feature information of the local map is stored in the data structure of KD-tree [24] for the
convenience of subsequent search.

Therefore, this paper adopts the registration method based on feature points. After the
feature points with the same type are obtained through preprocess, the graph optimization
model is used to iteratively locate for current scan and local map.

4.3. Pose Estimation

For each edge point pε ∈ εk, we search for the nearest five points on the local map
and calculate the mean and covariance matrices for the five points. When the distribution
of points approximates a straight line, one eigenvalue of the covariance matrix will be
significantly larger than the rest. In this study, the eigenvector corresponding to the
eigenvalue usm

ε is the main direction of the line, and psm
ε is the geometric center of the

five points in the Figure 4. If the line feature satisfies the condition, the distance between
the current edge point and the line can be calculated, and the best pose estimation of the
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current point in the local map can be obtained by minimizing the distance. The distance
calculation formula:

fε(pε)= pn• ((T k pε − psm
ε ) × usm

ε

)
(12)

where symbol • is the dot product and × is the cross product. pn is the unit vector.

pn =
(T k pε−psm

ε ) × usm
ε

||(T k pε−psm
ε ) × usm

ε ||
(13)
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is the geometric center of the five nearest points in the local map.

In the same way, each planar point in the current scan ps ∈ sk, we search for five
points on the local map to form a plane. However, the difference is that the eigenvector
corresponding to the minimum eigenvalue of the five-point covariance matrix is the normal
vector corresponding to this plane. As shown in the Figure 5, usm

s is the main direction of
the normal vector. psm

s is the geometric center of five planar points.

fs(ps) = (Tk ps − psm
s )• usm

s (14)
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Therefore, this optimization problem can be constructed as:

min
{
∑ fε(pε) + ∑ fs(ps)

}
(15)

The graph optimization algorithm is used to solve the nonlinear optimization problem.
Thus, accurate state estimation can be obtained. Jacobian’s derivation can be based on the
mathematical model of left disturbance with δϕεse(3) [25].

Jp = ∂(TP)
∂δϕ

= lim
δϕ→0

(exp(δϕ)(TP) − (TP))
∂ϕ

=

[
I3∗3 − [TP]×
01∗3 01∗3

] (16)

where [TP]× transforms 4D point expression {x, y, z, 1} into 3D point expression {x, y, z}
and calculates its skew symmetric matrix. Jacobian matrix with edge residual can be
derived by:

Jε =
∂ fε(pε)

∂(TP)
∂(TP)
∂δϕ

= pn• (u
sm
ε × Jp) (17)

In the same way, we also can derive:

Js =
∂ fs(ps)

∂(TP)
∂(TP)
∂δϕ

= usm
ε • Jp (18)

According to above formula, the estimation can be calculated by iterative optimization
until it converges. In the work, the local map size is set to within 50 m radius. We propose
the new optimization model, deduce the corresponding residual and Jacobian, and improve
the solving speed significantly compared to other algorithms (see Section 6).

5. The Global Optimization Module

If the motion change in the current scan is greater than a certain threshold (10◦ in
rotation and 0.5 m in translation) compared with that of the previous scan, the current
frame will be judged as a key frame, and it will enter the global optimization which is
based on sliding window.

In this paper, the state vector in the sliding window is defined as χ = [x0, x1, x2, . . . , xn].
And χi =

[
pW

bi
, qW

bi
, vW

bi
, ba, bg

]
. For the n keyframe window width, these states are obtained

by minimizing

min︸︷︷︸
xn

{
||Rp

(∼
χ
)
||

2
+

n

∑
k=1

L
(

ẑbi
bj

, χ
)
+

n

∑
k=1

κ
(

ẑbi
bj

, χ
)
+

n

∑
k=1

F
(

ẑ
bloop
bj

, χ
)}

(19)

In this formula, Rp(x̃) means the prior residual according to the measurements which
are marginalized out because of the sliding window. L(xk), κ(xk) and F(xk) denote the
LIDAR, IMU and loop closure error terms. Figure 6 shows the optimization process.
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Figure 6. The optimization contains prior term, LIDAR term, IMU term and loop term. Prior term is
generated by marginalization. Observations of LIDAR can provide scan-to-scan constraints and IMU
pre-integration forms the constraints between keyframes. Loop closure is used for reduce the drift for
the long-time running.

5.1. Prior Term

The purpose of marginalization is to bound the computational complexity. For the
states out of the sliding window, they cannot be directly throwed away, because it will
destroy the original constraint relationship and lose the constraint information. This work
selectively marginalizes out xi from the sliding window via Schur-complement [26], and
convert measurements corresponding to marginalized states into the prior.

5.2. LIDAR Term

Through the previous scan-to-map calculation of each scan (see Section 4.3), The
LIDAR state variation between two adjacent frames is added into the graph optimization
model as scan-to-scan constraint.

L
(

zbi
bj

, χ
)
= ∆Tij = TT

i Tj (20)

This work assumes that j and i are the current and previous frame, respectively. This
term can inhibit the accumulation of cumulative errors over a long time.

5.3. IMU Term

When IMU measurements are available, the residual between two continuous frames
can be calculated, and the residual is defined as:

κ
(

ˆ
Z

bi

bj
, χ

)
=



δα
bi
bj

δβ
bi
bj

δθ
bi
bj

δba

δbω


=



Rbi
W

(
pW

bj
− pW

bi
− vW

i ∆t + 1
2 gW∆t2

)
− α̂

bi
bj

Rbi
W

(
vW

j − vW
i ∆t + gW∆t

)
− β̂

bi
bj

2
[(

q̂bi
bj

)−1
⊗
(

qω
bi

)−1
⊗ qω

bj

]
xyz

ba
j − ba

i
bω

j − bω
i


(21)
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where [•]xyz is the imaginary part of a quaternion. α̂
bi
bj′

, β̂
bi
bj

and q̂bi
bj

are the pre-integration

of position, velocity, and rotation between j and i under the assumption that ba and bω

are stable.

5.4. Loop Term

Loop closure is an important step to correct the accumulated error in SLAM system.
In this study, the function is realized by distance detection. In the current frame, we search
for the distance coordinates of nearby key frames. And frames within the geometric radius
15m can be marked as the candidate loop closure frames.

We select the nearest frame from the candidate frame as the previous key frame TW
loop.

Then a certain number of point clouds are found near the previous key frame, which are
used for a small local map. In this module, the number of points in optimization model
is less, so ICP is used to calculate the relative transformation TW

W ′ of similar scenes. The
residual between the previous key frame and current frame can be obtained:

F
(

ẑ
bloop
bj

, χ
)
= ∆Tloop,j= (T W

loop

)−1
TW

W ′T
W ′
j (22)

In order not to affect the real-time performance, loop closure detection and mapping
for ICP are in another thread.

6. Evaluation

In order to verify our algorithm, we have conducted public dataset experiments and
real-word experiments. The proposed algorithm is operated on a laptop which consists
of an Intel-i7 CPU and 16G of memory. The operating system is Ubuntu18.04 and ROS
Melodic [27]. We use evo [28] to evaluate accuracy. The optimization library we used are
GTSAM [29] and Ceres [30].

6.1. Validation of M2DGR Datasets

M2DGR [31] datasets were recorded using ground robots. As shown in Figure 7, A
HDL 32E Velodyne LiDAR (labeled 3 in the figure) was used to scan the surrounding
environment and obtain the 3D point cloud. The IMU device is Handsfree A9 (labeled 5 in
the figure), which is a 9-axis sensor. In outdoors, the satellite visibility is good so that the
GNSS-RTK suite (labeled 4 in the figure) outputs high-precision ground truth. For indoor
environments, the ground truth trajectories are recorded with a motion-capture system
which consists of twelve highspeed tracking cameras. The spatial relationship among
different sensors have been calibrated.

In order to test the robustness of our algorithm, we adopt tests of different scenarios,
and the data information is shown in the Table 1. Street_01, 04, 07, 10 are collected on the
street. In the street dataset, there are buildings discontinuously. The structured environment
has rich geometric feature information. However, the switching of unstructured scene
has the unpredictable influence on LIDAR odometry. Various weeds, leaves and other
environmental factors affect the positioning accuracy in Street_04 around the lawn. Loop
is set for loop closure detection, which is important for the validation in back-end graph
optimization, and the motion state of zigzag brings challenges for interframe motion
estimation. When the running time is longer than 500 s, we think that it is long-term to test
for stability and robustness. Gate_02 is collected around the large circular gate. It is easy
to satisfy the loopback condition. The ground robot is always rotating in Circle_02 scene,
which is difficult for the feature matching, and Hall_05 is collected for indoor environment.
There is a large amount of overlap and structured feature during the experiment.
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Table 1. The dataset contains all kinds of scene.

Street_01 Street_04 Street_07 Street_10 Gate_02 Circle_02 Hall_05

Durations/s 1028 858 929 910 327 244 402

Description
of features

Street and
buildings,

zigzag,
long-term

Around
lawn,

loop back,
long-term

Zigzag,
long-term

Zigzag,
long-term

Loop back,
around gate

Circle,
rotation

Indoor, large
overlap

We contrast our system with ALOAM, LeGo-LOAM and LIO-SAM. ALOAM only
depends on LIDAR; the core of the algorithm is the same as LOAM, but it is achieved
according to Ceres for the code readability. LeGo-LOAM uses IMU data to help remove
motion distortions from point clouds. LIO-SAM is a tightly coupled LIDAR and IMU
approach, but there is no front-end processing of point clouds and the traditional solution
algorithm in scan-to-map is more time consuming.

We choose some typical scenarios such as zigzag, rotation and loop. In these cases,
point cloud mismatching often occurs due to the violent motion of the carrier. The long-term
run is to verify the elimination of the accumulated error of the LIO system.

In Table 2, the bold and italic values indicate the minimum error. Seven groups of
experiments prove that our algorithm improves the accuracy in most scenarios. Especially
in a scene such as a street. In the sequence “Circle_02”, our LIO system has a higher error
than LeGo-LOAM. That is because “Circle_02” is collected in a fixed scene and the ground
robot is always rotating. This motion state has slightly bad effect on IMU pre-integration.
Other than “Circle_02”, our system benefits from the tightly couple of inertial and LIDAR
information. In the sequence “Gate_02” and “Hall_05”, the four algorithms perform equally
well. These two scenes are simple and rich in structural features. However, in the street
sequence, our algorithm can greatly improve the performance.
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Table 2. Absolute trajectory error (ATE) RMSE (m) of the four algorithms in seven datasets.

Street_01 Street_04 Street_07 Street_10 Gate_02 Circle_02 Hall_05

ALOAM 7.661 3.582 27.590 22.075 0.361 1.391 1.029
LeGo-LOAM 3.269 1.193 14.583 31.024 0.485 0.288 1.034

LIO-SAM 6.390 1.133 4.693 2.569 0.326 0.618 1.053
OURS 1.362 0.836 1.579 1.479 0.313 0.409 0.980

6.1.1. Positioning Performance Analysis

Street_01 is chosen for our analysis. Figure 8 shows the trajectories of the four algo-
rithms in street_01 in X-Y plot. The accumulative error of four algorithms can be obtained
from the detail diagram. Our system makes reasonable use of feature information, which
effectively improve the accuracy of point cloud matching. Planar points are extracted from
ground surface feature information, and edge points are extracted from rod feature infor-
mation. We notice that ALOAM, LeGo-LOAM and LIO-SAM will drift and have a large
deviation when it comes to turning. However, in this system, the point cloud registration
has been greatly improved.
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More detailed evaluations have been conducted. Figure 9 shows absolute trajectory
error variation for 4 algorithms in street_01. ALOAM have largest error without IMU
measurements, and its scan-to-scan method has a bad influence, which is easy for providing
inaccurate information in the scan-to-map module. LeGo-LOAM applies a two-step scan-
to-scan method, which is beneficial for improving efficiency, but it still introduces much
error. Moreover, without IMU constraint, loose-coupled LIO system such as LeGo-LOAM
cannot adequately make use of sensor observation information. In LIO-SAM, there is no
point cloud preprocessing section. Lots of unstable observations also have bad effects on
point cloud registration.
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Figure 9. Illustration of the absolute trajectory error variation. Our system has been kept a low level.

This work not only tests RMSE in Table 2. Figure 10 displays each evaluation pa-
rameter. Our system has a good performance in different indicators. Figure 11 is the box
diagram, which is used to display the dispersion of a set of data. The system also has the
lowest deviation.
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Figure 11. Box diagram which is used to reflect the characteristics of distribution of data.

Four algorithms have been compared. We now analyze the difference between our
system and ground truth. Figure 12 is the display diagram of trajectory and truth value in
the X-Y plane.
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Figure 13 shows error changes in three directions throughout the period. We can see
that the system has an obvious deviation at the start time. That is because the optimization
process takes time to converge and correct. At the same time, local map takes time to build.
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After a long run, the error is remained low in our system. It verifies the robustness and
high precision of the work.
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6.1.2. Runtime Performance Analysis

Meanwhile, our experiments proved that the time consumption of our scan-to-map
module is significantly reduced from Table 3. Four algorithms have this module which is
the most time-consuming. So, we choose the cost time of this module for comparison. The
bold and italic values indicate the minimum time consumption. We can see the obvious
advantage of our algorithm.

Table 3. The time consumption (ms) in seven datasets. All are recorded in the same platform.

Street_01 Street_04 Street_07 Street_10 Gate_02 Circle_02 Hall_05

ALOAM 295.875 250.093 309.164 251.751 230.516 294.688 106.374
LeGo-LOAM 132.986 93.184 149.694 124.700 112.126 122.932 57.938

LIO-SAM 61.900 43.461 83.957 76.541 57.518 90.450 21.308
OURS 37.600 27.427 66.093 50.888 35.215 34.628 14.296

LOAM and LeGo-LOAM use a scan-to-scan match to provide odometry, which means
using the current scan and last scan to do the scan matching, and the result offers an initial
guess for mapping. LIO-SAM and our system use IMU pre-integration, which is of high
frequency, and we use the back-end result to suppress IMU drift. Even more, thanks to the
edge points extracted from the rod-shaped information and the planar points extracted
from the ground surface information, many outliers are not in the operation. Accuracy and
speed are greatly improved.

We still choose street_01 for analysis. Table 4 shows the number of frames four
systems processed.

Table 4. The scan-to-map frames in street_01.

ALOAM LeGo-LOAM LIO-SAM OURS

Scan-to-map frames 2788 2566 5128 5133
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Figure 14 shows the processing time of each frame. We can clearly see the lowest
cost time of our system. In ALOAM, the mapping module uses the global map and map
maintenance is time-consuming. LeGo-LOAM and LIO-SAM are the same, which apply
Levenberg–Marquardt algorithm [32] of 30 iterations for optimization. Our algorithm uses
faster and more accurate graph optimization model to solve the scan-to-map module (see
Sections 4.2 and 4.3).
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The computationally-efficient system is meaningful for mobile terminal and other
platforms with limited computing resources.

6.2. Validation of Our Datasets

To further test our system, LIDAR has less beams and IMU is of different quality.
We set up a sensor suite composed of a VLP16 Velodyne and an ADIS16488 IMU (see
Figure 15). Sensors have hardware time synchronization because of GPS pulse per second
(PPS). RTK/IMU combined navigation results are used as the truth value, which is after
NovAtel Inertial Explorer software post-processing. Our aim is to prove the versatility of
our algorithm. We pick two typical scenarios. One is in a campus (dataset_01) and the
other is on a city road (datasetet_02).

In dataset_01, (see Figure 16) the speed of our car is about 6 m/s. There is rich
feature, but there is accumulated error in long-term run. Various weeds, leaves and other
environmental factors affect the positioning accuracy.

Dataset_02 was collected in the wide urban road (see Figure 17) and the speed of our
car is about 14 m/s. It contains a large number of buildings. Dynamic objects will affect the
point cloud matching accuracy. The density of point cloud in open space is small and it is
difficult to have a good performance on localization.
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Figure 16. Trajectory and mapping are generated by our system. (a) Our trajectory and ground truth.
Different colors represent the error values. (b) The mapping result is rendered with LIDAR intensity
value from the top view during the positioning process. (c) The top panel is the specific real-word
environment picked out of the whole trajectory. The bottom panel shows the detail from LIDAR
mapping correspond to the top panel.
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In feature-rich areas(dataset_01), we can conclude that LIDAR will have good per-
formance than the wide-open spaces(dataset_02) from the Table 5. The bold and italic
values indicate the minimum error. Compared with the LIO-SAM, the RMSE in the study
increases by 24.2% in dataset_01 and 25.0% in dataset_02.

Table 5. Absolute trajectory error (ATE) RMSE (m) in our real-word experiments.

Durations/s Description of Features A-LOAM LeGo-LOAM LIO-SAM OURS

dataset_01 678 campus 4.040 1.264 1.272 0.964
dataset_02 240 wide rode 6.391 5.933 4.205 3.152

In the Figures 16a and 17a, they show the corresponding trajectories of the two
datasets and different colors represent the error values. In the Figures 16b and 17b, the
global reconstruction of the two scenes is built. Due to the multiple constraints of the
back-end optimization, we obtain a globally consistent point cloud map. According to
Equation (19), the robustness and reliability of the map can be guaranteed. The map shows
the structural details in the bottom panel of Figure 16c. We can clearly see the cars and the
trunk of the tree in the dataset in bird-eye view. In the Figure 17c, the wide roads have great
influence for LIDAR slam (see Table 5). However, our algorithm can also reduce the error.

The time performance is consistent with the M2DGR dataset analysis (see Section 6.1.2).
In dataset_01, due to the features’ richness in campus scenes, the feature information
relationship in scan-to-map needs much time for calculation. However, the average time
consumption is 64.379 ms, which can satisfy the real-time requirement (LIDAR is 10 HZ
sampling frequency), and the average time consumption is 25.874 ms in the road test in the
dataset_02, which is computationally efficient. Our system can achieve a good estimation
result with less time cost.

7. Conclusions and Future Perspectives

According to the datasets and our own data experiments, compared to LIDAR only
positioning (ALOAM), the positioning accuracy and robustness is significantly improved.
Then only IMU data helps the point cloud to remove distortion (LeGo-LOAM), the tightly
coupled LIO has lower drift, and compared to LIO-SAM, segmentation and clustering are
used to mark feature information. The point cloud matching is more accurate and the
runtime of scan-to-map module is much less.
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In this paper, we propose an improved LIO system. Firstly, it makes reasonable use of
the feature information of point cloud and effectively improves the accuracy of point cloud
matching. Point cloud registration is carried out after marking rod-shaped and planar
feature information which is different from the existing LIDAR-inertial integration scheme.
The optimized edge points and planar points extraction modes reduce the computation of
scan-to-map and improve the real-time performance. Secondly, prediction of IMU odometry
and correction of LIDAR odometry improve the accuracy and frequency of the mapping
module, which is inspired by LIO-SAM. Comparing this to the front-end odometry in
traditional scan-to-scan mode, the tightly coupled mode of system greatly improves the
performance of LIO. Thirdly, the scan-to-map based on the graph optimization model is
of great significance to speed up the solution and decrease error. Therefore, the system
does not apply the Levenberg–Marquardt algorithm, which is adopted in Lego-LOAM
and LIO-SAM. Fourthly, the robust back-end optimization system including effective loop
closure suppress the cumulative drift of LIO odometry, and IMU measurements residuals
add more constraints information between IMU and LIDAR measurements compared to
LIO-SAM. The optimization mode based on sliding window ensure full use of sensors
information under real-time conditions. Experiments show that the real-time performance
and accuracy of our algorithm exceed that of most state-of-the-art systems in various
typical environments.

It can be seen from Table 2 that the positioning accuracy (RMSE) can be improved
by 25–78% (the average increment is 64.45%) in the M2DGR street datasets compared to
the current tightly coupled LIDAR SLAM algorithms (LIO-SAM). After optimizing the
extraction mode of edge points and planar points, our system processes more frames and
takes less time on average, effectively improving real-time performance. In our actual scene
datasets, the RMSE in the study increases by 24.4% in dataset_01 and 25.0% in dataset_02.

We draw a conclusion that we propose the low drift and high real-time LIDAR-inertial
positioning and mapping system, which is of great importance in indoor locating and other
GNSS occlusion area. At the same time, it can provide high precision point cloud image for
scene understanding in automatic system. For the back-end optimization framework, we
can easily add other measurements such as GNSS for global restriction.

In the future, we noticed that it is necessary to improve the initialization process to
reduce initial error. It is very important to judge the rod-shaped feature information and the
planar feature information in the research process of this paper. This work gets thresholds
according to experience temporarily. We will focus on online threshold estimation and
adaptive threshold selection. Also, it is worth mentioning that LIO system is prone to Z
direction drift in the large scene. Then more constraints will be introduced to suppress drift
in our next step. Furthermore, according to the recent study [33–36], the positioning and
mapping system based on solid state LIDAR can significantly reduce the hardware cost.
Therefore, the research of solid-state LIDAR- inertial system is worth exploring.
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